| author | skalberg | 
| Sun, 04 Apr 2004 15:34:14 +0200 | |
| changeset 14518 | c3019a66180f | 
| parent 14485 | ea2707645af8 | 
| child 14577 | dbb95b825244 | 
| permissions | -rw-r--r-- | 
| 8924 | 1  | 
(* Title: HOL/SetInterval.thy  | 
2  | 
ID: $Id$  | 
|
| 13735 | 3  | 
Author: Tobias Nipkow and Clemens Ballarin  | 
| 14485 | 4  | 
Additions by Jeremy Avigad in March 2004  | 
| 8957 | 5  | 
Copyright 2000 TU Muenchen  | 
| 8924 | 6  | 
|
| 13735 | 7  | 
lessThan, greaterThan, atLeast, atMost and two-sided intervals  | 
| 8924 | 8  | 
*)  | 
9  | 
||
| 14485 | 10  | 
theory SetInterval = IntArith:  | 
| 8924 | 11  | 
|
12  | 
constdefs  | 
|
| 
11609
 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 
wenzelm 
parents: 
10214 
diff
changeset
 | 
13  | 
  lessThan    :: "('a::ord) => 'a set"	("(1{.._'(})")
 | 
| 
 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 
wenzelm 
parents: 
10214 
diff
changeset
 | 
14  | 
  "{..u(} == {x. x<u}"
 | 
| 8924 | 15  | 
|
| 
11609
 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 
wenzelm 
parents: 
10214 
diff
changeset
 | 
16  | 
  atMost      :: "('a::ord) => 'a set"	("(1{.._})")
 | 
| 
 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 
wenzelm 
parents: 
10214 
diff
changeset
 | 
17  | 
  "{..u} == {x. x<=u}"
 | 
| 8924 | 18  | 
|
| 
11609
 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 
wenzelm 
parents: 
10214 
diff
changeset
 | 
19  | 
  greaterThan :: "('a::ord) => 'a set"	("(1{')_..})")
 | 
| 
 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 
wenzelm 
parents: 
10214 
diff
changeset
 | 
20  | 
  "{)l..} == {x. l<x}"
 | 
| 8924 | 21  | 
|
| 
11609
 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 
wenzelm 
parents: 
10214 
diff
changeset
 | 
22  | 
  atLeast     :: "('a::ord) => 'a set"	("(1{_..})")
 | 
| 
 
3f3d1add4d94
eliminated theories "equalities" and "mono" (made part of "Typedef",
 
wenzelm 
parents: 
10214 
diff
changeset
 | 
23  | 
  "{l..} == {x. l<=x}"
 | 
| 8924 | 24  | 
|
| 13735 | 25  | 
  greaterThanLessThan :: "['a::ord, 'a] => 'a set"  ("(1{')_.._'(})")
 | 
26  | 
  "{)l..u(} == {)l..} Int {..u(}"
 | 
|
27  | 
||
28  | 
  atLeastLessThan :: "['a::ord, 'a] => 'a set"      ("(1{_.._'(})")
 | 
|
29  | 
  "{l..u(} == {l..} Int {..u(}"
 | 
|
30  | 
||
31  | 
  greaterThanAtMost :: "['a::ord, 'a] => 'a set"    ("(1{')_.._})")
 | 
|
32  | 
  "{)l..u} == {)l..} Int {..u}"
 | 
|
33  | 
||
34  | 
  atLeastAtMost :: "['a::ord, 'a] => 'a set"        ("(1{_.._})")
 | 
|
35  | 
  "{l..u} == {l..} Int {..u}"
 | 
|
36  | 
||
| 14418 | 37  | 
syntax  | 
38  | 
  "@UNION_le"   :: "nat => nat => 'b set => 'b set"       ("(3UN _<=_./ _)" 10)
 | 
|
39  | 
  "@UNION_less" :: "nat => nat => 'b set => 'b set"       ("(3UN _<_./ _)" 10)
 | 
|
40  | 
  "@INTER_le"   :: "nat => nat => 'b set => 'b set"       ("(3INT _<=_./ _)" 10)
 | 
|
41  | 
  "@INTER_less" :: "nat => nat => 'b set => 'b set"       ("(3INT _<_./ _)" 10)
 | 
|
42  | 
||
43  | 
syntax (input)  | 
|
44  | 
  "@UNION_le"   :: "nat => nat => 'b set => 'b set"       ("(3\<Union> _\<le>_./ _)" 10)
 | 
|
45  | 
  "@UNION_less" :: "nat => nat => 'b set => 'b set"       ("(3\<Union> _<_./ _)" 10)
 | 
|
46  | 
  "@INTER_le"   :: "nat => nat => 'b set => 'b set"       ("(3\<Inter> _\<le>_./ _)" 10)
