| author | haftmann | 
| Tue, 13 Oct 2015 09:21:15 +0200 | |
| changeset 61424 | c3658c18b7bc | 
| parent 61378 | 3e04c9ca001a | 
| child 61605 | 1bf7b186542e | 
| permissions | -rw-r--r-- | 
| 58197 | 1  | 
(* Author: Florian Haftmann, TU Muenchen *)  | 
2  | 
||
| 58881 | 3  | 
section \<open>Big sum and product over function bodies\<close>  | 
| 58197 | 4  | 
|
5  | 
theory Groups_Big_Fun  | 
|
6  | 
imports  | 
|
7  | 
Main  | 
|
8  | 
"~~/src/Tools/Permanent_Interpretation"  | 
|
9  | 
begin  | 
|
10  | 
||
11  | 
subsection \<open>Abstract product\<close>  | 
|
12  | 
||
13  | 
no_notation times (infixl "*" 70)  | 
|
14  | 
no_notation Groups.one ("1")
 | 
|
15  | 
||
16  | 
locale comm_monoid_fun = comm_monoid  | 
|
17  | 
begin  | 
|
18  | 
||
19  | 
definition G :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
|
20  | 
where  | 
|
21  | 
  expand_set: "G g = comm_monoid_set.F f 1 g {a. g a \<noteq> 1}"
 | 
|
22  | 
||
23  | 
interpretation F!: comm_monoid_set f 1  | 
|
24  | 
..  | 
|
25  | 
||
26  | 
lemma expand_superset:  | 
|
27  | 
  assumes "finite A" and "{a. g a \<noteq> 1} \<subseteq> A"
 | 
|
28  | 
shows "G g = F.F g A"  | 
|
29  | 
apply (simp add: expand_set)  | 
|
30  | 
apply (rule F.same_carrierI [of A])  | 
|
31  | 
apply (simp_all add: assms)  | 
|
32  | 
done  | 
|
33  | 
||
34  | 
lemma conditionalize:  | 
|
35  | 
assumes "finite A"  | 
|
36  | 
shows "F.F g A = G (\<lambda>a. if a \<in> A then g a else 1)"  | 
|
37  | 
using assms  | 
|
38  | 
apply (simp add: expand_set)  | 
|
39  | 
apply (rule F.same_carrierI [of A])  | 
|
40  | 
apply auto  | 
|
41  | 
done  | 
|
42  | 
||
43  | 
lemma neutral [simp]:  | 
|
44  | 
"G (\<lambda>a. 1) = 1"  | 
|
45  | 
by (simp add: expand_set)  | 
|
46  | 
||
47  | 
lemma update [simp]:  | 
|
48  | 
  assumes "finite {a. g a \<noteq> 1}"
 | 
|
49  | 
assumes "g a = 1"  | 
|
50  | 
shows "G (g(a := b)) = b * G g"  | 
|
51  | 
proof (cases "b = 1")  | 
|
| 60500 | 52  | 
case True with \<open>g a = 1\<close> show ?thesis  | 
| 58197 | 53  | 
by (simp add: expand_set) (rule F.cong, auto)  | 
54  | 
next  | 
|
55  | 
case False  | 
|
56  | 
  moreover have "{a'. a' \<noteq> a \<longrightarrow> g a' \<noteq> 1} = insert a {a. g a \<noteq> 1}"
 | 
|
57  | 
by auto  | 
|
| 60500 | 58  | 
  moreover from \<open>g a = 1\<close> have "a \<notin> {a. g a \<noteq> 1}"
 | 
| 58197 | 59  | 
by simp  | 
60  | 
  moreover have "F.F (\<lambda>a'. if a' = a then b else g a') {a. g a \<noteq> 1} = F.F g {a. g a \<noteq> 1}"
 | 
|
| 60500 | 61  | 
by (rule F.cong) (auto simp add: \<open>g a = 1\<close>)  | 
62  | 
  ultimately show ?thesis using \<open>finite {a. g a \<noteq> 1}\<close> by (simp add: expand_set)
 | 
|
| 58197 | 63  | 
qed  | 
64  | 
||
65  | 
lemma infinite [simp]:  | 
|
66  | 
  "\<not> finite {a. g a \<noteq> 1} \<Longrightarrow> G g = 1"
 | 
|
67  | 
by (simp add: expand_set)  | 
|
68  | 
||
69  | 
lemma cong:  | 
|
70  | 
