author | wenzelm |
Tue, 05 Sep 2000 18:49:02 +0200 | |
changeset 9858 | c3ac6128b649 |
parent 9160 | 7a98dbf3e579 |
child 9870 | 2374ba026fc6 |
permissions | -rw-r--r-- |
2608 | 1 |
(* Title: HOL/NatDef.ML |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
*) |
|
6 |
||
5069 | 7 |
Goal "mono(%X. {Zero_Rep} Un (Suc_Rep``X))"; |
2608 | 8 |
by (REPEAT (ares_tac [monoI, subset_refl, image_mono, Un_mono] 1)); |
9 |
qed "Nat_fun_mono"; |
|
10 |
||
9108 | 11 |
bind_thm ("Nat_unfold", Nat_fun_mono RS (Nat_def RS def_lfp_Tarski)); |
2608 | 12 |
|
13 |
(* Zero is a natural number -- this also justifies the type definition*) |
|
5069 | 14 |
Goal "Zero_Rep: Nat"; |
2608 | 15 |
by (stac Nat_unfold 1); |
16 |
by (rtac (singletonI RS UnI1) 1); |
|
17 |
qed "Zero_RepI"; |
|
18 |
||
5316 | 19 |
Goal "i: Nat ==> Suc_Rep(i) : Nat"; |
2608 | 20 |
by (stac Nat_unfold 1); |
21 |
by (rtac (imageI RS UnI2) 1); |
|
5316 | 22 |
by (assume_tac 1); |
2608 | 23 |
qed "Suc_RepI"; |
24 |
||
25 |
(*** Induction ***) |
|
26 |
||
5316 | 27 |
val major::prems = Goal |
2608 | 28 |
"[| i: Nat; P(Zero_Rep); \ |
29 |
\ !!j. [| j: Nat; P(j) |] ==> P(Suc_Rep(j)) |] ==> P(i)"; |
|
30 |
by (rtac ([Nat_def, Nat_fun_mono, major] MRS def_induct) 1); |
|
4089 | 31 |
by (blast_tac (claset() addIs prems) 1); |
2608 | 32 |
qed "Nat_induct"; |
33 |
||
5316 | 34 |
val prems = Goalw [Zero_def,Suc_def] |
2608 | 35 |
"[| P(0); \ |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3023
diff
changeset
|
36 |
\ !!n. P(n) ==> P(Suc(n)) |] ==> P(n)"; |
2608 | 37 |
by (rtac (Rep_Nat_inverse RS subst) 1); (*types force good instantiation*) |
38 |
by (rtac (Rep_Nat RS Nat_induct) 1); |
|
39 |
by (REPEAT (ares_tac prems 1 |
|
40 |
ORELSE eresolve_tac [Abs_Nat_inverse RS subst] 1)); |
|
41 |
qed "nat_induct"; |
|
42 |
||
43 |
(*Perform induction on n. *) |
|
5187
55f07169cf5f
Removed nat_case, nat_rec, and natE (now provided by datatype
berghofe
parents:
5148
diff
changeset
|
44 |
fun nat_ind_tac a i = |
55f07169cf5f
Removed nat_case, nat_rec, and natE (now provided by datatype
berghofe
parents:
5148
diff
changeset
|
45 |
res_inst_tac [("n",a)] nat_induct i THEN rename_last_tac a [""] (i+1); |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3023
diff
changeset
|
46 |
|
2608 | 47 |
(*A special form of induction for reasoning about m<n and m-n*) |
5316 | 48 |
val prems = Goal |
2608 | 49 |
"[| !!x. P x 0; \ |
50 |
\ !!y. P 0 (Suc y); \ |
|
51 |
\ !!x y. [| P x y |] ==> P (Suc x) (Suc y) \ |
|
52 |
\ |] ==> P m n"; |
|
53 |
by (res_inst_tac [("x","m")] spec 1); |
|
54 |
by (nat_ind_tac "n" 1); |
|
55 |
by (rtac allI 2); |
|
56 |
by (nat_ind_tac "x" 2); |
|
57 |
by (REPEAT (ares_tac (prems@[allI]) 1 ORELSE etac spec 1)); |
|
58 |
qed "diff_induct"; |
|
59 |
||
60 |
(*** Isomorphisms: Abs_Nat and Rep_Nat ***) |
|
61 |
||
62 |
(*We can't take these properties as axioms, or take Abs_Nat==Inv(Rep_Nat), |
|
63 |
since we assume the isomorphism equations will one day be given by Isabelle*) |
|
64 |
||
5069 | 65 |
Goal "inj(Rep_Nat)"; |
2608 | 66 |