 | 
|
47  | 
  "@INTER_less" :: "nat => nat => 'b set => 'b set"       ("(3\<Inter> _<_./ _)" 10)
 | 
|
48  | 
||
49  | 
syntax (xsymbols)  | 
|
50  | 
  "@UNION_le"   :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Union>\<^bsub>_ \<le> _\<^esub>/ _)" 10)
 | 
|
51  | 
  "@UNION_less" :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Union>\<^bsub>_ < _\<^esub>/ _)" 10)
 | 
|
52  | 
  "@INTER_le"   :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Inter>\<^bsub>_ \<le> _\<^esub>/ _)" 10)
 | 
|
53  | 
  "@INTER_less" :: "nat \<Rightarrow> nat => 'b set => 'b set"       ("(3\<Inter>\<^bsub>_ < _\<^esub>/ _)" 10)
 | 
|
54  | 
||
55  | 
translations  | 
|
56  | 
  "UN i<=n. A"  == "UN i:{..n}. A"
 | 
|
57  | 
  "UN i<n. A"   == "UN i:{..n(}. A"
 | 
|
58  | 
  "INT i<=n. A" == "INT i:{..n}. A"
 | 
|
59  | 
  "INT i<n. A"  == "INT i:{..n(}. A"
 | 
|
60  | 
||
61  | 
||
| 14485 | 62  | 
subsection {* Various equivalences *}
 | 
| 13735 | 63  | 
|
| 13850 | 64  | 
lemma lessThan_iff [iff]: "(i: lessThan k) = (i<k)"  | 
65  | 
by (simp add: lessThan_def)  | 
|
| 13735 | 66  | 
|
| 13850 | 67  | 
lemma Compl_lessThan [simp]:  | 
| 13735 | 68  | 
"!!k:: 'a::linorder. -lessThan k = atLeast k"  | 
| 13850 | 69  | 
apply (auto simp add: lessThan_def atLeast_def)  | 
| 13735 | 70  | 
done  | 
71  | 
||
| 13850 | 72  | 
lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
 | 
73  | 
by auto  | 
|
| 13735 | 74  | 
|
| 13850 | 75  | 
lemma greaterThan_iff [iff]: "(i: greaterThan k) = (k<i)"  | 
76  | 
by (simp add: greaterThan_def)  | 
|
| 13735 | 77  | 
|
| 13850 | 78  | 
lemma Compl_greaterThan [simp]:  | 
| 13735 | 79  | 
"!!k:: 'a::linorder. -greaterThan k = atMost k"  | 
| 13850 | 80  | 
apply (simp add: greaterThan_def atMost_def le_def, auto)  | 
| 13735 | 81  | 
done  | 
82  | 
||
| 13850 | 83  | 
lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k"  | 
84  | 
apply (subst Compl_greaterThan [symmetric])  | 
|
85  | 
apply (rule double_complement)  | 
|
| 13735 | 86  | 
done  | 
87  | 
||
| 13850 | 88  | 
lemma atLeast_iff [iff]: "(i: atLeast k) = (k<=i)"  | 
89  | 
by (simp add: atLeast_def)  | 
|
| 13735 | 90  | 
|
| 13850 | 91  | 
lemma Compl_atLeast [simp]:  | 
| 13735 | 92  | 
"!!k:: 'a::linorder. -atLeast k = lessThan k"  | 
| 13850 | 93  | 
apply (simp add: lessThan_def atLeast_def le_def, auto)  | 
| 13735 | 94  | 
done  | 
95  | 
||
| 13850 | 96  | 
lemma atMost_iff [iff]: "(i: atMost k) = (i<=k)"  | 
97  | 
by (simp add: atMost_def)  | 
|
| 13735 | 98  | 
|
| 14485 | 99  | 
lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
100  | 
by (blast intro: order_antisym)  | 
|
| 13850 | 101  | 
|
102  | 
||
| 14485 | 103  | 
subsection {* Logical Equivalences for Set Inclusion and Equality *}
 | 
| 13850 | 104  | 
|
105  | 
lemma atLeast_subset_iff [iff]:  | 
|
106  | 
"(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))"  | 
|
107  | 
by (blast intro: order_trans)  | 
|
108  | 
||
109  | 
lemma atLeast_eq_iff [iff]:  | 
|
110  | 
"(atLeast x = atLeast y) = (x = (y::'a::linorder))"  | 
|
111  | 
by (blast intro: order_antisym order_trans)  | 
|
112  | 
||
113  | 
lemma greaterThan_subset_iff [iff]:  | 
|
114  | 
"(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))"  | 
