| author | skalberg | 
| Sun, 04 Apr 2004 15:34:14 +0200 | |
| changeset 14518 | c3019a66180f | 
| parent 14169 | 0590de71a016 | 
| permissions | -rw-r--r-- | 
| 9422 | 1  | 
(* Title: HOL/Gfp.ML  | 
| 923 | 2  | 
ID: $Id$  | 
| 1465 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 923 | 4  | 
Copyright 1993 University of Cambridge  | 
5  | 
||
| 
5148
 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5069 
diff
changeset
 | 
6  | 
The Knaster-Tarski Theorem for greatest fixed points.  | 
| 923 | 7  | 
*)  | 
8  | 
||
9  | 
(*** Proof of Knaster-Tarski Theorem using gfp ***)  | 
|
10  | 
||
| 14169 | 11  | 
val gfp_def = thm "gfp_def";  | 
12  | 
||
| 923 | 13  | 
(* gfp(f) is the least upper bound of {u. u <= f(u)} *)
 | 
14  | 
||
| 
5148
 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5069 
diff
changeset
 | 
15  | 
Goalw [gfp_def] "[| X <= f(X) |] ==> X <= gfp(f)";  | 
| 
 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5069 
diff
changeset
 | 
16  | 
by (etac (CollectI RS Union_upper) 1);  | 
| 923 | 17  | 
qed "gfp_upperbound";  | 
18  | 
||
| 10067 | 19  | 
val prems = Goalw [gfp_def]  | 
| 923 | 20  | 
"[| !!u. u <= f(u) ==> u<=X |] ==> gfp(f) <= X";  | 
21  | 
by (REPEAT (ares_tac ([Union_least]@prems) 1));  | 
|
22  | 
by (etac CollectD 1);  | 
|
23  | 
qed "gfp_least";  | 
|
24  | 
||
| 5316 | 25  | 
Goal "mono(f) ==> gfp(f) <= f(gfp(f))";  | 
| 923 | 26  | 
by (EVERY1 [rtac gfp_least, rtac subset_trans, atac,  | 
| 5316 | 27  | 
etac monoD, rtac gfp_upperbound, atac]);  | 
| 923 | 28  | 
qed "gfp_lemma2";  | 
29  | 
||
| 5316 | 30  | 
Goal "mono(f) ==> f(gfp(f)) <= gfp(f)";  | 
31  | 
by (EVERY1 [rtac gfp_upperbound, rtac monoD, assume_tac,  | 
|
32  | 
etac gfp_lemma2]);  | 
|
| 923 | 33  | 
qed "gfp_lemma3";  | 
34  | 
||
| 5316 | 35  | 
Goal "mono(f) ==> gfp(f) = f(gfp(f))";  | 
36  | 
by (REPEAT (ares_tac [equalityI,gfp_lemma2,gfp_lemma3] 1));  | 
|
| 10186 | 37  | 
qed "gfp_unfold";  | 
| 923 | 38  | 
|
39  | 
(*** Coinduction rules for greatest fixed points ***)  | 
|
40  | 
||
41  | 
(*weak version*)  | 
|
| 
5148
 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5069 
diff
changeset
 | 
42  | 
Goal "[| a: X; X <= f(X) |] ==> a : gfp(f)";  | 
| 923 | 43  | 
by (rtac (gfp_upperbound RS subsetD) 1);  | 
| 
5148
 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5069 
diff
changeset
 | 
44  | 
by Auto_tac;  | 
| 923 | 45  | 
qed "weak_coinduct";  | 
46  | 
||
| 11335 | 47  | 
Goal "!!X. [| a : X; g`X <= f (g`X) |] ==> g a : gfp f";  | 
48  | 
by (etac (gfp_upperbound RS subsetD) 1);  | 
|
49  | 
by (etac imageI 1);  | 
|
50  | 
qed "weak_coinduct_image";  | 
|
51  | 
||
| 10067 | 52  | 
Goal "[| X <= f(X Un gfp(f)); mono(f) |] ==> \  | 
| 923 | 53  | 
\ X Un gfp(f) <= f(X Un gfp(f))";  | 
| 10067 | 54  | 
by (blast_tac (claset() addDs [gfp_lemma2, mono_Un]) 1);  | 
| 923 | 55  | 
qed "coinduct_lemma";  | 
56  | 
||
57  | 
(*strong version, thanks to Coen & Frost*)  | 
|
| 
5148
 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5069 
diff
changeset
 | 
58  | 
Goal "[| mono(f); a: X; X <= f(X Un gfp(f)) |] ==> a : gfp(f)";  | 
| 923 | 59  | 
by (rtac (coinduct_lemma RSN (2, weak_coinduct)) 1);  | 
60  | 
by (REPEAT (ares_tac [UnI1, Un_least] 1));  | 
