src/HOL/Fun.thy
author wenzelm
Tue, 10 Nov 2015 23:41:20 +0100
changeset 61626 c304402cc3df
parent 61520 8f85bb443d33
child 61630 608520e0e8e2
permissions -rw-r--r--
recovered from a9c0572109af;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
1475
7f5a4cd08209 expanded tabs; renamed subtype to typedef;
clasohm
parents: 923
diff changeset
     1
(*  Title:      HOL/Fun.thy
7f5a4cd08209 expanded tabs; renamed subtype to typedef;
clasohm
parents: 923
diff changeset
     2
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
55019
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
     3
    Author:     Andrei Popescu, TU Muenchen
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
     4
    Copyright   1994, 2012
18154
0c05abaf6244 add header
huffman
parents: 17956
diff changeset
     5
*)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     6
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
     7
section \<open>Notions about functions\<close>
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     8
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
     9
theory Fun
56015
57e2cfba9c6e bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
haftmann
parents: 55990
diff changeset
    10
imports Set
55467
a5c9002bc54d renamed 'enriched_type' to more informative 'functor' (following the renaming of enriched type constructors to bounded natural functors)
blanchet
parents: 55414
diff changeset
    11
keywords "functor" :: thy_goal
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15111
diff changeset
    12
begin
2912
3fac3e8d5d3e moved inj and surj from Set to Fun and Inv -> inv.
nipkow
parents: 1475
diff changeset
    13
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
    14
lemma apply_inverse:
26357
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
    15
  "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
    16
  by auto
2912
3fac3e8d5d3e moved inj and surj from Set to Fun and Inv -> inv.
nipkow
parents: 1475
diff changeset
    17
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
    18
text\<open>Uniqueness, so NOT the axiom of choice.\<close>
59504
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    19
lemma uniq_choice: "\<forall>x. \<exists>!y. Q x y \<Longrightarrow> \<exists>f. \<forall>x. Q x (f x)"
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    20
  by (force intro: theI')
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    21
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    22
lemma b_uniq_choice: "\<forall>x\<in>S. \<exists>!y. Q x y \<Longrightarrow> \<exists>f. \<forall>x\<in>S. Q x (f x)"
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    23
  by (force intro: theI')
12258
5da24e7e9aba got rid of theory Inverse_Image;
wenzelm
parents: 12114
diff changeset
    24
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
    25
subsection \<open>The Identity Function @{text id}\<close>
6171
cd237a10cbf8 inj is now a translation of inj_on
paulson
parents: 5852
diff changeset
    26
44277
bcb696533579 moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
haftmann
parents: 43991
diff changeset
    27
definition id :: "'a \<Rightarrow> 'a" where
22744
5cbe966d67a2 Isar definitions are now added explicitly to code theorem table
haftmann
parents: 22577
diff changeset
    28
  "id = (\<lambda>x. x)"
13910
f9a9ef16466f Added thms
nipkow
parents: 13637
diff changeset
    29
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
    30
lemma id_apply [simp]: "id x = x"
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
    31
  by (simp add: id_def)
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
    32
47579
28f6f4ad69bf tuned lemmas (v)image_id;
huffman
parents: 47488
diff changeset
    33
lemma image_id [simp]: "image id = id"
28f6f4ad69bf tuned lemmas (v)image_id;
huffman
parents: 47488
diff changeset
    34
  by (simp add: id_def fun_eq_iff)
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
    35
47579
28f6f4ad69bf tuned lemmas (v)image_id;
huffman
parents: 47488
diff changeset
    36
lemma vimage_id [simp]: "vimage id = id"
28f6f4ad69bf tuned lemmas (v)image_id;
huffman
parents: 47488
diff changeset
    37
  by (simp add: id_def fun_eq_iff)
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
    38
52435
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51717
diff changeset
    39
code_printing
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51717
diff changeset
    40
  constant id \<rightharpoonup> (Haskell) "id"
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51717
diff changeset
    41
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
    42
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
    43
subsection \<open>The Composition Operator @{text "f \<circ> g"}\<close>
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
    44
44277
bcb696533579 moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
haftmann
parents: 43991
diff changeset
    45
definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55) where
22744
5cbe966d67a2 Isar definitions are now added explicitly to code theorem table
haftmann
parents: 22577
diff changeset
    46
  "f o g = (\<lambda>x. f (g x))"
11123
15ffc08f905e removed whitespace
oheimb
parents: 10826
diff changeset
    47
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20044
diff changeset
    48
notation (xsymbols)
19656
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19536
diff changeset
    49
  comp  (infixl "\<circ>" 55)
09be06943252 tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents: 19536
diff changeset
    50
49739
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    51
lemma comp_apply [simp]: "(f o g) x = f (g x)"
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    52
  by (simp add: comp_def)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
    53
49739
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    54
lemma comp_assoc: "(f o g) o h = f o (g o h)"
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    55
  by (simp add: fun_eq_iff)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
    56
49739
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    57
lemma id_comp [simp]: "id o g = g"
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    58
  by (simp add: fun_eq_iff)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
    59
49739
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    60
lemma comp_id [simp]: "f o id = f"
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    61
  by (simp add: fun_eq_iff)
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    62
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    63
lemma comp_eq_dest:
34150
22acb8b38639 moved lemmas o_eq_dest, o_eq_elim here
haftmann
parents: 34101
diff changeset
    64
  "a o b = c o d \<Longrightarrow> a (b v) = c (d v)"
49739
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    65
  by (simp add: fun_eq_iff)
34150
22acb8b38639 moved lemmas o_eq_dest, o_eq_elim here
haftmann
parents: 34101
diff changeset
    66
49739
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    67
lemma comp_eq_elim:
34150
22acb8b38639 moved lemmas o_eq_dest, o_eq_elim here
haftmann
parents: 34101
diff changeset
    68
  "a o b = c o d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R"
61204
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 60929
diff changeset
    69
  by (simp add: fun_eq_iff)
34150
22acb8b38639 moved lemmas o_eq_dest, o_eq_elim here
haftmann
parents: 34101
diff changeset
    70
55066
blanchet
parents: 55019
diff changeset
    71
lemma comp_eq_dest_lhs: "a o b = c \<Longrightarrow> a (b v) = c v"
blanchet
parents: 55019
diff changeset
    72
  by clarsimp
blanchet
parents: 55019
diff changeset
    73
blanchet
parents: 55019
diff changeset
    74
lemma comp_eq_id_dest: "a o b = id o c \<Longrightarrow> a (b v) = c v"
blanchet
parents: 55019
diff changeset
    75
  by clarsimp
blanchet
parents: 55019
diff changeset
    76
49739
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    77
lemma image_comp:
56154
f0a927235162 more complete set of lemmas wrt. image and composition
haftmann
parents: 56077
diff changeset
    78
  "f ` (g ` r) = (f o g) ` r"
33044
fd0a9c794ec1 Some new lemmas concerning sets
paulson
parents: 32998
diff changeset
    79
  by auto
fd0a9c794ec1 Some new lemmas concerning sets
paulson
parents: 32998
diff changeset
    80
49739
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    81
lemma vimage_comp:
56154
f0a927235162 more complete set of lemmas wrt. image and composition
haftmann
parents: 56077
diff changeset
    82
  "f -` (g -` x) = (g \<circ> f) -` x"
49739
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    83
  by auto
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
    84
59504
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    85
lemma image_eq_imp_comp: "f ` A = g ` B \<Longrightarrow> (h o f) ` A = (h o g) ` B"
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    86
  by (auto simp: comp_def elim!: equalityE)
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    87
59512
9bf568cc71a4 add lemmas about bind and image
Andreas Lochbihler
parents: 59507
diff changeset
    88
lemma image_bind: "f ` (Set.bind A g) = Set.bind A (op ` f \<circ> g)"
9bf568cc71a4 add lemmas about bind and image
Andreas Lochbihler
parents: 59507
diff changeset
    89
by(auto simp add: Set.bind_def)
9bf568cc71a4 add lemmas about bind and image
Andreas Lochbihler
parents: 59507
diff changeset
    90
9bf568cc71a4 add lemmas about bind and image
Andreas Lochbihler
parents: 59507
diff changeset
    91
lemma bind_image: "Set.bind (f ` A) g = Set.bind A (g \<circ> f)"
9bf568cc71a4 add lemmas about bind and image
Andreas Lochbihler
parents: 59507
diff changeset
    92
by(auto simp add: Set.bind_def)
9bf568cc71a4 add lemmas about bind and image
Andreas Lochbihler
parents: 59507
diff changeset
    93
60929
bb3610d34e2e more lemmas
haftmann
parents: 60758
diff changeset
    94
lemma (in group_add) minus_comp_minus [simp]:
bb3610d34e2e more lemmas
haftmann
parents: 60758
diff changeset
    95
  "uminus \<circ> uminus = id"
bb3610d34e2e more lemmas
haftmann
parents: 60758
diff changeset
    96
  by (simp add: fun_eq_iff)
bb3610d34e2e more lemmas
haftmann
parents: 60758
diff changeset
    97
bb3610d34e2e more lemmas
haftmann
parents: 60758
diff changeset
    98
lemma (in boolean_algebra) minus_comp_minus [simp]:
bb3610d34e2e more lemmas
haftmann
parents: 60758
diff changeset
    99
  "uminus \<circ> uminus = id"
bb3610d34e2e more lemmas
haftmann
parents: 60758
diff changeset
   100
  by (simp add: fun_eq_iff)
bb3610d34e2e more lemmas
haftmann
parents: 60758
diff changeset
   101
52435
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51717
diff changeset
   102
code_printing
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51717
diff changeset
   103
  constant comp \<rightharpoonup> (SML) infixl 5 "o" and (Haskell) infixr 9 "."