|
115  | 
apply (auto simp add: greaterThan_def)  | 
|
116  | 
apply (subst linorder_not_less [symmetric], blast)  | 
|
117  | 
done  | 
|
118  | 
||
119  | 
lemma greaterThan_eq_iff [iff]:  | 
|
120  | 
"(greaterThan x = greaterThan y) = (x = (y::'a::linorder))"  | 
|
121  | 
apply (rule iffI)  | 
|
122  | 
apply (erule equalityE)  | 
|
123  | 
apply (simp add: greaterThan_subset_iff order_antisym, simp)  | 
|
124  | 
done  | 
|
125  | 
||
126  | 
lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))"  | 
|
127  | 
by (blast intro: order_trans)  | 
|
128  | 
||
129  | 
lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))"  | 
|
130  | 
by (blast intro: order_antisym order_trans)  | 
|
131  | 
||
132  | 
lemma lessThan_subset_iff [iff]:  | 
|
133  | 
"(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))"  | 
|
134  | 
apply (auto simp add: lessThan_def)  | 
|
135  | 
apply (subst linorder_not_less [symmetric], blast)  | 
|
136  | 
done  | 
|
137  | 
||
138  | 
lemma lessThan_eq_iff [iff]:  | 
|
139  | 
"(lessThan x = lessThan y) = (x = (y::'a::linorder))"  | 
|
140  | 
apply (rule iffI)  | 
|
141  | 
apply (erule equalityE)  | 
|
142  | 
apply (simp add: lessThan_subset_iff order_antisym, simp)  | 
|
| 13735 | 143  | 
done  | 
144  | 
||
145  | 
||
| 13850 | 146  | 
subsection {*Two-sided intervals*}
 | 
| 13735 | 147  | 
|
148  | 
(* greaterThanLessThan *)  | 
|
149  | 
||
150  | 
lemma greaterThanLessThan_iff [simp]:  | 
|
151  | 
  "(i : {)l..u(}) = (l < i & i < u)"
 | 
|
152  | 
by (simp add: greaterThanLessThan_def)  | 
|
153  | 
||
154  | 
(* atLeastLessThan *)  | 
|
155  | 
||
156  | 
lemma atLeastLessThan_iff [simp]:  | 
|
157  | 
  "(i : {l..u(}) = (l <= i & i < u)"
 | 
|
158  | 
by (simp add: atLeastLessThan_def)  | 
|
159  | 
||
160  | 
(* greaterThanAtMost *)  | 
|
161  | 
||
162  | 
lemma greaterThanAtMost_iff [simp]:  | 
|
163  | 
  "(i : {)l..u}) = (l < i & i <= u)"
 | 
|
164  | 
by (simp add: greaterThanAtMost_def)  | 
|
165  | 
||
166  | 
(* atLeastAtMost *)  | 
|
167  | 
||
168  | 
lemma atLeastAtMost_iff [simp]:  | 
|
169  | 
  "(i : {l..u}) = (l <= i & i <= u)"
 | 
|
170  | 
by (simp add: atLeastAtMost_def)  | 
|
171  | 
||
172  | 
(* The above four lemmas could be declared as iffs.  | 
|
173  | 
If we do so, a call to blast in Hyperreal/Star.ML, lemma STAR_Int  | 
|
174  | 
seems to take forever (more than one hour). *)  | 
|
175  | 
||
| 14485 | 176  | 
|
177  | 
subsection {* Intervals of natural numbers *}
 | 
|
178  | 
||
179  | 
lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
|
180  | 
by (simp add: lessThan_def)  | 
|
181  | 
||
182  | 
lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)"  | 
|
183  | 
by (simp add: lessThan_def less_Suc_eq, blast)  | 
|
184  | 
||
185  | 
lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k"  | 
|
186  | 
by (simp add: lessThan_def atMost_def less_Suc_eq_le)  | 
|
187  | 
||
188  | 
lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV"  | 
|
189  | 
by blast  | 
|
190  | 
||
191  | 
lemma greaterThan_0 [simp]: "greaterThan 0 = range Suc"  | 
|
192  | 
apply (simp add: greaterThan_def)  | 
|
193  | 
apply (blast dest: gr0_conv_Suc [THEN iffD1])  | 
|
194  | 
done  | 
|
195  | 
||
196  | 
lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | 
|
197  | 
apply (simp add: greaterThan_def)  | 
|
198  | 
apply (auto elim: linorder_neqE)  | 
|
199  | 
done  | 
|
200  | 
||
201  | 
lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
 | 
|
202  | 
by blast  | 
|
203  | 
||
204  | 
lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV"  | 
|
205  | 
by (unfold atLeast_def UNIV_def, simp)  | 
|
206  | 
||
207  | 
lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | 
|
208  | 
apply (simp add: atLeast_def)  | 
|
209  | 
apply (simp add: Suc_le_eq)  | 
|
210  | 
apply (simp add: order_le_less, blast)  | 
|
211  | 
done  | 
|
212  | 
||
213  | 
lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k"  | 
|
214  | 
by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le)  | 
|
215  | 
||
216  | 
lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV"  | 
|
217  | 
by blast  | 
|
218  | 
||
219  | 
lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
|
220  | 
by (simp add: atMost_def)  | 
|
221  | 
||
222  | 
lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)"  | 
|
223  | 
apply (simp add: atMost_def)  | 
|
224  | 
apply (simp add: less_Suc_eq order_le_less, blast)  | 
|
225  | 
done  | 
|
226  | 
||
227  | 
lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV"  | 
|
228  | 
by blast  | 
|
229  | 
||
230  | 
(* Intervals of nats with Suc *)  | 
|
231  | 
||
232  | 
lemma atLeastLessThanSuc_atLeastAtMost: "{l..Suc u(} = {l..u}"
 | 
|
233  | 
by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def)  | 
|
234  | 
||
235  | 
lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {)l..u}"  
 | 
|
236  | 
by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def  | 
|
237  | 
greaterThanAtMost_def)  | 
|
238  | 
||
239  | 
lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..u(} = {)l..u(}"  
 | 
|
240  | 
by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def  | 
|
241  | 
greaterThanLessThan_def)  | 
|
242  | 
||
243  | 
subsubsection {* Finiteness *}
 | 
|
244  | 
||
245  | 
lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..k(}"
 | 
|
246  | 
by (induct k) (simp_all add: lessThan_Suc)  | 
|
247  | 
||
248  | 
lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | 
|
249  | 
by (induct k) (simp_all add: atMost_Suc)  | 
|
250  | 
||
251  | 
lemma finite_greaterThanLessThan [iff]:  | 
|
252  | 
  fixes l :: nat shows "finite {)l..u(}"
 | 
|
253  | 
by (simp add: greaterThanLessThan_def)  | 
|
254  | 
||
255  | 
lemma finite_atLeastLessThan [iff]:  | 
|
256  | 
  fixes l :: nat shows "finite {l..u(}"
 | 
|
257  | 
by (simp add: atLeastLessThan_def)  | 
|
258  | 
||
259  | 
lemma finite_greaterThanAtMost [iff]:  | 
|
260  | 
  fixes l :: nat shows "finite {)l..u}"
 | 
|
261  | 
by (simp add: greaterThanAtMost_def)  | 
|
262  | 
||
263  | 
lemma finite_atLeastAtMost [iff]:  | 
|
264  | 
  fixes l :: nat shows "finite {l..u}"
 | 
|
265  | 
by (simp add: atLeastAtMost_def)  | 
|
266  | 
||
267  | 
lemma bounded_nat_set_is_finite:  | 
|
268  | 
"(ALL i:N. i < (n::nat)) ==> finite N"  | 
|
269  | 
  -- {* A bounded set of natural numbers is finite. *}
 | 
|
270  | 
apply (rule finite_subset)  | 
|
271  | 
apply (rule_tac [2] finite_lessThan, auto)  | 
|
272  | 
done  | 
|
273  | 
||
274  | 