assumes "\<And>a. g a = h a"  | 
|
71  | 
shows "G g = G h"  | 
|
72  | 
using assms by (simp add: expand_set)  | 
|
73  | 
||
74  | 
lemma strong_cong [cong]:  | 
|
75  | 
assumes "\<And>a. g a = h a"  | 
|
76  | 
shows "G (\<lambda>a. g a) = G (\<lambda>a. h a)"  | 
|
77  | 
using assms by (fact cong)  | 
|
78  | 
||
79  | 
lemma not_neutral_obtains_not_neutral:  | 
|
80  | 
assumes "G g \<noteq> 1"  | 
|
81  | 
obtains a where "g a \<noteq> 1"  | 
|
82  | 
using assms by (auto elim: F.not_neutral_contains_not_neutral simp add: expand_set)  | 
|
83  | 
||
84  | 
lemma reindex_cong:  | 
|
85  | 
assumes "bij l"  | 
|
86  | 
assumes "g \<circ> l = h"  | 
|
87  | 
shows "G g = G h"  | 
|
88  | 
proof -  | 
|
89  | 
from assms have unfold: "h = g \<circ> l" by simp  | 
|
| 60500 | 90  | 
from \<open>bij l\<close> have "inj l" by (rule bij_is_inj)  | 
| 58197 | 91  | 
  then have "inj_on l {a. h a \<noteq> 1}" by (rule subset_inj_on) simp
 | 
| 60500 | 92  | 
  moreover from \<open>bij l\<close> have "{a. g a \<noteq> 1} = l ` {a. h a \<noteq> 1}"
 | 
| 58197 | 93  | 
by (auto simp add: image_Collect unfold elim: bij_pointE)  | 
94  | 
  moreover have "\<And>x. x \<in> {a. h a \<noteq> 1} \<Longrightarrow> g (l x) = h x"
 | 
|
95  | 
by (simp add: unfold)  | 
|
96  | 
  ultimately have "F.F g {a. g a \<noteq> 1} = F.F h {a. h a \<noteq> 1}"
 | 
|
97  | 
by (rule F.reindex_cong)  | 
|
98  | 
then show ?thesis by (simp add: expand_set)  | 
|
99  | 
qed  | 
|
100  | 
||
101  | 
lemma distrib:  | 
|
102  | 
  assumes "finite {a. g a \<noteq> 1}" and "finite {a. h a \<noteq> 1}"
 | 
|
103  | 
shows "G (\<lambda>a. g a * h a) = G g * G h"  | 
|
104  | 
proof -  | 
|
105  | 
  from assms have "finite ({a. g a \<noteq> 1} \<union> {a. h a \<noteq> 1})" by simp
 | 
|
106  | 
  moreover have "{a. g a * h a \<noteq> 1} \<subseteq> {a. g a \<noteq> 1} \<union> {a. h a \<noteq> 1}"
 | 
|
107  | 
by auto (drule sym, simp)  | 
|
108  | 
ultimately show ?thesis  | 
|
109  | 
using assms  | 
|
110  | 
    by (simp add: expand_superset [of "{a. g a \<noteq> 1} \<union> {a. h a \<noteq> 1}"] F.distrib)
 | 
|
111  | 
qed  | 
|
112  | 
||
113  | 
lemma commute:  | 
|
114  | 
assumes "finite C"  | 
|
115  | 
  assumes subset: "{a. \<exists>b. g a b \<noteq> 1} \<times> {b. \<exists>a. g a b \<noteq> 1} \<subseteq> C" (is "?A \<times> ?B \<subseteq> C")
 | 
|
116  | 
shows "G (\<lambda>a. G (g a)) = G (\<lambda>b. G (\<lambda>a. g a b))"  | 
|
117  | 
proof -  | 
|
| 60500 | 118  | 
from \<open>finite C\<close> subset  | 
| 58197 | 119  | 
    have "finite ({a. \<exists>b. g a b \<noteq> 1} \<times> {b. \<exists>a. g a b \<noteq> 1})"
 | 
120  | 
by (rule rev_finite_subset)  | 
|
121  | 
then have fins:  | 
|
122  | 
    "finite {b. \<exists>a. g a b \<noteq> 1}" "finite {a. \<exists>b. g a b \<noteq> 1}"
 | 
|
123  | 
by (auto simp add: finite_cartesian_product_iff)  | 
|
124  | 