by (rtac inj_inverseI 1); |
67 |
by (rtac Rep_Nat_inverse 1); |
|
68 |
qed "inj_Rep_Nat"; |
|
69 |
||
5069 | 70 |
Goal "inj_on Abs_Nat Nat"; |
4830 | 71 |
by (rtac inj_on_inverseI 1); |
2608 | 72 |
by (etac Abs_Nat_inverse 1); |
4830 | 73 |
qed "inj_on_Abs_Nat"; |
2608 | 74 |
|
75 |
(*** Distinctness of constructors ***) |
|
76 |
||
5069 | 77 |
Goalw [Zero_def,Suc_def] "Suc(m) ~= 0"; |
4830 | 78 |
by (rtac (inj_on_Abs_Nat RS inj_on_contraD) 1); |
2608 | 79 |
by (rtac Suc_Rep_not_Zero_Rep 1); |
80 |
by (REPEAT (resolve_tac [Rep_Nat, Suc_RepI, Zero_RepI] 1)); |
|
81 |
qed "Suc_not_Zero"; |
|
82 |
||
83 |
bind_thm ("Zero_not_Suc", Suc_not_Zero RS not_sym); |
|
84 |
||
85 |
AddIffs [Suc_not_Zero,Zero_not_Suc]; |
|
86 |
||
87 |
bind_thm ("Suc_neq_Zero", (Suc_not_Zero RS notE)); |
|
9108 | 88 |
bind_thm ("Zero_neq_Suc", sym RS Suc_neq_Zero); |
2608 | 89 |
|
90 |
(** Injectiveness of Suc **) |
|
91 |
||
5069 | 92 |
Goalw [Suc_def] "inj(Suc)"; |
2608 | 93 |
by (rtac injI 1); |
4830 | 94 |
by (dtac (inj_on_Abs_Nat RS inj_onD) 1); |
2608 | 95 |
by (REPEAT (resolve_tac [Rep_Nat, Suc_RepI] 1)); |
96 |
by (dtac (inj_Suc_Rep RS injD) 1); |
|
97 |
by (etac (inj_Rep_Nat RS injD) 1); |
|
98 |
qed "inj_Suc"; |
|
99 |
||
9108 | 100 |
bind_thm ("Suc_inject", inj_Suc RS injD); |
2608 | 101 |
|
5069 | 102 |
Goal "(Suc(m)=Suc(n)) = (m=n)"; |
2608 | 103 |
by (EVERY1 [rtac iffI, etac Suc_inject, etac arg_cong]); |
104 |
qed "Suc_Suc_eq"; |
|
105 |
||
106 |
AddIffs [Suc_Suc_eq]; |
|
107 |
||
5069 | 108 |
Goal "n ~= Suc(n)"; |
2608 | 109 |
by (nat_ind_tac "n" 1); |
110 |
by (ALLGOALS Asm_simp_tac); |
|
111 |
qed "n_not_Suc_n"; |
|
112 |
||
113 |
bind_thm ("Suc_n_not_n", n_not_Suc_n RS not_sym); |
|
114 |
||
5187
55f07169cf5f
Removed nat_case, nat_rec, and natE (now provided by datatype
berghofe
parents:
5148
diff
changeset
|
115 |
(*** Basic properties of "less than" ***) |
2608 | 116 |
|
5069 | 117 |
Goalw [wf_def, pred_nat_def] "wf(pred_nat)"; |
3718 | 118 |
by (Clarify_tac 1); |
2608 | 119 |
by (nat_ind_tac "x" 1); |
3236 | 120 |
by (ALLGOALS Blast_tac); |
2608 | 121 |
qed "wf_pred_nat"; |
122 |
||
3378 | 123 |
(*Used in TFL/post.sml*) |
5069 | 124 |
Goalw [less_def] "(m,n) : pred_nat^+ = (m<n)"; |
3378 | 125 |
by (rtac refl 1); |
126 |
qed "less_eq"; |
|
127 |
||
2608 | 128 |
(** Introduction properties **) |
129 |
||
5316 | 130 |
Goalw [less_def] "[| i<j; j<k |] ==> i<(k::nat)"; |
2608 | 131 |
by (rtac (trans_trancl RS transD) 1); |
5316 | 132 |
by (assume_tac 1); |
133 |
by (assume_tac 1); |
|
2608 | 134 |
qed "less_trans"; |
135 |
||
5069 | 136 |
Goalw [less_def, pred_nat_def] "n < Suc(n)"; |
4089 | 137 |
by (simp_tac (simpset() addsimps [r_into_trancl]) 1); |
2608 | 138 |
qed "lessI"; |
139 |
AddIffs [lessI]; |
|
140 |
||
141 |
(* i<j ==> i<Suc(j) *) |
|
142 |
bind_thm("less_SucI", lessI RSN (2, less_trans)); |
|
143 |
||
5069 | 144 |
Goal "0 < Suc(n)"; |
2608 | 145 |
by (nat_ind_tac "n" 1); |
146 |
by (rtac lessI 1); |
|
147 |
by (etac less_trans 1); |
|
148 |
by (rtac lessI 1); |
|
149 |
qed "zero_less_Suc"; |