subsubsection {* Cardinality *}
 | 
|
275  | 
||
276  | 
lemma card_lessThan [simp]: "card {..u(} = u"
 | 
|
277  | 
by (induct_tac u, simp_all add: lessThan_Suc)  | 
|
278  | 
||
279  | 
lemma card_atMost [simp]: "card {..u} = Suc u"
 | 
|
280  | 
by (simp add: lessThan_Suc_atMost [THEN sym])  | 
|
281  | 
||
282  | 
lemma card_atLeastLessThan [simp]: "card {l..u(} = u - l"
 | 
|
283  | 
  apply (subgoal_tac "card {l..u(} = card {..u-l(}")
 | 
|
284  | 
apply (erule ssubst, rule card_lessThan)  | 
|
285  | 
  apply (subgoal_tac "(%x. x + l) ` {..u-l(} = {l..u(}")
 | 
|
286  | 
apply (erule subst)  | 
|
287  | 
apply (rule card_image)  | 
|
288  | 
apply (rule finite_lessThan)  | 
|
289  | 
apply (simp add: inj_on_def)  | 
|
290  | 
apply (auto simp add: image_def atLeastLessThan_def lessThan_def)  | 
|
291  | 
apply arith  | 
|
292  | 
apply (rule_tac x = "x - l" in exI)  | 
|
293  | 
apply arith  | 
|
294  | 
done  | 
|
295  | 
||
296  | 
lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
|
297  | 
by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp)  | 
|
298  | 
||
299  | 
lemma card_greaterThanAtMost [simp]: "card {)l..u} = u - l" 
 | 
|
300  | 
by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp)  | 
|
301  | 
||
302  | 
lemma card_greaterThanLessThan [simp]: "card {)l..u(} = u - Suc l"
 | 
|
303  | 
by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp)  | 
|
304  | 
||
305  | 
subsection {* Intervals of integers *}
 | 
|
306  | 
||
307  | 
lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..u+1(} = {l..(u::int)}"
 | 
|
308  | 
by (auto simp add: atLeastAtMost_def atLeastLessThan_def)  | 
|
309  | 
||
310  | 
lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {)l..(u::int)}"  
 | 
|
311  | 
by (auto simp add: atLeastAtMost_def greaterThanAtMost_def)  | 
|
312  | 
||
313  | 
lemma atLeastPlusOneLessThan_greaterThanLessThan_int:  | 
|
314  | 
    "{l+1..u(} = {)l..(u::int)(}"  
 | 
|
315  | 
by (auto simp add: atLeastLessThan_def greaterThanLessThan_def)  | 
|
316  | 
||
317  | 
subsubsection {* Finiteness *}
 | 
|
318  | 
||
319  | 
lemma image_atLeastZeroLessThan_int: "0 \<le> u ==>  | 
|
320  | 
    {(0::int)..u(} = int ` {..nat u(}"
 | 
|
321  | 
apply (unfold image_def lessThan_def)  | 
|
322  | 
apply auto  | 
|
323  | 
apply (rule_tac x = "nat x" in exI)  | 
|
324  | 
apply (auto simp add: zless_nat_conj zless_nat_eq_int_zless [THEN sym])  | 
|
325  | 
done  | 
|
326  | 
||
327  | 
lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..u(}"
 | 
|
328  | 
apply (case_tac "0 \<le> u")  | 
|
329  | 
apply (subst image_atLeastZeroLessThan_int, assumption)  | 
|
330  | 
apply (rule finite_imageI)  | 
|
331  | 
apply auto  | 
|
332  | 
  apply (subgoal_tac "{0..u(} = {}")
 | 
|
333  | 
apply auto  | 
|
334  | 
done  | 
|
335  | 
||
336  | 
lemma image_atLeastLessThan_int_shift:  | 
|
337  | 
    "(%x. x + (l::int)) ` {0..u-l(} = {l..u(}"
 | 
|
338  | 
apply (auto simp add: image_def atLeastLessThan_iff)  | 
|
339  | 
apply (rule_tac x = "x - l" in bexI)  | 
|
340  | 
apply auto  | 
|
341  | 
done  | 
|
342  | 
||
343  | 
lemma finite_atLeastLessThan_int [iff]: "finite {l..(u::int)(}"
 | 
|
344  | 
  apply (subgoal_tac "(%x. x + l) ` {0..u-l(} = {l..u(}")
 | 
|
345  | 