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51717
diff changeset
   104
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   105
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   106
subsection \<open>The Forward Composition Operator @{text fcomp}\<close>
26357
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
   107
44277
bcb696533579 moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
haftmann
parents: 43991
diff changeset
   108
definition fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>>" 60) where
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 36176
diff changeset
   109
  "f \<circ>> g = (\<lambda>x. g (f x))"
26357
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
   110
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 36176
diff changeset
   111
lemma fcomp_apply [simp]:  "(f \<circ>> g) x = g (f x)"
26357
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
   112
  by (simp add: fcomp_def)
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
   113
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 36176
diff changeset
   114
lemma fcomp_assoc: "(f \<circ>> g) \<circ>> h = f \<circ>> (g \<circ>> h)"
26357
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
   115
  by (simp add: fcomp_def)
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
   116
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 36176
diff changeset
   117
lemma id_fcomp [simp]: "id \<circ>> g = g"
26357
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
   118
  by (simp add: fcomp_def)
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
   119
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 36176
diff changeset
   120
lemma fcomp_id [simp]: "f \<circ>> id = f"
26357
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
   121
  by (simp add: fcomp_def)
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
   122
52435
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51717
diff changeset
   123
code_printing
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 51717
diff changeset
   124
  constant fcomp \<rightharpoonup> (Eval) infixl 1 "#>"
31202
52d332f8f909 pretty printing of functional combinators for evaluation code
haftmann
parents: 31080
diff changeset
   125
37751
89e16802b6cc nicer xsymbol syntax for fcomp and scomp
haftmann
parents: 36176
diff changeset
   126
no_notation fcomp (infixl "\<circ>>" 60)
26588
d83271bfaba5 removed syntax from monad combinators; renamed mbind to scomp
haftmann
parents: 26357
diff changeset
   127
26357
19b153ebda0b added forward composition
haftmann
parents: 26342
diff changeset
   128
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   129
subsection \<open>Mapping functions\<close>
40602
91e583511113 map_fun combinator in theory Fun
haftmann
parents: 39302
diff changeset
   130
91e583511113 map_fun combinator in theory Fun
haftmann
parents: 39302
diff changeset
   131
definition map_fun :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd" where
91e583511113 map_fun combinator in theory Fun
haftmann
parents: 39302
diff changeset
   132
  "map_fun f g h = g \<circ> h \<circ> f"
91e583511113 map_fun combinator in theory Fun
haftmann
parents: 39302
diff changeset
   133
91e583511113 map_fun combinator in theory Fun
haftmann
parents: 39302
diff changeset
   134
lemma map_fun_apply [simp]:
91e583511113 map_fun combinator in theory Fun
haftmann
parents: 39302
diff changeset
   135
  "map_fun f g h x = g (h (f x))"
91e583511113 map_fun combinator in theory Fun
haftmann
parents: 39302
diff changeset
   136
  by (simp add: map_fun_def)
91e583511113 map_fun combinator in theory Fun
haftmann
parents: 39302
diff changeset
   137
91e583511113 map_fun combinator in theory Fun
haftmann
parents: 39302
diff changeset
   138
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   139
subsection \<open>Injectivity and Bijectivity\<close>
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   140
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   141
definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" where -- "injective"
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   142
  "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)"
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   143
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   144
definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool" where -- "bijective"
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   145
  "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B"
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   146
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   147
text\<open>A common special case: functions injective, surjective or bijective over
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   148
the entire domain type.\<close>
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   149
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   150
abbreviation
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   151
  "inj f \<equiv> inj_on f UNIV"
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   152
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   153
abbreviation surj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool" where -- "surjective"
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   154
  "surj f \<equiv> (range f = UNIV)"
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   155
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   156
abbreviation
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   157
  "bij f \<equiv> bij_betw f UNIV UNIV"
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   158
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   159
text\<open>The negated case:\<close>
43705
8e421a529a48 added translation to fix critical pair between abbreviations for surj and ~=
nipkow
parents: 42903
diff changeset
   160
translations
8e421a529a48 added translation to fix critical pair between abbreviations for surj and ~=
nipkow
parents: 42903
diff changeset
   161
"\<not> CONST surj f" <= "CONST range f \<noteq> CONST UNIV"
8e421a529a48 added translation to fix critical pair between abbreviations for surj and ~=
nipkow
parents: 42903
diff changeset
   162
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   163
lemma injI:
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   164
  assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   165
  shows "inj f"
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   166
  using assms unfolding inj_on_def by auto
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   167
13637
02aa63636ab8 - Added range_ex1_eq
berghofe
parents: 13585
diff changeset
   168
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"
02aa63636ab8 - Added range_ex1_eq
berghofe
parents: 13585
diff changeset
   169
  by (unfold inj_on_def, blast)
02aa63636ab8 - Added range_ex1_eq
berghofe
parents: 13585
diff changeset
   170
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   171
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   172
by (simp add: inj_on_def)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   173
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61378
diff changeset
   174
lemma inj_on_eq_iff: "\<lbrakk>inj_on f A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y)"
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   175
by (force simp add: inj_on_def)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   176
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   177
lemma inj_on_cong:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   178
  "(\<And> a. a : A \<Longrightarrow> f a = g a) \<Longrightarrow> inj_on f A = inj_on g A"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   179
unfolding inj_on_def by auto
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   180
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   181
lemma inj_on_strict_subset:
56077
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   182
  "inj_on f B \<Longrightarrow> A \<subset> B \<Longrightarrow> f ` A \<subset> f ` B"
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   183
  unfolding inj_on_def by blast
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   184
38620
b40524b74f77 inj_comp and inj_fun
haftmann
parents: 37767
diff changeset
   185
lemma inj_comp:
b40524b74f77 inj_comp and inj_fun
haftmann
parents: 37767
diff changeset
   186
  "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (f \<circ> g)"
b40524b74f77 inj_comp and inj_fun
haftmann
parents: 37767
diff changeset
   187
  by (simp add: inj_on_def)
b40524b74f77 inj_comp and inj_fun
haftmann
parents: 37767
diff changeset
   188
b40524b74f77 inj_comp and inj_fun
haftmann
parents: 37767
diff changeset
   189
lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39213
diff changeset
   190
  by (simp add: inj_on_def fun_eq_iff)
38620
b40524b74f77 inj_comp and inj_fun
haftmann
parents: 37767
diff changeset
   191
32988
d1d4d7a08a66 Inv -> inv_onto, inv abbr. inv_onto UNIV.