|
150 |
AddIffs [zero_less_Suc]; |
|
151 |
||
152 |
(** Elimination properties **) |
|
153 |
||
5316 | 154 |
Goalw [less_def] "n<m ==> ~ m<(n::nat)"; |
155 |
by (blast_tac (claset() addIs [wf_pred_nat, wf_trancl RS wf_asym])1); |
|
2608 | 156 |
qed "less_not_sym"; |
157 |
||
5474
a2109bb8ce2b
well-formed asym rules; also adds less_irrefl, le_refl since order_refl
paulson
parents:
5354
diff
changeset
|
158 |
(* [| n<m; ~P ==> m<n |] ==> P *) |
a2109bb8ce2b
well-formed asym rules; also adds less_irrefl, le_refl since order_refl
paulson
parents:
5354
diff
changeset
|
159 |
bind_thm ("less_asym", less_not_sym RS swap); |
2608 | 160 |
|
5069 | 161 |
Goalw [less_def] "~ n<(n::nat)"; |
9160 | 162 |
by (rtac (wf_pred_nat RS wf_trancl RS wf_not_refl) 1); |
2608 | 163 |
qed "less_not_refl"; |
164 |
||
165 |
(* n<n ==> R *) |
|
9160 | 166 |
bind_thm ("less_irrefl", less_not_refl RS notE); |
5474
a2109bb8ce2b
well-formed asym rules; also adds less_irrefl, le_refl since order_refl
paulson
parents:
5354
diff
changeset
|
167 |
AddSEs [less_irrefl]; |
2608 | 168 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
169 |
Goal "n<m ==> m ~= (n::nat)"; |
5474
a2109bb8ce2b
well-formed asym rules; also adds less_irrefl, le_refl since order_refl
paulson
parents:
5354
diff
changeset
|
170 |
by (Blast_tac 1); |
2608 | 171 |
qed "less_not_refl2"; |
172 |
||
5354
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
173 |
(* s < t ==> s ~= t *) |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
174 |
bind_thm ("less_not_refl3", less_not_refl2 RS not_sym); |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
175 |
|
2608 | 176 |
|
5316 | 177 |
val major::prems = Goalw [less_def, pred_nat_def] |
2608 | 178 |
"[| i<k; k=Suc(i) ==> P; !!j. [| i<j; k=Suc(j) |] ==> P \ |
179 |
\ |] ==> P"; |
|
180 |
by (rtac (major RS tranclE) 1); |
|
3236 | 181 |
by (ALLGOALS Full_simp_tac); |
2608 | 182 |
by (REPEAT_FIRST (bound_hyp_subst_tac ORELSE' |
3236 | 183 |
eresolve_tac (prems@[asm_rl, Pair_inject]))); |
2608 | 184 |
qed "lessE"; |
185 |
||
8942
6aad5381ba83
added type constraint ::nat because 0 is now overloaded
paulson
parents:
8741
diff
changeset
|
186 |
Goal "~ n < (0::nat)"; |
6aad5381ba83
added type constraint ::nat because 0 is now overloaded
paulson
parents:
8741
diff
changeset
|
187 |
by (blast_tac (claset() addEs [lessE]) 1); |
2608 | 188 |
qed "not_less0"; |
189 |
AddIffs [not_less0]; |
|
190 |
||
191 |
(* n<0 ==> R *) |
|
192 |
bind_thm ("less_zeroE", not_less0 RS notE); |
|
193 |
||
5316 | 194 |
val [major,less,eq] = Goal |
2608 | 195 |
"[| m < Suc(n); m<n ==> P; m=n ==> P |] ==> P"; |
196 |
by (rtac (major RS lessE) 1); |
|
197 |
by (rtac eq 1); |
|
2891 | 198 |
by (Blast_tac 1); |
2608 | 199 |
by (rtac less 1); |
2891 | 200 |
by (Blast_tac 1); |
2608 | 201 |
qed "less_SucE"; |
202 |
||
5069 | 203 |
Goal "(m < Suc(n)) = (m < n | m = n)"; |
4089 | 204 |
by (blast_tac (claset() addSEs [less_SucE] addIs [less_trans]) 1); |
2608 | 205 |
qed "less_Suc_eq"; |
206 |
||
5069 | 207 |
Goal "(n<1) = (n=0)"; |
4089 | 208 |
