src/ZF/Nat_ZF.thy
author bulwahn
Wed, 31 Mar 2010 16:44:41 +0200
changeset 36046 c3946372f556
parent 32960 69916a850301
child 45602 2a858377c3d2
permissions -rw-r--r--
putting compilation setup of predicate compiler in a separate file
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 26056
diff changeset
     1
(*  Title:      ZF/Nat_ZF.thy
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     3
    Copyright   1994  University of Cambridge
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     4
*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     5
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     6
header{*The Natural numbers As a Least Fixed Point*}
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     7
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     8
theory Nat_ZF imports OrdQuant Bool begin
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
     9
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    10
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    11
  nat :: i  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    12
    "nat == lfp(Inf, %X. {0} Un {succ(i). i:X})"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    13
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    14
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    15
  quasinat :: "i => o"  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    16
    "quasinat(n) == n=0 | (\<exists>m. n = succ(m))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    17
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    18
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    19
  (*Has an unconditional succ case, which is used in "recursor" below.*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    20
  nat_case :: "[i, i=>i, i]=>i"  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    21
    "nat_case(a,b,k) == THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    22
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    23
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    24
  nat_rec :: "[i, i, [i,i]=>i]=>i"  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    25
    "nat_rec(k,a,b) ==   
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    26
          wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    27
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    28
  (*Internalized relations on the naturals*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    29
  
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    30
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    31
  Le :: i  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    32
    "Le == {<x,y>:nat*nat. x le y}"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    33
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    34
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    35
  Lt :: i  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    36
    "Lt == {<x, y>:nat*nat. x < y}"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    37
  
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    38
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    39
  Ge :: i  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    40
    "Ge == {<x,y>:nat*nat. y le x}"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    41
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    42
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    43
  Gt :: i  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    44
    "Gt == {<x,y>:nat*nat. y < x}"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    45
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    46
definition
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    47
  greater_than :: "i=>i"  where
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    48
    "greater_than(n) == {i:nat. n < i}"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    49
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    50
text{*No need for a less-than operator: a natural number is its list of
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    51
predecessors!*}
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    52
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    53
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    54
lemma nat_bnd_mono: "bnd_mono(Inf, %X. {0} Un {succ(i). i:X})"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    55
apply (rule bnd_monoI)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    56
apply (cut_tac infinity, blast, blast) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    57
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    58
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    59
(* nat = {0} Un {succ(x). x:nat} *)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    60
lemmas nat_unfold = nat_bnd_mono [THEN nat_def [THEN def_lfp_unfold], standard]
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    61
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    62
(** Type checking of 0 and successor **)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    63
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    64
lemma nat_0I [iff,TC]: "0 : nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    65
apply (subst nat_unfold)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    66
apply (rule singletonI [THEN UnI1])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    67
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    68
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    69
lemma nat_succI [intro!,TC]: "n : nat ==> succ(n) : nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    70
apply (subst nat_unfold)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    71
apply (erule RepFunI [THEN UnI2])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    72
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    73
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    74
lemma nat_1I [iff,TC]: "1 : nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    75
by (rule nat_0I [THEN nat_succI])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    76
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    77
lemma nat_2I [iff,TC]: "2 : nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    78
by (rule nat_1I [THEN nat_succI])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    79
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    80
lemma bool_subset_nat: "bool <= nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    81
by (blast elim!: boolE)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    82
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    83
lemmas bool_into_nat = bool_subset_nat [THEN subsetD, standard]
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    84
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    85
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    86
subsection{*Injectivity Properties and Induction*}
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    87
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    88
(*Mathematical induction*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    89
lemma nat_induct [case_names 0 succ, induct set: nat]:
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    90
    "[| n: nat;  P(0);  !!x. [| x: nat;  P(x) |] ==> P(succ(x)) |] ==> P(n)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    91
by (erule def_induct [OF nat_def nat_bnd_mono], blast)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    92
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    93
lemma natE:
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    94
    "[| n: nat;  n=0 ==> P;  !!x. [| x: nat; n=succ(x) |] ==> P |] ==> P"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    95
by (erule nat_unfold [THEN equalityD1, THEN subsetD, THEN UnE], auto) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    96
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    97
lemma nat_into_Ord [simp]: "n: nat ==> Ord(n)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    98
by (erule nat_induct, auto)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
    99
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   100
(* i: nat ==> 0 le i; same thing as 0<succ(i)  *)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   101
lemmas nat_0_le = nat_into_Ord [THEN Ord_0_le, standard]
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   102
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   103