nipkow
parents: 32961
diff changeset
   192
lemma inj_eq: "inj f ==> (f(x) = f(y)) = (x=y)"
d1d4d7a08a66 Inv -> inv_onto, inv abbr. inv_onto UNIV.
nipkow
parents: 32961
diff changeset
   193
by (simp add: inj_on_eq_iff)
d1d4d7a08a66 Inv -> inv_onto, inv abbr. inv_onto UNIV.
nipkow
parents: 32961
diff changeset
   194
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   195
lemma inj_on_id[simp]: "inj_on id A"
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   196
  by (simp add: inj_on_def)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   197
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   198
lemma inj_on_id2[simp]: "inj_on (%x. x) A"
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   199
by (simp add: inj_on_def)
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   200
46586
abbec6fa25c8 generalizing inj_on_Int
bulwahn
parents: 46420
diff changeset
   201
lemma inj_on_Int: "inj_on f A \<or> inj_on f B \<Longrightarrow> inj_on f (A \<inter> B)"
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   202
unfolding inj_on_def by blast
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   203
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   204
lemma surj_id: "surj id"
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   205
by simp
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   206
39101
606432dd1896 Revert bij_betw changes to simp set (Problem in afp/Ordinals_and_Cardinals)
hoelzl
parents: 39076
diff changeset
   207
lemma bij_id[simp]: "bij id"
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   208
by (simp add: bij_betw_def)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   209
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   210
lemma inj_onI:
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   211
    "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   212
by (simp add: inj_on_def)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   213
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   214
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   215
by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   216
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   217
lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   218
by (unfold inj_on_def, blast)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   219
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   220
lemma comp_inj_on:
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   221
     "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   222
by (simp add: comp_def inj_on_def)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   223
15303
eedbb8d22ca2 added lemmas
nipkow
parents: 15140
diff changeset
   224
lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)"
56077
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   225
  by (simp add: inj_on_def) blast
15303
eedbb8d22ca2 added lemmas
nipkow
parents: 15140
diff changeset
   226
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15303
diff changeset
   227
lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y);
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15303
diff changeset
   228
  inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A"
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15303
diff changeset
   229
apply(unfold inj_on_def)
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15303
diff changeset
   230
apply blast
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15303
diff changeset
   231
done
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15303
diff changeset
   232
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   233
lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   234
by (unfold inj_on_def, blast)
12258
5da24e7e9aba got rid of theory Inverse_Image;
wenzelm
parents: 12114
diff changeset
   235
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   236
lemma inj_singleton: "inj (%s. {s})"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   237
by (simp add: inj_on_def)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   238
15111
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   239
lemma inj_on_empty[iff]: "inj_on f {}"
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   240
by(simp add: inj_on_def)
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   241
15303
eedbb8d22ca2 added lemmas
nipkow
parents: 15140
diff changeset
   242
lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A"
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   243
by (unfold inj_on_def, blast)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   244
15111
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   245
lemma inj_on_Un:
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   246
 "inj_on f (A Un B) =
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   247
  (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   248
apply(unfold inj_on_def)
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   249
apply (blast intro:sym)
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   250
done
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   251
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   252
lemma inj_on_insert[iff]:
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   253
  "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   254
apply(unfold inj_on_def)
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   255
apply (blast intro:sym)
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   256
done
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   257
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   258
lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)"
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   259
apply(unfold inj_on_def)
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   260
apply (blast)
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   261
done
c108189645f8 added some inj_on thms
nipkow
parents: 14565
diff changeset
   262
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   263
lemma comp_inj_on_iff:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   264
  "inj_on f A \<Longrightarrow> inj_on f' (f ` A) \<longleftrightarrow> inj_on (f' o f) A"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   265
by(auto simp add: comp_inj_on inj_on_def)
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   266
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   267
lemma inj_on_imageI2:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   268
  "inj_on (f' o f) A \<Longrightarrow> inj_on f A"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   269
by(auto simp add: comp_inj_on inj_on_def)
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   270
51598
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   271
lemma inj_img_insertE:
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   272
  assumes "inj_on f A"
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   273
  assumes "x \<notin> B" and "insert x B = f ` A"
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   274
  obtains x' A' where "x' \<notin> A'" and "A = insert x' A'"
55019
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   275
    and "x = f x'" and "B = f ` A'"
51598
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   276
proof -
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   277
  from assms have "x \<in> f ` A" by auto
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   278
  then obtain x' where *: "x' \<in> A" "x = f x'" by auto
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   279
  then have "A = insert x' (A - {x'})" by auto
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   280
  with assms * have "B = f ` (A - {x'})"
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   281
    by (auto dest: inj_on_contraD)
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   282
  have "x' \<notin> A - {x'}" by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   283
  from \<open>x' \<notin> A - {x'}\<close> \<open>A = insert x' (A - {x'})\<close> \<open>x = f x'\<close> \<open>B = image f (A - {x'})\<close>
51598
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   284
  show ?thesis ..
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   285
qed
5dbe537087aa generalized lemma fold_image thanks to Peter Lammich
haftmann
parents: 49905
diff changeset
   286
54578
9387251b6a46 eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
traytel
parents: 54147
diff changeset
   287
lemma linorder_injI:
9387251b6a46 eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
traytel
parents: 54147
diff changeset
   288
  assumes hyp: "\<And>x y. x < (y::'a::linorder) \<Longrightarrow> f x \<noteq> f y"
9387251b6a46 eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
traytel
parents: 54147
diff changeset
   289
  shows "inj f"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   290
  -- \<open>Courtesy of Stephan Merz\<close>
54578
9387251b6a46 eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
traytel
parents: 54147
diff changeset
   291
proof (rule inj_onI)
9387251b6a46 eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
traytel
parents: 54147
diff changeset
   292
  fix x y
9387251b6a46 eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
traytel
parents: 54147
diff changeset
   293
  assume f_eq: "f x = f y"
9387251b6a46 eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
traytel
parents: 54147
diff changeset
   294
  show "x = y" by (rule linorder_cases) (auto dest: hyp simp: f_eq)
9387251b6a46 eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
traytel
parents: 54147
diff changeset
   295
qed
9387251b6a46 eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
traytel
parents: 54147
diff changeset
   296
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   297
lemma surj_def: "surj f \<longleftrightarrow> (\<forall>y. \<exists>x. y = f x)"
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   298
  by auto
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   299
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   300
lemma surjI: assumes *: "\<And> x. g (f x) = x" shows "surj g"
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   301
  using *[symmetric] by auto
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   302
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   303
lemma surjD: "surj f \<Longrightarrow> \<exists>x. y = f x"
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   304
  by (simp add: surj_def)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   305
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   306
lemma surjE: "surj f \<Longrightarrow> (\<And>x. y = f x \<Longrightarrow> C) \<Longrightarrow> C"
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   307
  by (simp add: surj_def, blast)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   308
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   309
lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   310
apply (simp add: comp_def surj_def, clarify)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   311
apply (drule_tac x = y in spec, clarify)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   312
apply (drule_tac x = x in spec, blast)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   313
done
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   314
57282
7da3e398804c Two basic lemmas on bij_betw.
ballarin
parents: 56608
diff changeset
   315
lemma bij_betw_imageI:
7da3e398804c Two basic lemmas on bij_betw.
ballarin
parents: 56608
diff changeset
   316
  "\<lbrakk> inj_on f A; f ` A = B \<rbrakk> \<Longrightarrow> bij_betw f A B"
7da3e398804c Two basic lemmas on bij_betw.
ballarin
parents: 56608
diff changeset
   317
unfolding bij_betw_def by clarify
7da3e398804c Two basic lemmas on bij_betw.
ballarin
parents: 56608
diff changeset
   318
7da3e398804c Two basic lemmas on bij_betw.