  have subsets: "\<And>a. {b. g a b \<noteq> 1} \<subseteq> {b. \<exists>a. g a b \<noteq> 1}"
 | 
|
125  | 
    "\<And>b. {a. g a b \<noteq> 1} \<subseteq> {a. \<exists>b. g a b \<noteq> 1}"
 | 
|
126  | 
    "{a. F.F (g a) {b. \<exists>a. g a b \<noteq> 1} \<noteq> 1} \<subseteq> {a. \<exists>b. g a b \<noteq> 1}"
 | 
|
127  | 
    "{a. F.F (\<lambda>aa. g aa a) {a. \<exists>b. g a b \<noteq> 1} \<noteq> 1} \<subseteq> {b. \<exists>a. g a b \<noteq> 1}"
 | 
|
128  | 
by (auto elim: F.not_neutral_contains_not_neutral)  | 
|
129  | 
from F.commute have  | 
|
130  | 
    "F.F (\<lambda>a. F.F (g a) {b. \<exists>a. g a b \<noteq> 1}) {a. \<exists>b. g a b \<noteq> 1} =
 | 
|
131  | 
      F.F (\<lambda>b. F.F (\<lambda>a. g a b) {a. \<exists>b. g a b \<noteq> 1}) {b. \<exists>a. g a b \<noteq> 1}" .
 | 
|
132  | 
  with subsets fins have "G (\<lambda>a. F.F (g a) {b. \<exists>a. g a b \<noteq> 1}) =
 | 
|
133  | 
    G (\<lambda>b. F.F (\<lambda>a. g a b) {a. \<exists>b. g a b \<noteq> 1})"
 | 
|
134  | 
    by (auto simp add: expand_superset [of "{b. \<exists>a. g a b \<noteq> 1}"]
 | 
|
135  | 
      expand_superset [of "{a. \<exists>b. g a b \<noteq> 1}"])
 | 
|
136  | 
with subsets fins show ?thesis  | 
|
137  | 
    by (auto simp add: expand_superset [of "{b. \<exists>a. g a b \<noteq> 1}"]
 | 
|
138  | 
      expand_superset [of "{a. \<exists>b. g a b \<noteq> 1}"])
 | 
|
139  | 
qed  | 
|
140  | 
||
141  | 
lemma cartesian_product:  | 
|
142  | 
assumes "finite C"  | 
|
143  | 
  assumes subset: "{a. \<exists>b. g a b \<noteq> 1} \<times> {b. \<exists>a. g a b \<noteq> 1} \<subseteq> C" (is "?A \<times> ?B \<subseteq> C")
 | 
|
144  | 
shows "G (\<lambda>a. G (g a)) = G (\<lambda>(a, b). g a b)"  | 
|
145  | 
proof -  | 
|
| 60500 | 146  | 
from subset \<open>finite C\<close> have fin_prod: "finite (?A \<times> ?B)"  | 
| 58197 | 147  | 
by (rule finite_subset)  | 
148  | 
from fin_prod have "finite ?A" and "finite ?B"  | 
|
149  | 
by (auto simp add: finite_cartesian_product_iff)  | 
|
150  | 
have *: "G (\<lambda>a. G (g a)) =  | 
|
151  | 
    (F.F (\<lambda>a. F.F (g a) {b. \<exists>a. g a b \<noteq> 1}) {a. \<exists>b. g a b \<noteq> 1})"
 | 
|
152  | 
apply (subst expand_superset [of "?B"])  | 
|
| 60500 | 153  | 
apply (rule \<open>finite ?B\<close>)  | 
| 58197 | 154  | 
apply auto  | 
155  | 
apply (subst expand_superset [of "?A"])  | 
|
| 60500 | 156  | 
apply (rule \<open>finite ?A\<close>)  | 
| 58197 | 157  | 
apply auto  | 
158  | 
apply (erule F.not_neutral_contains_not_neutral)  | 
|
159  | 
apply auto  | 
|
160  | 
done  | 
|
161  | 
  have "{p. (case p of (a, b) \<Rightarrow> g a b) \<noteq> 1} \<subseteq> ?A \<times> ?B"
 | 
|
162  | 
by auto  | 
|
163  | 
  with subset have **: "{p. (case p of (a, b) \<Rightarrow> g a b) \<noteq> 1} \<subseteq> C"
 | 
|
164  | 
by blast  | 
|
165  | 
show ?thesis  | 
|
166  | 
apply (simp add: *)  | 
|
167  | 
apply (simp add: F.cartesian_product)  | 
|
168  | 