(* i: nat ==> i le i; same thing as i<succ(i)  *)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   104
lemmas nat_le_refl = nat_into_Ord [THEN le_refl, standard]
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   105
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   106
lemma Ord_nat [iff]: "Ord(nat)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   107
apply (rule OrdI)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   108
apply (erule_tac [2] nat_into_Ord [THEN Ord_is_Transset])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   109
apply (unfold Transset_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   110
apply (rule ballI)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   111
apply (erule nat_induct, auto) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   112
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   113
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   114
lemma Limit_nat [iff]: "Limit(nat)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   115
apply (unfold Limit_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   116
apply (safe intro!: ltI Ord_nat)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   117
apply (erule ltD)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   118
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   119
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   120
lemma naturals_not_limit: "a \<in> nat ==> ~ Limit(a)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   121
by (induct a rule: nat_induct, auto)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   122
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   123
lemma succ_natD: "succ(i): nat ==> i: nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   124
by (rule Ord_trans [OF succI1], auto)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   125
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   126
lemma nat_succ_iff [iff]: "succ(n): nat <-> n: nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   127
by (blast dest!: succ_natD)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   128
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   129
lemma nat_le_Limit: "Limit(i) ==> nat le i"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   130
apply (rule subset_imp_le)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   131
apply (simp_all add: Limit_is_Ord) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   132
apply (rule subsetI)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   133
apply (erule nat_induct)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   134
 apply (erule Limit_has_0 [THEN ltD]) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   135
apply (blast intro: Limit_has_succ [THEN ltD] ltI Limit_is_Ord)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   136
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   137
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   138
(* [| succ(i): k;  k: nat |] ==> i: k *)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   139
lemmas succ_in_naturalD = Ord_trans [OF succI1 _ nat_into_Ord]
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   140
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   141
lemma lt_nat_in_nat: "[| m<n;  n: nat |] ==> m: nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   142
apply (erule ltE)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   143
apply (erule Ord_trans, assumption, simp) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   144
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   145
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   146
lemma le_in_nat: "[| m le n; n:nat |] ==> m:nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   147
by (blast dest!: lt_nat_in_nat)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   148
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   149
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   150
subsection{*Variations on Mathematical Induction*}
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   151
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   152
(*complete induction*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   153
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   154
lemmas complete_induct = Ord_induct [OF _ Ord_nat, case_names less, consumes 1]
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   155
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   156
lemmas complete_induct_rule =  
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 26056
diff changeset
   157
        complete_induct [rule_format, case_names less, consumes 1]
26056
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   158
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   159
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   160
lemma nat_induct_from_lemma [rule_format]: 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   161
    "[| n: nat;  m: nat;   
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   162
        !!x. [| x: nat;  m le x;  P(x) |] ==> P(succ(x)) |] 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   163
     ==> m le n --> P(m) --> P(n)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   164
apply (erule nat_induct) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   165
apply (simp_all add: distrib_simps le0_iff le_succ_iff)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   166
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   167
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   168
(*Induction starting from m rather than 0*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   169
lemma nat_induct_from: 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   170
    "[| m le n;  m: nat;  n: nat;   
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   171
        P(m);   
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   172
        !!x. [| x: nat;  m le x;  P(x) |] ==> P(succ(x)) |]
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   173
     ==> P(n)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   174
apply (blast intro: nat_induct_from_lemma)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   175
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   176
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   177
(*Induction suitable for subtraction and less-than*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   178
lemma diff_induct [case_names 0 0_succ succ_succ, consumes 2]:
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   179
    "[| m: nat;  n: nat;   
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   180
        !!x. x: nat ==> P(x,0);   
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   181
        !!y. y: nat ==> P(0,succ(y));   
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   182
        !!x y. [| x: nat;  y: nat;  P(x,y) |] ==> P(succ(x),succ(y)) |]
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   183
     ==> P(m,n)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   184
apply (erule_tac x = m in rev_bspec)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   185
apply (erule nat_induct, simp) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   186
apply (rule ballI)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   187
apply (rename_tac i j)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   188
apply (erule_tac n=j in nat_induct, auto)  
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   189
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   190
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   191
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   192
(** Induction principle analogous to trancl_induct **)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   193
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   194
lemma succ_lt_induct_lemma [rule_format]:
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   195
     "m: nat ==> P(m,succ(m)) --> (ALL x: nat. P(m,x) --> P(m,succ(x))) -->  
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   196
                 (ALL n:nat. m<n --> P(m,n))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   197
apply (erule nat_induct)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   198
 apply (intro impI, rule nat_induct [THEN ballI])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   199
   prefer 4 apply (intro impI, rule nat_induct [THEN ballI])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   200
apply (auto simp add: le_iff) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   201
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   202