ballarin
parents: 56608
diff changeset
   319
lemma bij_betw_imp_surj_on: "bij_betw f A B \<Longrightarrow> f ` A = B"
7da3e398804c Two basic lemmas on bij_betw.
ballarin
parents: 56608
diff changeset
   320
  unfolding bij_betw_def by clarify
7da3e398804c Two basic lemmas on bij_betw.
ballarin
parents: 56608
diff changeset
   321
39074
211e4f6aad63 bij <--> bij_betw
hoelzl
parents: 38620
diff changeset
   322
lemma bij_betw_imp_surj: "bij_betw f A UNIV \<Longrightarrow> surj f"
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   323
  unfolding bij_betw_def by auto
39074
211e4f6aad63 bij <--> bij_betw
hoelzl
parents: 38620
diff changeset
   324
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   325
lemma bij_betw_empty1:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   326
  assumes "bij_betw f {} A"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   327
  shows "A = {}"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   328
using assms unfolding bij_betw_def by blast
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   329
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   330
lemma bij_betw_empty2:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   331
  assumes "bij_betw f A {}"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   332
  shows "A = {}"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   333
using assms unfolding bij_betw_def by blast
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   334
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   335
lemma inj_on_imp_bij_betw:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   336
  "inj_on f A \<Longrightarrow> bij_betw f A (f ` A)"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   337
unfolding bij_betw_def by simp
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   338
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   339
lemma bij_def: "bij f \<longleftrightarrow> inj f \<and> surj f"
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   340
  unfolding bij_betw_def ..
39074
211e4f6aad63 bij <--> bij_betw
hoelzl
parents: 38620
diff changeset
   341
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   342
lemma bijI: "[| inj f; surj f |] ==> bij f"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   343
by (simp add: bij_def)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   344
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   345
lemma bij_is_inj: "bij f ==> inj f"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   346
by (simp add: bij_def)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   347
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   348
lemma bij_is_surj: "bij f ==> surj f"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   349
by (simp add: bij_def)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   350
26105
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   351
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   352
by (simp add: bij_betw_def)
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   353
31438
a1c4c1500abe A few finite lemmas
nipkow
parents: 31202
diff changeset
   354
lemma bij_betw_trans:
a1c4c1500abe A few finite lemmas
nipkow
parents: 31202
diff changeset
   355
  "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g o f) A C"
a1c4c1500abe A few finite lemmas
nipkow
parents: 31202
diff changeset
   356
by(auto simp add:bij_betw_def comp_inj_on)
a1c4c1500abe A few finite lemmas
nipkow
parents: 31202
diff changeset
   357
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   358
lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g o f)"
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   359
  by (rule bij_betw_trans)
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   360
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   361
lemma bij_betw_comp_iff:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   362
  "bij_betw f A A' \<Longrightarrow> bij_betw f' A' A'' \<longleftrightarrow> bij_betw (f' o f) A A''"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   363
by(auto simp add: bij_betw_def inj_on_def)
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   364
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   365
lemma bij_betw_comp_iff2:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   366
  assumes BIJ: "bij_betw f' A' A''" and IM: "f ` A \<le> A'"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   367
  shows "bij_betw f A A' \<longleftrightarrow> bij_betw (f' o f) A A''"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   368
using assms
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   369
proof(auto simp add: bij_betw_comp_iff)
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   370
  assume *: "bij_betw (f' \<circ> f) A A''"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   371
  thus "bij_betw f A A'"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   372
  using IM
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   373
  proof(auto simp add: bij_betw_def)
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   374
    assume "inj_on (f' \<circ> f) A"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   375
    thus "inj_on f A" using inj_on_imageI2 by blast
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   376
  next
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   377
    fix a' assume **: "a' \<in> A'"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   378
    hence "f' a' \<in> A''" using BIJ unfolding bij_betw_def by auto
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   379
    then obtain a where 1: "a \<in> A \<and> f'(f a) = f' a'" using *
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   380
    unfolding bij_betw_def by force
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   381
    hence "f a \<in> A'" using IM by auto
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   382
    hence "f a = a'" using BIJ ** 1 unfolding bij_betw_def inj_on_def by auto
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   383
    thus "a' \<in> f ` A" using 1 by auto
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   384
  qed
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   385
qed
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   386
26105
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   387
lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A"
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   388
proof -
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   389
  have i: "inj_on f A" and s: "f ` A = B"
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   390
    using assms by(auto simp:bij_betw_def)
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   391
  let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)"
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   392
  { fix a b assume P: "?P b a"
56077
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   393
    hence ex1: "\<exists>a. ?P b a" using s by blast
26105
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   394
    hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i])
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   395
    hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   396
  } note g = this
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   397
  have "inj_on ?g B"
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   398
  proof(rule inj_onI)
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   399
    fix x y assume "x:B" "y:B" "?g x = ?g y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   400
    from s \<open>x:B\<close> obtain a1 where a1: "?P x a1" by blast
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   401
    from s \<open>y:B\<close> obtain a2 where a2: "?P y a2" by blast
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   402
    from g[OF a1] a1 g[OF a2] a2 \<open>?g x = ?g y\<close> show "x=y" by simp
26105
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   403
  qed
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   404
  moreover have "?g ` B = A"
56077
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   405
  proof(auto simp: image_def)
26105
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   406
    fix b assume "b:B"
56077
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   407
    with s obtain a where P: "?P b a" by blast
26105
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   408
    thus "?g b \<in> A" using g[OF P] by auto
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   409
  next
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   410
    fix a assume "a:A"
56077
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   411
    then obtain b where P: "?P b a" using s by blast
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   412
    then have "b:B" using s by blast
26105
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   413
    with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   414
  qed
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   415
  ultimately show ?thesis by(auto simp:bij_betw_def)
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   416
qed
ae06618225ec moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
nipkow
parents: 25886
diff changeset
   417
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   418
lemma bij_betw_cong:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   419
  "(\<And> a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> bij_betw f A A' = bij_betw g A A'"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   420
unfolding bij_betw_def inj_on_def by force
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   421
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   422
lemma bij_betw_id[intro, simp]:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   423
  "bij_betw id A A"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   424
unfolding bij_betw_def id_def by auto
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   425
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   426
lemma bij_betw_id_iff:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   427
  "bij_betw id A B \<longleftrightarrow> A = B"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   428
by(auto simp add: bij_betw_def)
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   429
39075
a18e5946d63c Permutation implies bij function
hoelzl
parents: 39074
diff changeset
   430
lemma bij_betw_combine:
a18e5946d63c Permutation implies bij function
hoelzl
parents: 39074
diff changeset
   431
  assumes "bij_betw f A B" "bij_betw f C D" "B \<inter> D = {}"
a18e5946d63c Permutation implies bij function
hoelzl
parents: 39074