by (simp_tac (simpset() addsimps [less_Suc_eq]) 1); |
3484
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
209 |
qed "less_one"; |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
210 |
AddIffs [less_one]; |
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
nipkow
parents:
3457
diff
changeset
|
211 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
212 |
Goal "m<n ==> Suc(m) < Suc(n)"; |
2608 | 213 |
by (etac rev_mp 1); |
214 |
by (nat_ind_tac "n" 1); |
|
5474
a2109bb8ce2b
well-formed asym rules; also adds less_irrefl, le_refl since order_refl
paulson
parents:
5354
diff
changeset
|
215 |
by (ALLGOALS (fast_tac (claset() addEs [less_trans, lessE]))); |
2608 | 216 |
qed "Suc_mono"; |
217 |
||
218 |
(*"Less than" is a linear ordering*) |
|
5069 | 219 |
Goal "m<n | m=n | n<(m::nat)"; |
2608 | 220 |
by (nat_ind_tac "m" 1); |
221 |
by (nat_ind_tac "n" 1); |
|
222 |
by (rtac (refl RS disjI1 RS disjI2) 1); |
|
223 |
by (rtac (zero_less_Suc RS disjI1) 1); |
|
4089 | 224 |
by (blast_tac (claset() addIs [Suc_mono, less_SucI] addEs [lessE]) 1); |
2608 | 225 |
qed "less_linear"; |
226 |
||
5069 | 227 |
Goal "!!m::nat. (m ~= n) = (m<n | n<m)"; |
4737 | 228 |
by (cut_facts_tac [less_linear] 1); |
5500 | 229 |
by (Blast_tac 1); |
4737 | 230 |
qed "nat_neq_iff"; |
231 |
||
7030 | 232 |
val [major,eqCase,lessCase] = Goal |
233 |
"[| (m::nat)<n ==> P n m; m=n ==> P n m; n<m ==> P n m |] ==> P n m"; |
|
234 |
by (rtac (less_linear RS disjE) 1); |
|
235 |
by (etac disjE 2); |
|
236 |
by (etac lessCase 1); |
|
237 |
by (etac (sym RS eqCase) 1); |
|
238 |
by (etac major 1); |
|
239 |
qed "nat_less_cases"; |
|
2608 | 240 |
|
4745 | 241 |
|
242 |
(** Inductive (?) properties **) |
|
243 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
244 |
Goal "[| m<n; Suc m ~= n |] ==> Suc(m) < n"; |
4745 | 245 |
by (full_simp_tac (simpset() addsimps [nat_neq_iff]) 1); |
246 |
by (blast_tac (claset() addSEs [less_irrefl, less_SucE] addEs [less_asym]) 1); |
|
247 |
qed "Suc_lessI"; |
|
248 |
||
5316 | 249 |
Goal "Suc(m) < n ==> m<n"; |
250 |
by (etac rev_mp 1); |
|
4745 | 251 |
by (nat_ind_tac "n" 1); |
252 |
by (ALLGOALS (fast_tac (claset() addSIs [lessI RS less_SucI] |
|
253 |
addEs [less_trans, lessE]))); |
|
254 |
qed "Suc_lessD"; |
|
255 |
||
5316 | 256 |
val [major,minor] = Goal |
4745 | 257 |
"[| Suc(i)<k; !!j. [| i<j; k=Suc(j) |] ==> P \ |
258 |
\ |] ==> P"; |
|
259 |
by (rtac (major RS lessE) 1); |
|
260 |
by (etac (lessI RS minor) 1); |
|
261 |
by (etac (Suc_lessD RS minor) 1); |
|
262 |
by (assume_tac 1); |
|
263 |
qed "Suc_lessE"; |
|
264 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
265 |
Goal "Suc(m) < Suc(n) ==> m<n"; |
4745 | 266 |
by (blast_tac (claset() addEs [lessE, make_elim Suc_lessD]) 1); |
267 |
qed "Suc_less_SucD"; |
|
268 |
||
269 |
||
5069 | 270 |
Goal "(Suc(m) < Suc(n)) = (m<n)"; |
4745 | 271 |
by (EVERY1 [rtac iffI, etac Suc_less_SucD, etac Suc_mono]); |
272 |
qed "Suc_less_eq"; |
|
8555
17325ee838ab
Suc_less_eq now with AddIffs. How could this have been overlooked?