apply (erule subst)  | 
|
346  | 
apply (rule finite_imageI)  | 
|
347  | 
apply (rule finite_atLeastZeroLessThan_int)  | 
|
348  | 
apply (rule image_atLeastLessThan_int_shift)  | 
|
349  | 
done  | 
|
350  | 
||
351  | 
lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}" 
 | 
|
352  | 
by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp)  | 
|
353  | 
||
354  | 
lemma finite_greaterThanAtMost_int [iff]: "finite {)l..(u::int)}" 
 | 
|
355  | 
by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp)  | 
|
356  | 
||
357  | 
lemma finite_greaterThanLessThan_int [iff]: "finite {)l..(u::int)(}" 
 | 
|
358  | 
by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp)  | 
|
359  | 
||
360  | 
subsubsection {* Cardinality *}
 | 
|
361  | 
||
362  | 
lemma card_atLeastZeroLessThan_int: "card {(0::int)..u(} = nat u"
 | 
|
363  | 
apply (case_tac "0 \<le> u")  | 
|
364  | 
apply (subst image_atLeastZeroLessThan_int, assumption)  | 
|
365  | 
apply (subst card_image)  | 
|
366  | 
apply (auto simp add: inj_on_def)  | 
|
367  | 
done  | 
|
368  | 
||
369  | 
lemma card_atLeastLessThan_int [simp]: "card {l..u(} = nat (u - l)"
 | 
|
370  | 
  apply (subgoal_tac "card {l..u(} = card {0..u-l(}")
 | 
|
371  | 
apply (erule ssubst, rule card_atLeastZeroLessThan_int)  | 
|
372  | 
  apply (subgoal_tac "(%x. x + l) ` {0..u-l(} = {l..u(}")
 | 
|
373  | 
apply (erule subst)  | 
|
374  | 
apply (rule card_image)  | 
|
375  | 
apply (rule finite_atLeastZeroLessThan_int)  | 
|
376  | 
apply (simp add: inj_on_def)  | 
|
377  | 
apply (rule image_atLeastLessThan_int_shift)  | 
|
378  | 
done  | 
|
379  | 
||
380  | 
lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | 
|
381  | 
apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym])  | 
|
382  | 
apply (auto simp add: compare_rls)  | 
|
383  | 
done  | 
|
384  | 
||
385  | 
lemma card_greaterThanAtMost_int [simp]: "card {)l..u} = nat (u - l)" 
 | 
|
386  | 
by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp)  | 
|
387  | 
||
388  | 
lemma card_greaterThanLessThan_int [simp]: "card {)l..u(} = nat (u - (l + 1))"
 | 
|
389  | 
by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp)  | 
|
390  | 
||
391  | 
||
| 13850 | 392  | 
subsection {*Lemmas useful with the summation operator setsum*}
 | 
393  | 
||
| 13735 | 394  | 
(* For examples, see Algebra/poly/UnivPoly.thy *)  | 
395  | 
||
396  | 
(** Disjoint Unions **)  | 
|
397  | 
||
398  | 
(* Singletons and open intervals *)  | 
|
399  | 
||
400  | 
lemma ivl_disj_un_singleton:  | 
|
401  | 
  "{l::'a::linorder} Un {)l..} = {l..}"
 | 
|
402  | 
  "{..u(} Un {u::'a::linorder} = {..u}"
 | 
|
403  | 
  "(l::'a::linorder) < u ==> {l} Un {)l..u(} = {l..u(}"
 | 
|
404  | 
  "(l::'a::linorder) < u ==> {)l..u(} Un {u} = {)l..u}"
 | 
|
405  | 
  "(l::'a::linorder) <= u ==> {l} Un {)l..u} = {l..u}"
 | 
|
406  | 
  "(l::'a::linorder) <= u ==> {l..u(} Un {u} = {l..u}"
 | 
|
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
13850 
diff
changeset
 | 
407  | 
by auto  | 
| 13735 | 408  | 
|
409  | 
(* One- and two-sided intervals *)  | 
|
410  | 
||
411  | 
lemma ivl_disj_un_one:  | 
|
412  | 
  "(l::'a::linorder) < u ==> {..l} Un {)l..u(} = {..u(}"
 | 
|
413  | 
  "(l::'a::linorder) <= u ==> {..l(} Un {l..u(} = {..u(}"
 | 
|