diff changeset
   432
  shows "bij_betw f (A \<union> C) (B \<union> D)"
a18e5946d63c Permutation implies bij function
hoelzl
parents: 39074
diff changeset
   433
  using assms unfolding bij_betw_def inj_on_Un image_Un by auto
a18e5946d63c Permutation implies bij function
hoelzl
parents: 39074
diff changeset
   434
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   435
lemma bij_betw_subset:
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   436
  assumes BIJ: "bij_betw f A A'" and
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   437
          SUB: "B \<le> A" and IM: "f ` B = B'"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   438
  shows "bij_betw f B B'"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   439
using assms
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   440
by(unfold bij_betw_def inj_on_def, auto simp add: inj_on_def)
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   441
58195
1fee63e0377d added various facts
haftmann
parents: 58111
diff changeset
   442
lemma bij_pointE:
1fee63e0377d added various facts
haftmann
parents: 58111
diff changeset
   443
  assumes "bij f"
1fee63e0377d added various facts
haftmann
parents: 58111
diff changeset
   444
  obtains x where "y = f x" and "\<And>x'. y = f x' \<Longrightarrow> x' = x"
1fee63e0377d added various facts
haftmann
parents: 58111
diff changeset
   445
proof -
1fee63e0377d added various facts
haftmann
parents: 58111
diff changeset
   446
  from assms have "inj f" by (rule bij_is_inj)
1fee63e0377d added various facts
haftmann
parents: 58111
diff changeset
   447
  moreover from assms have "surj f" by (rule bij_is_surj)
1fee63e0377d added various facts
haftmann
parents: 58111
diff changeset
   448
  then have "y \<in> range f" by simp
1fee63e0377d added various facts
haftmann
parents: 58111
diff changeset
   449
  ultimately have "\<exists>!x. y = f x" by (simp add: range_ex1_eq)
1fee63e0377d added various facts
haftmann
parents: 58111
diff changeset
   450
  with that show thesis by blast
1fee63e0377d added various facts
haftmann
parents: 58111
diff changeset
   451
qed
1fee63e0377d added various facts
haftmann
parents: 58111
diff changeset
   452
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   453
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   454
by simp
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   455
42903
ec9eb1fbfcb8 add surj_vimage_empty
hoelzl
parents: 42238
diff changeset
   456
lemma surj_vimage_empty:
ec9eb1fbfcb8 add surj_vimage_empty
hoelzl
parents: 42238
diff changeset
   457
  assumes "surj f" shows "f -` A = {} \<longleftrightarrow> A = {}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   458
  using surj_image_vimage_eq[OF \<open>surj f\<close>, of A]
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44860
diff changeset
   459
  by (intro iffI) fastforce+
42903
ec9eb1fbfcb8 add surj_vimage_empty
hoelzl
parents: 42238
diff changeset
   460
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   461
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   462
by (simp add: inj_on_def, blast)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   463
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   464
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   465
by (blast intro: sym)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   466
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   467
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   468
by (unfold inj_on_def, blast)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   469
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   470
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   471
apply (unfold bij_def)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   472
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   473
done
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   474
53927
abe2b313f0e5 add lemmas
Andreas Lochbihler
parents: 52435
diff changeset
   475
lemma inj_on_image_eq_iff: "\<lbrakk> inj_on f C; A \<subseteq> C; B \<subseteq> C \<rbrakk> \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
abe2b313f0e5 add lemmas
Andreas Lochbihler
parents: 52435
diff changeset
   476
by(fastforce simp add: inj_on_def)
abe2b313f0e5 add lemmas
Andreas Lochbihler
parents: 52435
diff changeset
   477
31438
a1c4c1500abe A few finite lemmas
nipkow
parents: 31202
diff changeset
   478
lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"
53927
abe2b313f0e5 add lemmas
Andreas Lochbihler
parents: 52435
diff changeset
   479
by(erule inj_on_image_eq_iff) simp_all
31438
a1c4c1500abe A few finite lemmas
nipkow
parents: 31202
diff changeset
   480
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   481
lemma inj_on_image_Int:
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   482
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
60303
00c06f1315d0 New material about paths, and some lemmas
paulson
parents: 59512
diff changeset
   483
  by (simp add: inj_on_def, blast)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   484
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   485
lemma inj_on_image_set_diff:
60303
00c06f1315d0 New material about paths, and some lemmas
paulson
parents: 59512
diff changeset
   486
   "[| inj_on f C;  A-B \<subseteq> C;  B \<subseteq> C |] ==> f`(A-B) = f`A - f`B"
00c06f1315d0 New material about paths, and some lemmas
paulson
parents: 59512
diff changeset
   487
  by (simp add: inj_on_def, blast)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   488
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   489
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
60303
00c06f1315d0 New material about paths, and some lemmas
paulson
parents: 59512
diff changeset
   490
  by (simp add: inj_on_def, blast)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   491
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   492
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   493
by (simp add: inj_on_def, blast)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   494
59504
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
   495
lemma inj_on_image_mem_iff: "\<lbrakk>inj_on f B; a \<in> B; A \<subseteq> B\<rbrakk> \<Longrightarrow> f a \<in> f`A \<longleftrightarrow> a \<in> A"
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
   496
  by (auto simp: inj_on_def)
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
   497
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61378
diff changeset
   498
(*FIXME DELETE*)
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61378
diff changeset
   499
lemma inj_on_image_mem_iff_alt: "inj_on f B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f a \<in> f`A \<Longrightarrow> a \<in> B \<Longrightarrow> a \<in> A"
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61378
diff changeset
   500
  by (blast dest: inj_onD)
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61378
diff changeset
   501
59504
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
   502
lemma inj_image_mem_iff: "inj f \<Longrightarrow> f a \<in> f`A \<longleftrightarrow> a \<in> A"
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
   503
  by (blast dest: injD)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   504
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   505
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
59504
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
   506
  by (blast dest: injD)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   507
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   508
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
59504
8c6747dba731 New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
   509
  by (blast dest: injD)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   510
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   511
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   512
by auto
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   513
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   514
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   515
by (auto simp add: inj_on_def)
5852
4d7320490be4 the function space operator
paulson
parents: 5608
diff changeset
   516
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   517
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   518
apply (simp add: bij_def)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   519
apply (rule equalityI)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   520
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   521
done
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   522
41657
89451110ba8e moved theorem
haftmann
parents: 41505
diff changeset
   523
lemma inj_vimage_singleton: "inj f \<Longrightarrow> f -` {a} \<subseteq> {THE x. f x = a}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   524
  -- \<open>The inverse image of a singleton under an injective function
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   525
         is included in a singleton.\<close>
41657
89451110ba8e moved theorem
haftmann
parents: 41505
diff changeset
   526
  apply (auto simp add: inj_on_def)
89451110ba8e moved theorem
haftmann
parents: 41505
diff changeset
   527
  apply (blast intro: the_equality [symmetric])
89451110ba8e moved theorem
haftmann
parents: 41505
diff changeset
   528
  done
89451110ba8e moved theorem
haftmann
parents: 41505
diff changeset
   529
43991
f4a7697011c5 finite vimage on arbitrary domains
hoelzl
parents: 43874
diff changeset
   530
lemma inj_on_vimage_singleton:
f4a7697011c5 finite vimage on arbitrary domains
hoelzl
parents: 43874
diff changeset
   531
  "inj_on f A \<Longrightarrow> f -` {a} \<inter> A \<subseteq> {THE x. x \<in> A \<and> f x = a}"
f4a7697011c5 finite vimage on arbitrary domains
hoelzl
parents: 43874
diff changeset
   532
  by (auto simp add: inj_on_def intro: the_equality [symmetric])
f4a7697011c5 finite vimage on arbitrary domains
hoelzl
parents: 43874
diff changeset
   533
35584
768f8d92b767 generalized inj_uminus; added strict_mono_imp_inj_on
hoelzl
parents: 35580
diff changeset
   534
lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A"
35580
0f74806cab22 Rewrite rules for images of minus of intervals
hoelzl
parents: 35416
diff changeset
   535
  by (auto intro!: inj_onI)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   536
35584
768f8d92b767 generalized inj_uminus; added strict_mono_imp_inj_on
hoelzl
parents: 35580
diff changeset
   537
lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A"
768f8d92b767 generalized inj_uminus; added strict_mono_imp_inj_on
hoelzl
parents: 35580
diff changeset
   538
  by (auto intro!: inj_onI dest: strict_mono_eq)