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   203
lemma succ_lt_induct:
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   204
    "[| m<n;  n: nat;                                    
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   205
        P(m,succ(m));                                    
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   206
        !!x. [| x: nat;  P(m,x) |] ==> P(m,succ(x)) |]
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   207
     ==> P(m,n)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   208
by (blast intro: succ_lt_induct_lemma lt_nat_in_nat) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   209
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   210
subsection{*quasinat: to allow a case-split rule for @{term nat_case}*}
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   211
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   212
text{*True if the argument is zero or any successor*}
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   213
lemma [iff]: "quasinat(0)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   214
by (simp add: quasinat_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   215
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   216
lemma [iff]: "quasinat(succ(x))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   217
by (simp add: quasinat_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   218
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   219
lemma nat_imp_quasinat: "n \<in> nat ==> quasinat(n)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   220
by (erule natE, simp_all)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   221
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   222
lemma non_nat_case: "~ quasinat(x) ==> nat_case(a,b,x) = 0" 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   223
by (simp add: quasinat_def nat_case_def) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   224
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   225
lemma nat_cases_disj: "k=0 | (\<exists>y. k = succ(y)) | ~ quasinat(k)"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   226
apply (case_tac "k=0", simp) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   227
apply (case_tac "\<exists>m. k = succ(m)") 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   228
apply (simp_all add: quasinat_def) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   229
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   230
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   231
lemma nat_cases:
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   232
     "[|k=0 ==> P;  !!y. k = succ(y) ==> P; ~ quasinat(k) ==> P|] ==> P"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   233
by (insert nat_cases_disj [of k], blast) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   234
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   235
(** nat_case **)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   236
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   237
lemma nat_case_0 [simp]: "nat_case(a,b,0) = a"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   238
by (simp add: nat_case_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   239
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   240
lemma nat_case_succ [simp]: "nat_case(a,b,succ(n)) = b(n)" 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   241
by (simp add: nat_case_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   242
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   243
lemma nat_case_type [TC]:
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   244
    "[| n: nat;  a: C(0);  !!m. m: nat ==> b(m): C(succ(m)) |] 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   245
     ==> nat_case(a,b,n) : C(n)";
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   246
by (erule nat_induct, auto) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   247
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   248
lemma split_nat_case:
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   249
  "P(nat_case(a,b,k)) <-> 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   250
   ((k=0 --> P(a)) & (\<forall>x. k=succ(x) --> P(b(x))) & (~ quasinat(k) \<longrightarrow> P(0)))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   251
apply (rule nat_cases [of k]) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   252
apply (auto simp add: non_nat_case)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   253
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   254
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   255
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   256
subsection{*Recursion on the Natural Numbers*}
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   257
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   258
(** nat_rec is used to define eclose and transrec, then becomes obsolete.
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   259
    The operator rec, from arith.thy, has fewer typing conditions **)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   260
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   261
lemma nat_rec_0: "nat_rec(0,a,b) = a"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   262
apply (rule nat_rec_def [THEN def_wfrec, THEN trans])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   263
 apply (rule wf_Memrel) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   264
apply (rule nat_case_0)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   265
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   266
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   267
lemma nat_rec_succ: "m: nat ==> nat_rec(succ(m),a,b) = b(m, nat_rec(m,a,b))"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   268
apply (rule nat_rec_def [THEN def_wfrec, THEN trans])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   269
 apply (rule wf_Memrel) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   270
apply (simp add: vimage_singleton_iff)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   271
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   272
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   273
(** The union of two natural numbers is a natural number -- their maximum **)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   274
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   275
lemma Un_nat_type [TC]: "[| i: nat; j: nat |] ==> i Un j: nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   276
apply (rule Un_least_lt [THEN ltD])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   277
apply (simp_all add: lt_def) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   278
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   279
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   280
lemma Int_nat_type [TC]: "[| i: nat; j: nat |] ==> i Int j: nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   281
apply (rule Int_greatest_lt [THEN ltD])
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   282
apply (simp_all add: lt_def) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   283
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   284
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   285
(*needed to simplify unions over nat*)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   286
lemma nat_nonempty [simp]: "nat ~= 0"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   287
by blast
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   288
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   289
text{*A natural number is the set of its predecessors*}
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   290
lemma nat_eq_Collect_lt: "i \<in> nat ==> {j\<in>nat. j<i} = i"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   291
apply (rule equalityI)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   292
apply (blast dest: ltD)  
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   293
apply (auto simp add: Ord_mem_iff_lt)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   294
apply (blast intro: lt_trans) 
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   295
done
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   296
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   297
lemma Le_iff [iff]: "<x,y> : Le <-> x le y & x : nat & y : nat"
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   298
by (force simp add: Le_def)
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   299
6a0801279f4c Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
diff changeset
   300
end