apply (subst expand_superset [of C])  | 
|
| 60500 | 169  | 
apply (rule \<open>finite C\<close>)  | 
| 58197 | 170  | 
apply (simp_all add: **)  | 
171  | 
apply (rule F.same_carrierI [of C])  | 
|
| 60500 | 172  | 
apply (rule \<open>finite C\<close>)  | 
| 58197 | 173  | 
apply (simp_all add: subset)  | 
174  | 
apply auto  | 
|
175  | 
done  | 
|
176  | 
qed  | 
|
177  | 
||
178  | 
lemma cartesian_product2:  | 
|
179  | 
assumes fin: "finite D"  | 
|
180  | 
  assumes subset: "{(a, b). \<exists>c. g a b c \<noteq> 1} \<times> {c. \<exists>a b. g a b c \<noteq> 1} \<subseteq> D" (is "?AB \<times> ?C \<subseteq> D")
 | 
|
181  | 
shows "G (\<lambda>(a, b). G (g a b)) = G (\<lambda>(a, b, c). g a b c)"  | 
|
182  | 
proof -  | 
|
183  | 
have bij: "bij (\<lambda>(a, b, c). ((a, b), c))"  | 
|
184  | 
by (auto intro!: bijI injI simp add: image_def)  | 
|
185  | 
  have "{p. \<exists>c. g (fst p) (snd p) c \<noteq> 1} \<times> {c. \<exists>p. g (fst p) (snd p) c \<noteq> 1} \<subseteq> D"
 | 
|
| 
61424
 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 
haftmann 
parents: 
61378 
diff
changeset
 | 
186  | 
by auto (insert subset, blast)  | 
| 58197 | 187  | 
with fin have "G (\<lambda>p. G (g (fst p) (snd p))) = G (\<lambda>(p, c). g (fst p) (snd p) c)"  | 
188  | 
by (rule cartesian_product)  | 
|
189  | 
then have "G (\<lambda>(a, b). G (g a b)) = G (\<lambda>((a, b), c). g a b c)"  | 
|
190  | 
by (auto simp add: split_def)  | 
|
191  | 
also have "G (\<lambda>((a, b), c). g a b c) = G (\<lambda>(a, b, c). g a b c)"  | 
|
192  | 
using bij by (rule reindex_cong [of "\<lambda>(a, b, c). ((a, b), c)"]) (simp add: fun_eq_iff)  | 
|
193  | 
finally show ?thesis .  | 
|
194  | 
qed  | 
|
195  | 
||
196  | 
lemma delta [simp]:  | 
|
197  | 
"G (\<lambda>b. if b = a then g b else 1) = g a"  | 
|
198  | 
proof -  | 
|
199  | 
  have "{b. (if b = a then g b else 1) \<noteq> 1} \<subseteq> {a}" by auto
 | 
|
200  | 
  then show ?thesis by (simp add: expand_superset [of "{a}"])
 | 
|
201  | 
qed  | 
|
202  | 
||
203  | 
lemma delta' [simp]:  | 
|
204  | 
"G (\<lambda>b. if a = b then g b else 1) = g a"  | 
|
205  | 
proof -  | 
|
206  | 
have "(\<lambda>b. if a = b then g b else 1) = (\<lambda>b. if b = a then g b else 1)"  | 
|
207  | 
by (simp add: fun_eq_iff)  | 
|
208  | 
then have "G (\<lambda>b. if a = b then g b else 1) = G (\<lambda>b. if b = a then g b else 1)"  | 
|
209  | 
by (simp cong del: strong_cong)  | 
|
210  | 
then show ?thesis by simp  | 
|
211  | 
qed  | 
|
212  | 
||
213  | 
end  | 
|
214  | 
||
215  | 
notation times (infixl "*" 70)  | 
|
216  | 
notation Groups.one ("1")
 | 
|
217  | 
||
218  | 
||
219  | 
subsection \<open>Concrete sum\<close>  | 
|
220  | 
||
221  | 
context comm_monoid_add  | 
|
222  | 
begin  | 
|
223  | 
||
224  | 
definition Sum_any :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
|
225  | 
where  | 
|
226  | 
"Sum_any = comm_monoid_fun.G plus 0"  | 
|
227  | 
||
228  | 