768f8d92b767 generalized inj_uminus; added strict_mono_imp_inj_on
hoelzl
parents: 35580
diff changeset
   539
55019
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   540
lemma bij_betw_byWitness:
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   541
assumes LEFT: "\<forall>a \<in> A. f'(f a) = a" and
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   542
        RIGHT: "\<forall>a' \<in> A'. f(f' a') = a'" and
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   543
        IM1: "f ` A \<le> A'" and IM2: "f' ` A' \<le> A"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   544
shows "bij_betw f A A'"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   545
using assms
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   546
proof(unfold bij_betw_def inj_on_def, safe)
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   547
  fix a b assume *: "a \<in> A" "b \<in> A" and **: "f a = f b"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   548
  have "a = f'(f a) \<and> b = f'(f b)" using * LEFT by simp
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   549
  with ** show "a = b" by simp
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   550
next
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   551
  fix a' assume *: "a' \<in> A'"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   552
  hence "f' a' \<in> A" using IM2 by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   553
  moreover
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   554
  have "a' = f(f' a')" using * RIGHT by simp
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   555
  ultimately show "a' \<in> f ` A" by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   556
qed
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   557
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   558
corollary notIn_Un_bij_betw:
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   559
assumes NIN: "b \<notin> A" and NIN': "f b \<notin> A'" and
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   560
       BIJ: "bij_betw f A A'"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   561
shows "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   562
proof-
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   563
  have "bij_betw f {b} {f b}"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   564
  unfolding bij_betw_def inj_on_def by simp
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   565
  with assms show ?thesis
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   566
  using bij_betw_combine[of f A A' "{b}" "{f b}"] by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   567
qed
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   568
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   569
lemma notIn_Un_bij_betw3:
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   570
assumes NIN: "b \<notin> A" and NIN': "f b \<notin> A'"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   571
shows "bij_betw f A A' = bij_betw f (A \<union> {b}) (A' \<union> {f b})"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   572
proof
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   573
  assume "bij_betw f A A'"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   574
  thus "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   575
  using assms notIn_Un_bij_betw[of b A f A'] by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   576
next
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   577
  assume *: "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   578
  have "f ` A = A'"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   579
  proof(auto)
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   580
    fix a assume **: "a \<in> A"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   581
    hence "f a \<in> A' \<union> {f b}" using * unfolding bij_betw_def by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   582
    moreover
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   583
    {assume "f a = f b"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   584
     hence "a = b" using * ** unfolding bij_betw_def inj_on_def by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   585
     with NIN ** have False by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   586
    }
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   587
    ultimately show "f a \<in> A'" by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   588
  next
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   589
    fix a' assume **: "a' \<in> A'"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   590
    hence "a' \<in> f`(A \<union> {b})"
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   591
    using * by (auto simp add: bij_betw_def)
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   592
    then obtain a where 1: "a \<in> A \<union> {b} \<and> f a = a'" by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   593
    moreover
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   594
    {assume "a = b" with 1 ** NIN' have False by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   595
    }
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   596
    ultimately have "a \<in> A" by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   597
    with 1 show "a' \<in> f ` A" by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   598
  qed
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   599
  thus "bij_betw f A A'" using * bij_betw_subset[of f "A \<union> {b}" _ A] by blast
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   600
qed
0d5e831175de moved lemmas from 'Fun_More_FP' to where they belong
blanchet
parents: 54578
diff changeset
   601
41657
89451110ba8e moved theorem
haftmann
parents: 41505
diff changeset
   602
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   603
subsection\<open>Function Updating\<close>
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   604
44277
bcb696533579 moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
haftmann
parents: 43991
diff changeset
   605
definition fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" where
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   606
  "fun_upd f a b == % x. if x=a then b else f x"
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   607
41229
d797baa3d57c replaced command 'nonterminals' by slightly modernized version 'nonterminal';
wenzelm
parents: 40969
diff changeset
   608
nonterminal updbinds and updbind
d797baa3d57c replaced command 'nonterminals' by slightly modernized version 'nonterminal';
wenzelm
parents: 40969
diff changeset
   609
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   610
syntax
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   611
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   612
  ""         :: "updbind => updbinds"             ("_")
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   613
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34209
diff changeset
   614
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000, 0] 900)
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   615
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   616
translations
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34209
diff changeset
   617
  "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs"
446c5063e4fd modernized translations;
wenzelm
parents: 34209
diff changeset
   618
  "f(x:=y)" == "CONST fun_upd f x y"
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   619
55414
eab03e9cee8a renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents: 55066
diff changeset
   620
(* Hint: to define the sum of two functions (or maps), use case_sum.
58111
82db9ad610b9 tuned structure inclusion
blanchet
parents: 57282
diff changeset
   621
         A nice infix syntax could be defined by
35115
446c5063e4fd modernized translations;
wenzelm
parents: 34209
diff changeset
   622
notation
55414
eab03e9cee8a renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents: 55066
diff changeset
   623
  case_sum  (infixr "'(+')"80)
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   624
*)
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   625
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   626
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   627
apply (simp add: fun_upd_def, safe)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   628
apply (erule subst)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   629
apply (rule_tac [2] ext, auto)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   630
done
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   631
45603
d2d9ef16ccaf explicit is better than implicit;
wenzelm
parents: 45174
diff changeset
   632
lemma fun_upd_idem: "f x = y ==> f(x:=y) = f"
d2d9ef16ccaf explicit is better than implicit;
wenzelm
parents: 45174
diff changeset
   633
  by (simp only: fun_upd_idem_iff)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   634
45603
d2d9ef16ccaf explicit is better than implicit;
wenzelm
parents: 45174
diff changeset
   635
lemma fun_upd_triv [iff]: "f(x := f x) = f"
d2d9ef16ccaf explicit is better than implicit;
wenzelm
parents: 45174
diff changeset
   636
  by (simp only: fun_upd_idem)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   637
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   638
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
17084
fb0a80aef0be classical rules must have names for ATP integration
paulson
parents: 16973
diff changeset
   639
by (simp add: fun_upd_def)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   640
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   641
(* fun_upd_apply supersedes these two,   but they are useful
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   642
   if fun_upd_apply is intentionally removed from the simpset *)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   643
lemma fun_upd_same: "(f(x:=y)) x = y"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   644
by simp
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   645
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   646
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   647
by simp
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   648
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   649
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39213
diff changeset
   650
by (simp add: fun_eq_iff)
13585
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   651
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   652
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   653
by (rule ext, auto)
db4005b40cc6 Converted Fun to Isar style.