|
61  | 
qed "coinduct";  | 
|
62  | 
||
| 10067 | 63  | 
Goal "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))";  | 
64  | 
by (blast_tac (claset() addDs [gfp_lemma2, mono_Un]) 1);  | 
|
| 923 | 65  | 
qed "gfp_fun_UnI2";  | 
66  | 
||
67  | 
(*** Even Stronger version of coinduct [by Martin Coen]  | 
|
68  | 
- instead of the condition X <= f(X)  | 
|
69  | 
consider X <= (f(X) Un f(f(X)) ...) Un gfp(X) ***)  | 
|
70  | 
||
| 5316 | 71  | 
Goal "mono(f) ==> mono(%x. f(x) Un X Un B)";  | 
72  | 
by (REPEAT (ares_tac [subset_refl, monoI, Un_mono] 1 ORELSE etac monoD 1));  | 
|
| 923 | 73  | 
qed "coinduct3_mono_lemma";  | 
74  | 
||
| 10067 | 75  | 
Goal "[| X <= f(lfp(%x. f(x) Un X Un gfp(f))); mono(f) |] ==> \  | 
| 3842 | 76  | 
\ lfp(%x. f(x) Un X Un gfp(f)) <= f(lfp(%x. f(x) Un X Un gfp(f)))";  | 
| 923 | 77  | 
by (rtac subset_trans 1);  | 
| 10067 | 78  | 
by (etac (coinduct3_mono_lemma RS lfp_lemma3) 1);  | 
| 923 | 79  | 
by (rtac (Un_least RS Un_least) 1);  | 
80  | 
by (rtac subset_refl 1);  | 
|
| 10067 | 81  | 
by (assume_tac 1);  | 
| 10186 | 82  | 
by (rtac (gfp_unfold RS equalityD1 RS subset_trans) 1);  | 
| 10067 | 83  | 
by (assume_tac 1);  | 
84  | 
by (rtac monoD 1 THEN assume_tac 1);  | 
|
| 10186 | 85  | 
by (stac (coinduct3_mono_lemma RS lfp_unfold) 1);  | 
| 10067 | 86  | 
by Auto_tac;  | 
| 923 | 87  | 
qed "coinduct3_lemma";  | 
88  | 
||
| 5316 | 89  | 
Goal  | 
90  | 
"[| mono(f); a:X; X <= f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)";  | 
|
| 923 | 91  | 
by (rtac (coinduct3_lemma RSN (2,weak_coinduct)) 1);  | 
| 10186 | 92  | 
by (resolve_tac [coinduct3_mono_lemma RS lfp_unfold RS ssubst] 1);  | 
| 5316 | 93  | 
by Auto_tac;  | 
| 923 | 94  | 
qed "coinduct3";  | 
95  | 
||
96  | 
||
| 10186 | 97  | 
(** Definition forms of gfp_unfold and coinduct, to control unfolding **)  | 
| 923 | 98  | 
|
| 10067 | 99  | 
Goal "[| A==gfp(f); mono(f) |] ==> A = f(A)";  | 
| 10186 | 100  | 
by (auto_tac (claset() addSIs [gfp_unfold], simpset()));  | 
101  | 
qed "def_gfp_unfold";  | 
|
| 923 | 102  | 
|
| 10067 | 103  | 
Goal "[| A==gfp(f); mono(f); a:X; X <= f(X Un A) |] ==> a: A";  | 
104  | 
by (auto_tac (claset() addSIs [coinduct], simpset()));  | 
|
| 923 | 105  | 
qed "def_coinduct";  | 
106  | 
||
107  | 
(*The version used in the induction/coinduction package*)  | 
|
| 5316 | 108  | 
val prems = Goal  | 
| 923 | 109  | 
"[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w))); \  | 
110  | 
\ a: X; !!z. z: X ==> P (X Un A) z |] ==> \  | 
|
111  | 
\ a : A";  | 
|
112  | 
by (rtac def_coinduct 1);  | 
|
113  | 
by (REPEAT (ares_tac (prems @ [subsetI,CollectI]) 1));  | 
|
114  | 
qed "def_Collect_coinduct";  | 
|
115  | 
||
| 10067 | 116  | 
Goal "[| A==gfp(f); mono(f); a:X; X <= f(lfp(%x. f(x) Un X Un A)) |] \  | 
117  | 
\ ==> a: A";  | 
|
118  | 
by (auto_tac (claset() addSIs [coinduct3], simpset()));  | 
|
| 923 | 119  | 
qed "def_coinduct3";  | 
120  | 
||
121  | 
(*Monotonicity of gfp!*)  | 
|
| 5316 | 122  | 
val [prem] = Goal "[| !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)";  | 
| 1465 | 123  | 
by (rtac (gfp_upperbound RS gfp_least) 1);  | 
124  | 
by (etac (prem RSN (2,subset_trans)) 1);  | 
|
| 923 | 125  | 
qed "gfp_mono";  |