permanent_interpretation Sum_any!: comm_monoid_fun plus 0  | 
|
229  | 
where  | 
|
230  | 
"comm_monoid_fun.G plus 0 = Sum_any" and  | 
|
231  | 
"comm_monoid_set.F plus 0 = setsum"  | 
|
232  | 
proof -  | 
|
233  | 
show "comm_monoid_fun plus 0" ..  | 
|
234  | 
then interpret Sum_any!: comm_monoid_fun plus 0 .  | 
|
235  | 
from Sum_any_def show "comm_monoid_fun.G plus 0 = Sum_any" by rule  | 
|
236  | 
from setsum_def show "comm_monoid_set.F plus 0 = setsum" by rule  | 
|
237  | 
qed  | 
|
238  | 
||
239  | 
end  | 
|
240  | 
||
241  | 
syntax  | 
|
242  | 
  "_Sum_any" :: "pttrn \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_add"    ("(3SUM _. _)" [0, 10] 10)
 | 
|
243  | 
syntax (xsymbols)  | 
|
244  | 
  "_Sum_any" :: "pttrn \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_add"    ("(3\<Sum>_. _)" [0, 10] 10)
 | 
|
245  | 
translations  | 
|
246  | 
"\<Sum>a. b" == "CONST Sum_any (\<lambda>a. b)"  | 
|
247  | 
||
248  | 
lemma Sum_any_left_distrib:  | 
|
249  | 
fixes r :: "'a :: semiring_0"  | 
|
250  | 
  assumes "finite {a. g a \<noteq> 0}"
 | 
|
251  | 
shows "Sum_any g * r = (\<Sum>n. g n * r)"  | 
|
252  | 
proof -  | 
|
253  | 
note assms  | 
|
254  | 
  moreover have "{a. g a * r \<noteq> 0} \<subseteq> {a. g a \<noteq> 0}" by auto
 | 
|
255  | 
ultimately show ?thesis  | 
|
256  | 
    by (simp add: setsum_left_distrib Sum_any.expand_superset [of "{a. g a \<noteq> 0}"])
 | 
|
257  | 
qed  | 
|
258  | 
||
259  | 
lemma Sum_any_right_distrib:  | 
|
260  | 
fixes r :: "'a :: semiring_0"  | 
|
261  | 
  assumes "finite {a. g a \<noteq> 0}"
 | 
|
262  | 
shows "r * Sum_any g = (\<Sum>n. r * g n)"  | 
|
263  | 
proof -  | 
|
264  | 
note assms  | 
|
265  | 
  moreover have "{a. r * g a \<noteq> 0} \<subseteq> {a. g a \<noteq> 0}" by auto
 | 
|
266  | 
ultimately show ?thesis  | 
|
267  | 
    by (simp add: setsum_right_distrib Sum_any.expand_superset [of "{a. g a \<noteq> 0}"])
 | 
|
268  | 
qed  | 
|
269  | 
||
270  | 
lemma Sum_any_product:  | 
|
271  | 
fixes f g :: "'b \<Rightarrow> 'a::semiring_0"  | 
|
272  | 
  assumes "finite {a. f a \<noteq> 0}" and "finite {b. g b \<noteq> 0}"
 | 
|
273  | 
shows "Sum_any f * Sum_any g = (\<Sum>a. \<Sum>b. f a * g b)"  | 
|
274  | 
proof -  | 
|
275  | 
  have subset_f: "{a. (\<Sum>b. f a * g b) \<noteq> 0} \<subseteq> {a. f a \<noteq> 0}"
 | 
|
276  | 
by rule (simp, rule, auto)  | 
|
277  | 
  moreover have subset_g: "\<And>a. {b. f a * g b \<noteq> 0} \<subseteq> {b. g b \<noteq> 0}"
 | 
|
278  | 
by rule (simp, rule, auto)  | 
|
279  | 
ultimately show ?thesis using assms  | 
|
280  | 
by (auto simp add: Sum_any.expand_set [of f] Sum_any.expand_set [of g]  | 
|
281  | 
      Sum_any.expand_superset [of "{a. f a \<noteq> 0}"] Sum_any.expand_superset [of "{b. g b \<noteq> 0}"]
 | 
|
282  | 
setsum_product)  | 
|
283  | 
qed  | 
|
284  | 
||
| 58437 | 285  | 
lemma Sum_any_eq_zero_iff [simp]:  | 
286  | 
fixes f :: "'a \<Rightarrow> nat"  | 