paulson
parents: 12460
diff changeset
   654
56077
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   655
lemma inj_on_fun_updI:
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   656
  "inj_on f A \<Longrightarrow> y \<notin> f ` A \<Longrightarrow> inj_on (f(x := y)) A"
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   657
  by (fastforce simp: inj_on_def)
15303
eedbb8d22ca2 added lemmas
nipkow
parents: 15140
diff changeset
   658
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   659
lemma fun_upd_image:
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   660
     "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   661
by auto
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   662
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 30301
diff changeset
   663
lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)"
44921
58eef4843641 tuned proofs
huffman
parents: 44890
diff changeset
   664
  by auto
31080
21ffc770ebc0 lemmas by Andreas Lochbihler
nipkow
parents: 30301
diff changeset
   665
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   666
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   667
subsection \<open>@{text override_on}\<close>
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   668
44277
bcb696533579 moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
haftmann
parents: 43991
diff changeset
   669
definition override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b" where
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   670
  "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
13910
f9a9ef16466f Added thms
nipkow
parents: 13637
diff changeset
   671
15691
900cf45ff0a6 _(_|_) is now override_on
nipkow
parents: 15531
diff changeset
   672
lemma override_on_emptyset[simp]: "override_on f g {} = f"
900cf45ff0a6 _(_|_) is now override_on
nipkow
parents: 15531
diff changeset
   673
by(simp add:override_on_def)
13910
f9a9ef16466f Added thms
nipkow
parents: 13637
diff changeset
   674
15691
900cf45ff0a6 _(_|_) is now override_on
nipkow
parents: 15531
diff changeset
   675
lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a"
900cf45ff0a6 _(_|_) is now override_on
nipkow
parents: 15531
diff changeset
   676
by(simp add:override_on_def)
13910
f9a9ef16466f Added thms
nipkow
parents: 13637
diff changeset
   677
15691
900cf45ff0a6 _(_|_) is now override_on
nipkow
parents: 15531
diff changeset
   678
lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a"
900cf45ff0a6 _(_|_) is now override_on
nipkow
parents: 15531
diff changeset
   679
by(simp add:override_on_def)
13910
f9a9ef16466f Added thms
nipkow
parents: 13637
diff changeset
   680
26147
ae2bf929e33c moved some set lemmas to Set.thy
haftmann
parents: 26105
diff changeset
   681
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   682
subsection \<open>@{text swap}\<close>
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   683
56608
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   684
definition swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   685
where
22744
5cbe966d67a2 Isar definitions are now added explicitly to code theorem table
haftmann
parents: 22577
diff changeset
   686
  "swap a b f = f (a := f b, b:= f a)"
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   687
56608
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   688
lemma swap_apply [simp]:
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   689
  "swap a b f a = f b"
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   690
  "swap a b f b = f a"
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   691
  "c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> swap a b f c = f c"
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   692
  by (simp_all add: swap_def)
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   693
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   694
lemma swap_self [simp]:
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   695
  "swap a a f = f"
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   696
  by (simp add: swap_def)
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   697
56608
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   698
lemma swap_commute:
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   699
  "swap a b f = swap b a f"
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   700
  by (simp add: fun_upd_def swap_def fun_eq_iff)
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   701
56608
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   702
lemma swap_nilpotent [simp]:
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   703
  "swap a b (swap a b f) = f"
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   704
  by (rule ext, simp add: fun_upd_def swap_def)
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   705
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   706
lemma swap_comp_involutory [simp]:
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   707
  "swap a b \<circ> swap a b = id"
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   708
  by (rule ext) simp
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   709
34145
402b7c74799d add lemma swap_triple
huffman
parents: 34101
diff changeset
   710
lemma swap_triple:
402b7c74799d add lemma swap_triple
huffman
parents: 34101
diff changeset
   711
  assumes "a \<noteq> c" and "b \<noteq> c"
402b7c74799d add lemma swap_triple
huffman
parents: 34101
diff changeset
   712
  shows "swap a b (swap b c (swap a b f)) = swap a c f"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39213
diff changeset
   713
  using assms by (simp add: fun_eq_iff swap_def)
34145
402b7c74799d add lemma swap_triple
huffman
parents: 34101
diff changeset
   714
34101
d689f0b33047 declare swap_self [simp], add lemma comp_swap
huffman
parents: 33318
diff changeset
   715
lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)"
56608
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   716
  by (rule ext, simp add: fun_upd_def swap_def)
34101
d689f0b33047 declare swap_self [simp], add lemma comp_swap
huffman
parents: 33318
diff changeset
   717
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   718
lemma swap_image_eq [simp]:
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   719
  assumes "a \<in> A" "b \<in> A" shows "swap a b f ` A = f ` A"
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   720
proof -
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   721
  have subset: "\<And>f. swap a b f ` A \<subseteq> f ` A"
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   722
    using assms by (auto simp: image_iff swap_def)
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   723
  then have "swap a b (swap a b f) ` A \<subseteq> (swap a b f) ` A" .
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   724
  with subset[of f] show ?thesis by auto
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   725
qed
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   726
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   727
lemma inj_on_imp_inj_on_swap:
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   728
  "\<lbrakk>inj_on f A; a \<in> A; b \<in> A\<rbrakk> \<Longrightarrow> inj_on (swap a b f) A"
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   729
  by (simp add: inj_on_def swap_def, blast)
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   730
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   731
lemma inj_on_swap_iff [simp]:
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   732
  assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A \<longleftrightarrow> inj_on f A"
39075
a18e5946d63c Permutation implies bij function
hoelzl
parents: 39074
diff changeset
   733
proof
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   734
  assume "inj_on (swap a b f) A"
39075
a18e5946d63c Permutation implies bij function
hoelzl
parents: 39074
diff changeset
   735
  with A have "inj_on (swap a b (swap a b f)) A"
a18e5946d63c Permutation implies bij function
hoelzl
parents: 39074
diff changeset
   736
    by (iprover intro: inj_on_imp_inj_on_swap)
a18e5946d63c Permutation implies bij function
hoelzl
parents: 39074
diff changeset
   737
  thus "inj_on f A" by simp
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   738
next
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   739
  assume "inj_on f A"
34209
c7f621786035 killed a few warnings
krauss
parents: 34153
diff changeset
   740
  with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap)
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   741
qed
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   742
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   743
lemma surj_imp_surj_swap: "surj f \<Longrightarrow> surj (swap a b f)"
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   744
  by simp
15510
9de204d7b699 new foldSet proofs
paulson
parents: 15439
diff changeset
   745
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   746
lemma surj_swap_iff [simp]: "surj (swap a b f) \<longleftrightarrow> surj f"
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 40602
diff changeset
   747
  by simp
21547
9c9fdf4c2949 moved order arities for fun and bool to Fun/Orderings
haftmann
parents: 21327
diff changeset
   748
39076
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   749
lemma bij_betw_swap_iff [simp]:
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   750
  "\<lbrakk> x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> bij_betw (swap x y f) A B \<longleftrightarrow> bij_betw f A B"
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   751
  by (auto simp: bij_betw_def)
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   752
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   753
lemma bij_swap_iff [simp]: "bij (swap a b f) \<longleftrightarrow> bij f"
b3a9b6734663 Introduce surj_on and replace surj and bij by abbreviations.
hoelzl
parents: 39075
diff changeset
   754
  by simp
39075
a18e5946d63c Permutation implies bij function
hoelzl
parents: 39074
diff changeset
   755
36176
3fe7e97ccca8 replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
wenzelm
parents: 35584
diff changeset
   756
hide_const (open) swap
21547
9c9fdf4c2949 moved order arities for fun and bool to Fun/Orderings
haftmann
parents: 21327
diff changeset
   757
56608
8e3c848008fa more simp rules for Fun.swap
haftmann
parents: 56154
diff changeset
   758
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   759
subsection \<open>Inversion of injective functions\<close>
31949
3f933687fae9 moved Inductive.myinv to Fun.inv; tuned
haftmann
parents: 31775
diff changeset
   760
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   761
definition the_inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
44277
bcb696533579 moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
haftmann
parents: 43991
diff changeset
   762
  "the_inv_into A f == %x. THE y. y : A & f y = x"
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   763
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   764
lemma the_inv_into_f_f:
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   765
  "[| inj_on f A;  x : A |] ==> the_inv_into A f (f x) = x"
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   766
apply (simp add: the_inv_into_def inj_on_def)
34209
c7f621786035 killed a few warnings
krauss
parents: 34153
diff changeset
   767
apply blast
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   768
done
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   769
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   770
lemma f_the_inv_into_f:
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   771
  "inj_on f A ==> y : f`A  ==> f (the_inv_into A f y) = y"
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   772
apply (simp add: the_inv_into_def)
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   773
apply (rule the1I2)
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   774
 apply(blast dest: inj_onD)
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   775
apply blast
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   776
done
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   777
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   778
lemma the_inv_into_into:
