23449
|
1 |
(* Title: HOL/MetisTest/TransClosure.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
|
|
5 |
Testing the metis method
|
|
6 |
*)
|
|
7 |
|
|
8 |
theory TransClosure
|
|
9 |
imports Main
|
|
10 |
begin
|
|
11 |
|
|
12 |
types addr = nat
|
|
13 |
|
|
14 |
datatype val
|
|
15 |
= Unit -- "dummy result value of void expressions"
|
|
16 |
| Null -- "null reference"
|
|
17 |
| Bool bool -- "Boolean value"
|
|
18 |
| Intg int -- "integer value"
|
|
19 |
| Addr addr -- "addresses of objects in the heap"
|
|
20 |
|
|
21 |
consts R::"(addr \<times> addr) set"
|
|
22 |
|
|
23 |
consts f:: "addr \<Rightarrow> val"
|
|
24 |
|
|
25 |
ML {*ResAtp.problem_name := "TransClosure__test"*}
|
|
26 |
lemma "\<lbrakk> f c = Intg x; \<forall> y. f b = Intg y \<longrightarrow> y \<noteq> x; (a,b) \<in> R\<^sup>*; (b,c) \<in> R\<^sup>* \<rbrakk>
|
|
27 |
\<Longrightarrow> \<exists> c. (b,c) \<in> R \<and> (a,c) \<in> R\<^sup>*"
|
|
28 |
by (metis Transitive_Closure.rtrancl_into_rtrancl converse_rtranclE trancl_reflcl)
|
|
29 |
|
|
30 |
lemma "\<lbrakk> f c = Intg x; \<forall> y. f b = Intg y \<longrightarrow> y \<noteq> x; (a,b) \<in> R\<^sup>*; (b,c) \<in> R\<^sup>* \<rbrakk>
|
|
31 |
\<Longrightarrow> \<exists> c. (b,c) \<in> R \<and> (a,c) \<in> R\<^sup>*"
|
|
32 |
proof (neg_clausify)
|
|
33 |
assume 0: "f c = Intg x"
|
|
34 |
assume 1: "(a, b) \<in> R\<^sup>*"
|
|
35 |
assume 2: "(b, c) \<in> R\<^sup>*"
|
|
36 |
assume 3: "f b \<noteq> Intg x"
|
|
37 |
assume 4: "\<And>A. (b, A) \<notin> R \<or> (a, A) \<notin> R\<^sup>*"
|
|
38 |
have 5: "b = c \<or> b \<in> Domain R"
|
|
39 |
by (metis Not_Domain_rtrancl 2)
|
|
40 |
have 6: "\<And>X1. (a, X1) \<in> R\<^sup>* \<or> (b, X1) \<notin> R"
|
|
41 |
by (metis Transitive_Closure.rtrancl_into_rtrancl 1)
|
|
42 |
have 7: "\<And>X1. (b, X1) \<notin> R"
|
|
43 |
by (metis 6 4)
|
|
44 |
have 8: "b \<notin> Domain R"
|
|
45 |
by (metis 7 DomainE)
|
|
46 |
have 9: "c = b"
|
|
47 |
by (metis 5 8)
|
|
48 |
have 10: "f b = Intg x"
|
|
49 |
by (metis 0 9)
|
|
50 |
show "False"
|
|
51 |
by (metis 10 3)
|
|
52 |
qed
|
|
53 |
|
|
54 |
ML {*ResAtp.problem_name := "TransClosure__test_simpler"*}
|
|
55 |
lemma "\<lbrakk> f c = Intg x; \<forall> y. f b = Intg y \<longrightarrow> y \<noteq> x; (a,b) \<in> R\<^sup>*; (b,c) \<in> R\<^sup>* \<rbrakk>
|
|
56 |
\<Longrightarrow> \<exists> c. (b,c) \<in> R \<and> (a,c) \<in> R\<^sup>*"
|
|
57 |
apply (erule_tac x="b" in converse_rtranclE)
|
|
58 |
apply (metis rel_pow_0_E rel_pow_0_I)
|
|
59 |
apply (metis DomainE Domain_iff Transitive_Closure.rtrancl_into_rtrancl)
|
|
60 |
done
|
|
61 |
|
|
62 |
end
|