|
287  | 
  assumes "finite {a. f a \<noteq> 0}"
 | 
|
288  | 
shows "Sum_any f = 0 \<longleftrightarrow> f = (\<lambda>_. 0)"  | 
|
289  | 
using assms by (simp add: Sum_any.expand_set fun_eq_iff)  | 
|
290  | 
||
| 58197 | 291  | 
|
292  | 
subsection \<open>Concrete product\<close>  | 
|
293  | 
||
294  | 
context comm_monoid_mult  | 
|
295  | 
begin  | 
|
296  | 
||
297  | 
definition Prod_any :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
|
298  | 
where  | 
|
299  | 
"Prod_any = comm_monoid_fun.G times 1"  | 
|
300  | 
||
301  | 
permanent_interpretation Prod_any!: comm_monoid_fun times 1  | 
|
302  | 
where  | 
|
303  | 
"comm_monoid_fun.G times 1 = Prod_any" and  | 
|
304  | 
"comm_monoid_set.F times 1 = setprod"  | 
|
305  | 
proof -  | 
|
306  | 
show "comm_monoid_fun times 1" ..  | 
|
307  | 
then interpret Prod_any!: comm_monoid_fun times 1 .  | 
|
308  | 
from Prod_any_def show "comm_monoid_fun.G times 1 = Prod_any" by rule  | 
|
309  | 
from setprod_def show "comm_monoid_set.F times 1 = setprod" by rule  | 
|
310  | 
qed  | 
|
311  | 
||
312  | 
end  | 
|
313  | 
||
314  | 
syntax  | 
|
315  | 
  "_Prod_any" :: "pttrn \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_mult"    ("(3PROD _. _)" [0, 10] 10)
 | 
|
316  | 
syntax (xsymbols)  | 
|
317  | 
  "_Prod_any" :: "pttrn \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_mult"    ("(3\<Prod>_. _)" [0, 10] 10)
 | 
|
318  | 
translations  | 
|
319  | 
"\<Prod>a. b" == "CONST Prod_any (\<lambda>a. b)"  | 
|
320  | 
||
321  | 
lemma Prod_any_zero:  | 
|
322  | 
fixes f :: "'b \<Rightarrow> 'a :: comm_semiring_1"  | 
|
323  | 
  assumes "finite {a. f a \<noteq> 1}"
 | 
|
324  | 
assumes "f a = 0"  | 
|
325  | 
shows "(\<Prod>a. f a) = 0"  | 
|
326  | 
proof -  | 
|
| 60500 | 327  | 
from \<open>f a = 0\<close> have "f a \<noteq> 1" by simp  | 
328  | 
with \<open>f a = 0\<close> have "\<exists>a. f a \<noteq> 1 \<and> f a = 0" by blast  | 
|
329  | 
  with \<open>finite {a. f a \<noteq> 1}\<close> show ?thesis
 | 
|
| 58197 | 330  | 
by (simp add: Prod_any.expand_set setprod_zero)  | 
331  | 
qed  | 
|
332  | 
||
333  | 
lemma Prod_any_not_zero:  | 
|
334  | 
fixes f :: "'b \<Rightarrow> 'a :: comm_semiring_1"  | 
|
335  | 
  assumes "finite {a. f a \<noteq> 1}"
 | 
|
336  | 
assumes "(\<Prod>a. f a) \<noteq> 0"  | 
|
337  | 
shows "f a \<noteq> 0"  | 
|
338  | 
using assms Prod_any_zero [of f] by blast  | 
|
339  | 
||
| 58437 | 340  | 
lemma power_Sum_any:  | 
341  | 
  assumes "finite {a. f a \<noteq> 0}"
 | 
|
342  | 
shows "c ^ (\<Sum>a. f a) = (\<Prod>a. c ^ f a)"  | 
|
343  | 
proof -  | 
|
344  | 
  have "{a. c ^ f a \<noteq> 1} \<subseteq> {a. f a \<noteq> 0}"
 | 
|
345  | 
by (auto intro: ccontr)  | 
|
346  | 
with assms show ?thesis  | 
|
347  | 
by (simp add: Sum_any.expand_set Prod_any.expand_superset power_setsum)  | 
|
348  | 
qed  | 
|
349  | 
||
| 58197 | 350  | 
end  | 
| 58437 | 351  |