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   779
  "[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_into A f x : B"
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   780
apply (simp add: the_inv_into_def)
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   781
apply (rule the1I2)
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   782
 apply(blast dest: inj_onD)
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   783
apply blast
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   784
done
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   785
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   786
lemma the_inv_into_onto[simp]:
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   787
  "inj_on f A ==> the_inv_into A f ` (f ` A) = A"
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   788
by (fast intro:the_inv_into_into the_inv_into_f_f[symmetric])
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   789
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   790
lemma the_inv_into_f_eq:
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   791
  "[| inj_on f A; f x = y; x : A |] ==> the_inv_into A f y = x"
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   792
  apply (erule subst)
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   793
  apply (erule the_inv_into_f_f, assumption)
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   794
  done
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   795
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   796
lemma the_inv_into_comp:
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   797
  "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==>
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   798
  the_inv_into A (f o g) x = (the_inv_into A g o the_inv_into (g ` A) f) x"
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   799
apply (rule the_inv_into_f_eq)
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   800
  apply (fast intro: comp_inj_on)
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   801
 apply (simp add: f_the_inv_into_f the_inv_into_into)
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   802
apply (simp add: the_inv_into_into)
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   803
done
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   804
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   805
lemma inj_on_the_inv_into:
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   806
  "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)"
56077
d397030fb27e tuned proofs
haftmann
parents: 56015
diff changeset
   807
by (auto intro: inj_onI simp: the_inv_into_f_f)
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   808
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   809
lemma bij_betw_the_inv_into:
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   810
  "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A"
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   811
by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into)
32961
61431a41ddd5 added the_inv_onto
nipkow
parents: 32740
diff changeset
   812
32998
31b19fa0de0b Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
berghofe
parents: 32988
diff changeset
   813
abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   814
  "the_inv f \<equiv> the_inv_into UNIV f"
32998
31b19fa0de0b Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
berghofe
parents: 32988
diff changeset
   815
31b19fa0de0b Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
berghofe
parents: 32988
diff changeset
   816
lemma the_inv_f_f:
31b19fa0de0b Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
berghofe
parents: 32988
diff changeset
   817
  assumes "inj f"
31b19fa0de0b Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
berghofe
parents: 32988
diff changeset
   818
  shows "the_inv f (f x) = x" using assms UNIV_I
33057
764547b68538 inv_onto -> inv_into
nipkow
parents: 33044
diff changeset
   819
  by (rule the_inv_into_f_f)
32998
31b19fa0de0b Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
berghofe
parents: 32988
diff changeset
   820
44277
bcb696533579 moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
haftmann
parents: 43991
diff changeset
   821
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   822
subsection \<open>Cantor's Paradox\<close>
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   823
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53927
diff changeset
   824
lemma Cantors_paradox:
40703
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   825
  "\<not>(\<exists>f. f ` A = Pow A)"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   826
proof clarify
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   827
  fix f assume "f ` A = Pow A" hence *: "Pow A \<le> f ` A" by blast
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   828
  let ?X = "{a \<in> A. a \<notin> f a}"
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   829
  have "?X \<in> Pow A" unfolding Pow_def by auto
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   830
  with * obtain x where "x \<in> A \<and> f x = ?X" by blast
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   831
  thus False by best
d1fc454d6735 Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
hoelzl
parents: 40702
diff changeset
   832
qed
31949
3f933687fae9 moved Inductive.myinv to Fun.inv; tuned
haftmann
parents: 31775
diff changeset
   833
61204
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 60929
diff changeset
   834
subsection \<open>Setup\<close>
40969
fb2d3ccda5a7 moved bootstrap of type_lifting to Fun
haftmann
parents: 40968
diff changeset
   835
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   836
subsubsection \<open>Proof tools\<close>
22845
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   837
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   838
text \<open>simplifies terms of the form
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   839
  f(...,x:=y,...,x:=z,...) to f(...,x:=z,...)\<close>
22845
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   840
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   841
simproc_setup fun_upd2 ("f(v := w, x := y)") = \<open>fn _ =>
22845
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   842
let
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   843
  fun gen_fun_upd NONE T _ _ = NONE
24017
363287741ebe simproc_setup fun_upd2;
wenzelm
parents: 23878
diff changeset
   844
    | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
22845
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   845
  fun dest_fun_T1 (Type (_, T :: Ts)) = T
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   846
  fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   847
    let
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   848
      fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   849
            if v aconv x then SOME g else gen_fun_upd (find g) T v w
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   850
        | find t = NONE
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   851
    in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
24017
363287741ebe simproc_setup fun_upd2;
wenzelm
parents: 23878
diff changeset
   852
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51598
diff changeset
   853
  val ss = simpset_of @{context}
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51598
diff changeset
   854
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51598
diff changeset
   855
  fun proc ctxt ct =
24017
363287741ebe simproc_setup fun_upd2;
wenzelm
parents: 23878
diff changeset
   856
    let
363287741ebe simproc_setup fun_upd2;
wenzelm
parents: 23878
diff changeset
   857
      val t = Thm.term_of ct
363287741ebe simproc_setup fun_upd2;
wenzelm
parents: 23878
diff changeset
   858
    in
363287741ebe simproc_setup fun_upd2;
wenzelm
parents: 23878
diff changeset
   859
      case find_double t of
363287741ebe simproc_setup fun_upd2;
wenzelm
parents: 23878
diff changeset
   860
        (T, NONE) => NONE
363287741ebe simproc_setup fun_upd2;
wenzelm
parents: 23878
diff changeset
   861
      | (T, SOME rhs) =>
27330
1af2598b5f7d Logic.all/mk_equals/mk_implies;
wenzelm
parents: 27188
diff changeset
   862
          SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))
24017
363287741ebe simproc_setup fun_upd2;
wenzelm
parents: 23878
diff changeset
   863
            (fn _ =>
59498
50b60f501b05 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents: 58889
diff changeset
   864
              resolve_tac ctxt [eq_reflection] 1 THEN
50b60f501b05 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents: 58889
diff changeset
   865
              resolve_tac ctxt @{thms ext} 1 THEN
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51598
diff changeset
   866
              simp_tac (put_simpset ss ctxt) 1))
24017
363287741ebe simproc_setup fun_upd2;
wenzelm
parents: 23878
diff changeset
   867
    end
363287741ebe simproc_setup fun_upd2;
wenzelm
parents: 23878
diff changeset
   868
in proc end
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   869
\<close>
22845
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   870
5f9138bcb3d7 changed code generator invocation syntax
haftmann
parents: 22744
diff changeset
   871
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   872
subsubsection \<open>Functorial structure of types\<close>
40969
fb2d3ccda5a7 moved bootstrap of type_lifting to Fun
haftmann
parents: 40968
diff changeset
   873
55467
a5c9002bc54d renamed 'enriched_type' to more informative 'functor' (following the renaming of enriched type constructors to bounded natural functors)
blanchet
parents: 55414
diff changeset
   874
ML_file "Tools/functor.ML"
40969
fb2d3ccda5a7 moved bootstrap of type_lifting to Fun
haftmann
parents: 40968
diff changeset
   875
55467
a5c9002bc54d renamed 'enriched_type' to more informative 'functor' (following the renaming of enriched type constructors to bounded natural functors)
blanchet
parents: 55414
diff changeset
   876
functor map_fun: map_fun
47488
be6dd389639d centralized enriched_type declaration, thanks to in-situ available Isar commands
haftmann
parents: 46950
diff changeset
   877
  by (simp_all add: fun_eq_iff)
be6dd389639d centralized enriched_type declaration, thanks to in-situ available Isar commands
haftmann
parents: 46950
diff changeset
   878
55467
a5c9002bc54d renamed 'enriched_type' to more informative 'functor' (following the renaming of enriched type constructors to bounded natural functors)
blanchet
parents: 55414
diff changeset
   879
functor vimage
49739
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
   880
  by (simp_all add: fun_eq_iff vimage_comp)
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
   881
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60303
diff changeset
   882
text \<open>Legacy theorem names\<close>
49739
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
   883
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
   884
lemmas o_def = comp_def
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
   885
lemmas o_apply = comp_apply
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
   886
lemmas o_assoc = comp_assoc [symmetric]
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
   887
lemmas id_o = id_comp
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
   888
lemmas o_id = comp_id
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
   889
lemmas o_eq_dest = comp_eq_dest
13aa6d8268ec consolidated names of theorems on composition;
haftmann
parents: 48891
diff changeset
   890
lemmas o_eq_elim = comp_eq_elim
55066
blanchet
parents: 55019
diff changeset
   891
lemmas o_eq_dest_lhs = comp_eq_dest_lhs
blanchet
parents: 55019
diff changeset
   892
lemmas o_eq_id_dest = comp_eq_id_dest
47488
be6dd389639d centralized enriched_type declaration, thanks to in-situ available Isar commands
haftmann
parents: 46950
diff changeset
   893
2912
3fac3e8d5d3e moved inj and surj from Set to Fun and Inv -> inv.
nipkow
parents: 1475
diff changeset
   894
end
56015
57e2cfba9c6e bootstrap fundamental Fun theory immediately after Set theory, without dependency on complete lattices
haftmann
parents: 55990
diff changeset
   895