414  | 
  "(l::'a::linorder) <= u ==> {..l} Un {)l..u} = {..u}"
 | 
|
415  | 
  "(l::'a::linorder) <= u ==> {..l(} Un {l..u} = {..u}"
 | 
|
416  | 
  "(l::'a::linorder) <= u ==> {)l..u} Un {)u..} = {)l..}"
 | 
|
417  | 
  "(l::'a::linorder) < u ==> {)l..u(} Un {u..} = {)l..}"
 | 
|
418  | 
  "(l::'a::linorder) <= u ==> {l..u} Un {)u..} = {l..}"
 | 
|
419  | 
  "(l::'a::linorder) <= u ==> {l..u(} Un {u..} = {l..}"
 | 
|
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
13850 
diff
changeset
 | 
420  | 
by auto  | 
| 13735 | 421  | 
|
422  | 
(* Two- and two-sided intervals *)  | 
|
423  | 
||
424  | 
lemma ivl_disj_un_two:  | 
|
425  | 
  "[| (l::'a::linorder) < m; m <= u |] ==> {)l..m(} Un {m..u(} = {)l..u(}"
 | 
|
426  | 
  "[| (l::'a::linorder) <= m; m < u |] ==> {)l..m} Un {)m..u(} = {)l..u(}"
 | 
|
427  | 
  "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m(} Un {m..u(} = {l..u(}"
 | 
|
428  | 
  "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {)m..u(} = {l..u(}"
 | 
|
429  | 
  "[| (l::'a::linorder) < m; m <= u |] ==> {)l..m(} Un {m..u} = {)l..u}"
 | 
|
430  | 
  "[| (l::'a::linorder) <= m; m <= u |] ==> {)l..m} Un {)m..u} = {)l..u}"
 | 
|
431  | 
  "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m(} Un {m..u} = {l..u}"
 | 
|
432  | 
  "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {)m..u} = {l..u}"
 | 
|
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
13850 
diff
changeset
 | 
433  | 
by auto  | 
| 13735 | 434  | 
|
435  | 
lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two  | 
|
436  | 
||
437  | 
(** Disjoint Intersections **)  | 
|
438  | 
||
439  | 
(* Singletons and open intervals *)  | 
|
440  | 
||
441  | 
lemma ivl_disj_int_singleton:  | 
|
442  | 
  "{l::'a::order} Int {)l..} = {}"
 | 
|
443  | 
  "{..u(} Int {u} = {}"
 | 
|
444  | 
  "{l} Int {)l..u(} = {}"
 | 
|
445  | 
  "{)l..u(} Int {u} = {}"
 | 
|
446  | 
  "{l} Int {)l..u} = {}"
 | 
|
447  | 
  "{l..u(} Int {u} = {}"
 | 
|
448  | 
by simp+  | 
|
449  | 
||
450  | 
(* One- and two-sided intervals *)  | 
|
451  | 
||
452  | 
lemma ivl_disj_int_one:  | 
|
453  | 
  "{..l::'a::order} Int {)l..u(} = {}"
 | 
|
454  | 
  "{..l(} Int {l..u(} = {}"
 | 
|
455  | 
  "{..l} Int {)l..u} = {}"
 | 
|
456  | 
  "{..l(} Int {l..u} = {}"
 | 
|
457  | 
  "{)l..u} Int {)u..} = {}"
 | 
|
458  | 
  "{)l..u(} Int {u..} = {}"
 | 
|
459  | 
  "{l..u} Int {)u..} = {}"
 | 
|
460  | 
  "{l..u(} Int {u..} = {}"
 | 
|
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
13850 
diff
changeset
 | 
461  | 
by auto  | 
| 13735 | 462  | 
|
463  | 
(* Two- and two-sided intervals *)  | 
|
464  | 
||
465  | 
lemma ivl_disj_int_two:  | 
|
466  | 
  "{)l::'a::order..m(} Int {m..u(} = {}"
 | 
|
467  | 
  "{)l..m} Int {)m..u(} = {}"
 | 
|
468  | 
  "{l..m(} Int {m..u(} = {}"
 | 
|
469  | 
  "{l..m} Int {)m..u(} = {}"
 | 
|
470  | 
  "{)l..m(} Int {m..u} = {}"
 | 
|
471  | 
  "{)l..m} Int {)m..u} = {}"
 | 
|
472  | 
  "{l..m(} Int {m..u} = {}"
 | 
|
473  | 
  "{l..m} Int {)m..u} = {}"
 | 
|
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
13850 
diff
changeset
 | 
474  | 
by auto  | 
| 13735 | 475  | 
|
476  | 
lemmas ivl_disj_int = ivl_disj_int_singleton ivl_disj_int_one ivl_disj_int_two  | 
|
477  | 
||
| 8924 | 478  | 
end  |