paulson
parents:
7064
diff
changeset
|
273 |
AddIffs [Suc_less_eq]; |
4745 | 274 |
|
6109 | 275 |
(*Goal "~(Suc(n) < n)"; |
4745 | 276 |
by (blast_tac (claset() addEs [Suc_lessD RS less_irrefl]) 1); |
277 |
qed "not_Suc_n_less_n"; |
|
6109 | 278 |
Addsimps [not_Suc_n_less_n];*) |
4745 | 279 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
280 |
Goal "i<j ==> j<k --> Suc i < k"; |
4745 | 281 |
by (nat_ind_tac "k" 1); |
282 |
by (ALLGOALS (asm_simp_tac (simpset()))); |
|
283 |
by (asm_simp_tac (simpset() addsimps [less_Suc_eq]) 1); |
|
284 |
by (blast_tac (claset() addDs [Suc_lessD]) 1); |
|
285 |
qed_spec_mp "less_trans_Suc"; |
|
286 |
||
2608 | 287 |
(*Can be used with less_Suc_eq to get n=m | n<m *) |
5069 | 288 |
Goal "(~ m < n) = (n < Suc(m))"; |
2608 | 289 |
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); |
290 |
by (ALLGOALS Asm_simp_tac); |
|
291 |
qed "not_less_eq"; |
|
292 |
||
293 |
(*Complete induction, aka course-of-values induction*) |
|
5316 | 294 |
val prems = Goalw [less_def] |
9160 | 295 |
"[| !!n. [| ALL m::nat. m<n --> P(m) |] ==> P(n) |] ==> P(n)"; |
2608 | 296 |
by (wf_ind_tac "n" [wf_pred_nat RS wf_trancl] 1); |
297 |
by (eresolve_tac prems 1); |
|
298 |
qed "less_induct"; |
|
299 |
||
300 |
(*** Properties of <= ***) |
|
301 |
||
5500 | 302 |
(*Was le_eq_less_Suc, but this orientation is more useful*) |
303 |
Goalw [le_def] "(m < Suc n) = (m <= n)"; |
|
304 |
by (rtac (not_less_eq RS sym) 1); |
|
305 |
qed "less_Suc_eq_le"; |
|
2608 | 306 |
|
3343 | 307 |
(* m<=n ==> m < Suc n *) |
5500 | 308 |
bind_thm ("le_imp_less_Suc", less_Suc_eq_le RS iffD2); |
3343 | 309 |
|
8942
6aad5381ba83
added type constraint ::nat because 0 is now overloaded
paulson
parents:
8741
diff
changeset
|
310 |
Goalw [le_def] "(0::nat) <= n"; |
2608 | 311 |
by (rtac not_less0 1); |
312 |
qed "le0"; |
|
6075 | 313 |
AddIffs [le0]; |
2608 | 314 |
|
5069 | 315 |
Goalw [le_def] "~ Suc n <= n"; |
2608 | 316 |
by (Simp_tac 1); |
317 |
qed "Suc_n_not_le_n"; |
|
318 |
||
8942
6aad5381ba83
added type constraint ::nat because 0 is now overloaded
paulson
parents:
8741
diff
changeset
|
319 |
Goalw [le_def] "!!i::nat. (i <= 0) = (i = 0)"; |
2608 | 320 |
by (nat_ind_tac "i" 1); |
321 |
by (ALLGOALS Asm_simp_tac); |
|
322 |
qed "le_0_eq"; |
|
4614 | 323 |
AddIffs [le_0_eq]; |
2608 | 324 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
325 |
Goal "(m <= Suc(n)) = (m<=n | m = Suc n)"; |
5500 | 326 |
by (simp_tac (simpset() delsimps [less_Suc_eq_le] |
327 |
addsimps [less_Suc_eq_le RS sym, less_Suc_eq]) 1); |
|
3355 | 328 |
qed "le_Suc_eq"; |
329 |
||
4614 | 330 |
(* [| m <= Suc n; m <= n ==> R; m = Suc n ==> R |] ==> R *) |
331 |
bind_thm ("le_SucE", le_Suc_eq RS iffD1 RS disjE); |
|
332 |
||
5316 | 333 |
Goalw [le_def] "~n<m ==> m<=(n::nat)"; |
334 |
by (assume_tac 1); |
|
2608 | 335 |
qed "leI"; |
336 |
||
5316 | 337 |
Goalw [le_def] "m<=n ==> ~ n < (m::nat)"; |
338 |
by (assume_tac 1); |
|
2608 | 339 |
qed "leD"; |
340 |
||
9108 | 341 |
bind_thm ("leE", make_elim leD); |
2608 | 342 |
|
5069 | 343 |
