26166
|
1 |
(* ID: $Id$
|
|
2 |
Author: Tobias Nipkow, 2007
|
|
3 |
*)
|
|
4 |
|
|
5 |
header "Lists as vectors"
|
|
6 |
|
|
7 |
theory ListVector
|
|
8 |
imports Main
|
|
9 |
begin
|
|
10 |
|
|
11 |
text{* \noindent
|
|
12 |
A vector-space like structure of lists and arithmetic operations on them.
|
|
13 |
Is only a vector space if restricted to lists of the same length. *}
|
|
14 |
|
|
15 |
text{* Multiplication with a scalar: *}
|
|
16 |
|
|
17 |
abbreviation scale :: "('a::times) \<Rightarrow> 'a list \<Rightarrow> 'a list" (infix "*\<^sub>s" 70)
|
|
18 |
where "x *\<^sub>s xs \<equiv> map (op * x) xs"
|
|
19 |
|
|
20 |
lemma scale1[simp]: "(1::'a::monoid_mult) *\<^sub>s xs = xs"
|
|
21 |
by (induct xs) simp_all
|
|
22 |
|
|
23 |
subsection {* @{text"+"} and @{text"-"} *}
|
|
24 |
|
|
25 |
fun zipwith0 :: "('a::zero \<Rightarrow> 'b::zero \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list"
|
|
26 |
where
|
|
27 |
"zipwith0 f [] [] = []" |
|
|
28 |
"zipwith0 f (x#xs) (y#ys) = f x y # zipwith0 f xs ys" |
|
|
29 |
"zipwith0 f (x#xs) [] = f x 0 # zipwith0 f xs []" |
|
|
30 |
"zipwith0 f [] (y#ys) = f 0 y # zipwith0 f [] ys"
|
|
31 |
|
|
32 |
instance list :: ("{zero,plus}")plus
|
|
33 |
list_add_def : "op + \<equiv> zipwith0 (op +)" ..
|
|
34 |
|
|
35 |
instance list :: ("{zero,uminus}")uminus
|
|
36 |
list_uminus_def: "uminus \<equiv> map uminus" ..
|
|
37 |
|
|
38 |
instance list :: ("{zero,minus}")minus
|
|
39 |
list_diff_def: "op - \<equiv> zipwith0 (op -)" ..
|
|
40 |
|
|
41 |
lemma zipwith0_Nil[simp]: "zipwith0 f [] ys = map (f 0) ys"
|
|
42 |
by(induct ys) simp_all
|
|
43 |
|
|
44 |
|
|
45 |
lemma list_add_Nil[simp]: "[] + xs = (xs::'a::monoid_add list)"
|
|
46 |
by (induct xs) (auto simp:list_add_def)
|
|
47 |
|
|
48 |
lemma list_add_Nil2[simp]: "xs + [] = (xs::'a::monoid_add list)"
|
|
49 |
by (induct xs) (auto simp:list_add_def)
|
|
50 |
|
|
51 |
lemma list_add_Cons[simp]: "(x#xs) + (y#ys) = (x+y)#(xs+ys)"
|
|
52 |
by(auto simp:list_add_def)
|
|
53 |
|
|
54 |
lemma list_diff_Nil[simp]: "[] - xs = -(xs::'a::group_add list)"
|
|
55 |
by (induct xs) (auto simp:list_diff_def list_uminus_def)
|
|
56 |
|
|
57 |
lemma list_diff_Nil2[simp]: "xs - [] = (xs::'a::group_add list)"
|
|
58 |
by (induct xs) (auto simp:list_diff_def)
|
|
59 |
|
|
60 |
lemma list_diff_Cons_Cons[simp]: "(x#xs) - (y#ys) = (x-y)#(xs-ys)"
|
|
61 |
by (induct xs) (auto simp:list_diff_def)
|
|
62 |
|
|
63 |
lemma list_uminus_Cons[simp]: "-(x#xs) = (-x)#(-xs)"
|
|
64 |
by (induct xs) (auto simp:list_uminus_def)
|
|
65 |
|
|
66 |
lemma self_list_diff:
|
|
67 |
"xs - xs = replicate (length(xs::'a::group_add list)) 0"
|
|
68 |
by(induct xs) simp_all
|
|
69 |
|
|
70 |
lemma list_add_assoc: fixes xs :: "'a::monoid_add list"
|
|
71 |
shows "(xs+ys)+zs = xs+(ys+zs)"
|
|
72 |
apply(induct xs arbitrary: ys zs)
|
|
73 |
apply simp
|
|
74 |
apply(case_tac ys)
|
|
75 |
apply(simp)
|
|
76 |
apply(simp)
|
|
77 |
apply(case_tac zs)
|
|
78 |
apply(simp)
|
|
79 |
apply(simp add:add_assoc)
|
|
80 |
done
|
|
81 |
|
|
82 |
subsection "Inner product"
|
|
83 |
|
|
84 |
definition iprod :: "'a::ring list \<Rightarrow> 'a list \<Rightarrow> 'a" ("\<langle>_,_\<rangle>") where
|
|
85 |
"\<langle>xs,ys\<rangle> = (\<Sum>(x,y) \<leftarrow> zip xs ys. x*y)"
|
|
86 |
|
|
87 |
lemma iprod_Nil[simp]: "\<langle>[],ys\<rangle> = 0"
|
|
88 |
by(simp add:iprod_def)
|
|
89 |
|
|
90 |
lemma iprod_Nil2[simp]: "\<langle>xs,[]\<rangle> = 0"
|
|
91 |
by(simp add:iprod_def)
|
|
92 |
|
|
93 |
lemma iprod_Cons[simp]: "\<langle>x#xs,y#ys\<rangle> = x*y + \<langle>xs,ys\<rangle>"
|
|
94 |
by(simp add:iprod_def)
|
|
95 |
|
|
96 |
lemma iprod0_if_coeffs0: "\<forall>c\<in>set cs. c = 0 \<Longrightarrow> \<langle>cs,xs\<rangle> = 0"
|
|
97 |
apply(induct cs arbitrary:xs)
|
|
98 |
apply simp
|
|
99 |
apply(case_tac xs) apply simp
|
|
100 |
apply auto
|
|
101 |
done
|
|
102 |
|
|
103 |
lemma iprod_uminus[simp]: "\<langle>-xs,ys\<rangle> = -\<langle>xs,ys\<rangle>"
|
|
104 |
by(simp add: iprod_def uminus_listsum_map o_def split_def map_zip_map list_uminus_def)
|
|
105 |
|
|
106 |
lemma iprod_left_add_distrib: "\<langle>xs + ys,zs\<rangle> = \<langle>xs,zs\<rangle> + \<langle>ys,zs\<rangle>"
|
|
107 |
apply(induct xs arbitrary: ys zs)
|
|
108 |
apply (simp add: o_def split_def)
|
|
109 |
apply(case_tac ys)
|
|
110 |
apply simp
|
|
111 |
apply(case_tac zs)
|
|
112 |
apply (simp)
|
|
113 |
apply(simp add:left_distrib)
|
|
114 |
done
|
|
115 |
|
|
116 |
lemma iprod_left_diff_distrib: "\<langle>xs - ys, zs\<rangle> = \<langle>xs,zs\<rangle> - \<langle>ys,zs\<rangle>"
|
|
117 |
apply(induct xs arbitrary: ys zs)
|
|
118 |
apply (simp add: o_def split_def)
|
|
119 |
apply(case_tac ys)
|
|
120 |
apply simp
|
|
121 |
apply(case_tac zs)
|
|
122 |
apply (simp)
|
|
123 |
apply(simp add:left_diff_distrib)
|
|
124 |
done
|
|
125 |
|
|
126 |
lemma iprod_assoc: "\<langle>x *\<^sub>s xs, ys\<rangle> = x * \<langle>xs,ys\<rangle>"
|
|
127 |
apply(induct xs arbitrary: ys)
|
|
128 |
apply simp
|
|
129 |
apply(case_tac ys)
|
|
130 |
apply (simp)
|
|
131 |
apply (simp add:right_distrib mult_assoc)
|
|
132 |
done
|
|
133 |
|
|
134 |
end |