Goal "(~n<m) = (m<=(n::nat))"; |
4089 | 344 |
by (blast_tac (claset() addIs [leI] addEs [leE]) 1); |
2608 | 345 |
qed "not_less_iff_le"; |
346 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
347 |
Goalw [le_def] "~ m <= n ==> n<(m::nat)"; |
2891 | 348 |
by (Blast_tac 1); |
2608 | 349 |
qed "not_leE"; |
350 |
||
5069 | 351 |
Goalw [le_def] "(~n<=m) = (m<(n::nat))"; |
4599 | 352 |
by (Simp_tac 1); |
353 |
qed "not_le_iff_less"; |
|
354 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
355 |
Goalw [le_def] "m < n ==> Suc(m) <= n"; |
4089 | 356 |
by (simp_tac (simpset() addsimps [less_Suc_eq]) 1); |
357 |
by (blast_tac (claset() addSEs [less_irrefl,less_asym]) 1); |
|
3343 | 358 |
qed "Suc_leI"; (*formerly called lessD*) |
2608 | 359 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
360 |
Goalw [le_def] "Suc(m) <= n ==> m <= n"; |
4089 | 361 |
by (asm_full_simp_tac (simpset() addsimps [less_Suc_eq]) 1); |
2608 | 362 |
qed "Suc_leD"; |
363 |
||
364 |
(* stronger version of Suc_leD *) |
|
5148
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
paulson
parents:
5143
diff
changeset
|
365 |
Goalw [le_def] "Suc m <= n ==> m < n"; |
4089 | 366 |
by (asm_full_simp_tac (simpset() addsimps [less_Suc_eq]) 1); |
2608 | 367 |
by (cut_facts_tac [less_linear] 1); |
2891 | 368 |
by (Blast_tac 1); |
2608 | 369 |
qed "Suc_le_lessD"; |
370 |
||
5069 | 371 |
Goal "(Suc m <= n) = (m < n)"; |
4089 | 372 |
by (blast_tac (claset() addIs [Suc_leI, Suc_le_lessD]) 1); |
2608 | 373 |
qed "Suc_le_eq"; |
374 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
375 |
Goalw [le_def] "m <= n ==> m <= Suc n"; |
4089 | 376 |
by (blast_tac (claset() addDs [Suc_lessD]) 1); |
2608 | 377 |
qed "le_SucI"; |
378 |
||
6109 | 379 |
(*bind_thm ("le_Suc", not_Suc_n_less_n RS leI);*) |
2608 | 380 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
381 |
Goalw [le_def] "m < n ==> m <= (n::nat)"; |
4089 | 382 |
by (blast_tac (claset() addEs [less_asym]) 1); |
2608 | 383 |
qed "less_imp_le"; |
384 |
||
5591 | 385 |
(*For instance, (Suc m < Suc n) = (Suc m <= n) = (m<n) *) |
9108 | 386 |
bind_thms ("le_simps", [less_imp_le, less_Suc_eq_le, Suc_le_eq]); |
5591 | 387 |
|
5354
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
388 |
|
3343 | 389 |
(** Equivalence of m<=n and m<n | m=n **) |
390 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
391 |
Goalw [le_def] "m <= n ==> m < n | m=(n::nat)"; |
2608 | 392 |
by (cut_facts_tac [less_linear] 1); |
4089 | 393 |
by (blast_tac (claset() addEs [less_irrefl,less_asym]) 1); |
2608 | 394 |
qed "le_imp_less_or_eq"; |
395 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
396 |
Goalw [le_def] "m<n | m=n ==> m <=(n::nat)"; |
2608 | 397 |
by (cut_facts_tac [less_linear] 1); |
4089 | 398 |
by (blast_tac (claset() addSEs [less_irrefl] addEs [less_asym]) 1); |
2608 | 399 |
qed "less_or_eq_imp_le"; |
400 |
||
5069 | 401 |
Goal "(m <= (n::nat)) = (m < n | m=n)"; |
2608 | 402 |
by (REPEAT(ares_tac [iffI,less_or_eq_imp_le,le_imp_less_or_eq] 1)); |
403 |
qed "le_eq_less_or_eq"; |
|
404 |
||
4635 | 405 |
(*Useful with Blast_tac. m=n ==> m<=n *) |
406 |
bind_thm ("eq_imp_le", disjI2 RS less_or_eq_imp_le); |
|
407 |
||
5069 | 408 |
Goal "n <= (n::nat)"; |
4089 | 409 |
by (simp_tac (simpset() addsimps [le_eq_less_or_eq]) 1); |
2608 | 410 |
qed "le_refl"; |
411 |
||
5354
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
412 |
|
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
413 |
Goal "[| i <= j; j < k |] ==> i < (k::nat)"; |
4468 | 414 |
by (blast_tac (claset() addSDs [le_imp_less_or_eq] |
415 |
addIs [less_trans]) 1); |
|
2608 | 416 |
qed "le_less_trans"; |
417 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
418 |
Goal "[| i < j; j <= k |] ==> i < (k::nat)"; |
4468 | 419 |
by (blast_tac (claset() addSDs [le_imp_less_or_eq] |
420 |
addIs [less_trans]) 1); |
|
2608 | 421 |
qed "less_le_trans"; |
422 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
423 |
Goal "[| i <= j; j <= k |] ==> i <= (k::nat)"; |
4468 | 424 |
by (blast_tac (claset() addSDs [le_imp_less_or_eq] |
425 |
addIs [less_or_eq_imp_le, less_trans]) 1); |
|
2608 | 426 |
qed "le_trans"; |
427 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5132
diff
changeset
|
428 |
Goal "[| m <= n; n <= m |] ==> m = (n::nat)"; |
4468 | 429 |
(*order_less_irrefl could make this proof fail*) |
430 |
by (blast_tac (claset() addSDs [le_imp_less_or_eq] |
|
431 |
addSEs [less_irrefl] addEs [less_asym]) 1); |
|
2608 | 432 |
qed "le_anti_sym"; |
433 |
||
5069 | 434 |
Goal "(Suc(n) <= Suc(m)) = (n <= m)"; |
5500 | 435 |
by (simp_tac (simpset() addsimps le_simps) 1); |
2608 | 436 |
qed "Suc_le_mono"; |
437 |
||
438 |
AddIffs [Suc_le_mono]; |
|
439 |
||
5500 | 440 |
(* Axiom 'order_less_le' of class 'order': *) |
5069 | 441 |
Goal "(m::nat) < n = (m <= n & m ~= n)"; |
4737 | 442 |
by (simp_tac (simpset() addsimps [le_def, nat_neq_iff]) 1); |
443 |
by (blast_tac (claset() addSEs [less_asym]) 1); |
|
2608 | 444 |
qed "nat_less_le"; |
445 |
||
5354
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
446 |
(* [| m <= n; m ~= n |] ==> m < n *) |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
447 |
bind_thm ("le_neq_implies_less", [nat_less_le, conjI] MRS iffD2); |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
448 |
|
4640 | 449 |
(* Axiom 'linorder_linear' of class 'linorder': *) |
5069 | 450 |
Goal "(m::nat) <= n | n <= m"; |
4640 | 451 |
by (simp_tac (simpset() addsimps [le_eq_less_or_eq]) 1); |
452 |
by (cut_facts_tac [less_linear] 1); |
|
5132 | 453 |
by (Blast_tac 1); |
4640 | 454 |
qed "nat_le_linear"; |
455 |
||
5354
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
456 |
Goal "~ n < m ==> (n < Suc m) = (n = m)"; |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
457 |
by (blast_tac (claset() addSEs [less_SucE]) 1); |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
458 |
qed "not_less_less_Suc_eq"; |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
459 |
|
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
460 |
|
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
461 |
(*Rewrite (n < Suc m) to (n=m) if ~ n<m or m<=n hold. |
da63d9b35caf
new theorems; adds [le_refl, less_imp_le] as simprules
paulson
parents:
5316
diff
changeset
|
462 |
Not suitable as default simprules because they often lead to looping*) |
9108 | 463 |
bind_thms ("not_less_simps", [not_less_less_Suc_eq, leD RS not_less_less_Suc_eq]); |
4640 | 464 |
|
2608 | 465 |
(** LEAST -- the least number operator **) |
466 |
||
9160 | 467 |
Goal "(ALL m::nat. P m --> n <= m) = (ALL m. m < n --> ~ P m)"; |
4089 | 468 |
by (blast_tac (claset() addIs [leI] addEs [leE]) 1); |
3143
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
469 |
val lemma = result(); |
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
470 |
|
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
471 |
(* This is an old def of Least for nat, which is derived for compatibility *) |
5069 | 472 |
Goalw [Least_def] |
3143
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
473 |
"(LEAST n::nat. P n) == (@n. P(n) & (ALL m. m < n --> ~P(m)))"; |
4089 | 474 |
by (simp_tac (simpset() addsimps [lemma]) 1); |
3143
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
475 |
qed "Least_nat_def"; |
d60e49b86c6a
Modified def of Least, which, as Markus correctly complained, looked like
nipkow
parents:
3085
diff
changeset
|
476 |
|
5316 | 477 |
val [prem1,prem2] = Goalw [Least_nat_def] |
3842 | 478 |
"[| P(k::nat); !!x. x<k ==> ~P(x) |] ==> (LEAST x. P(x)) = k"; |
2608 | 479 |
by (rtac select_equality 1); |
4089 | 480 |
by (blast_tac (claset() addSIs [prem1,prem2]) 1); |
2608 | 481 |
by (cut_facts_tac [less_linear] 1); |
4089 | 482 |
by (blast_tac (claset() addSIs [prem1] addSDs [prem2]) 1); |
2608 | 483 |
qed "Least_equality"; |
484 |
||
5316 | 485 |
Goal "P(k::nat) ==> P(LEAST x. P(x))"; |
486 |
by (etac rev_mp 1); |
|
2608 | 487 |
by (res_inst_tac [("n","k")] less_induct 1); |
488 |
by (rtac impI 1); |
|
489 |
by (rtac classical 1); |
|
490 |
by (res_inst_tac [("s","n")] (Least_equality RS ssubst) 1); |
|
491 |
by (assume_tac 1); |
|
492 |
by (assume_tac 2); |
|
2891 | 493 |
by (Blast_tac 1); |
2608 | 494 |
qed "LeastI"; |
495 |
||
496 |
(*Proof is almost identical to the one above!*) |
|
5316 | 497 |
Goal "P(k::nat) ==> (LEAST x. P(x)) <= k"; |
498 |
by (etac rev_mp 1); |
|
2608 | 499 |
by (res_inst_tac [("n","k")] less_induct 1); |
500 |
by (rtac impI 1); |
|
501 |
by (rtac classical 1); |
|
502 |
by (res_inst_tac [("s","n")] (Least_equality RS ssubst) 1); |
|
503 |
by (assume_tac 1); |
|
504 |
by (rtac le_refl 2); |
|
4089 | 505 |
by (blast_tac (claset() addIs [less_imp_le,le_trans]) 1); |
2608 | 506 |
qed "Least_le"; |
507 |
||
5316 | 508 |
Goal "k < (LEAST x. P(x)) ==> ~P(k::nat)"; |
2608 | 509 |
by (rtac notI 1); |
5316 | 510 |
by (etac (rewrite_rule [le_def] Least_le RS notE) 1 THEN assume_tac 1); |
2608 | 511 |
qed "not_less_Least"; |
512 |
||
5983 | 513 |
(* [| m ~= n; m < n ==> P; n < m ==> P |] ==> P *) |
4737 | 514 |
bind_thm("nat_neqE", nat_neq_iff RS iffD1 RS disjE); |
7064 | 515 |
|
9160 | 516 |
Goal "(S::nat set) ~= {} ==> EX x:S. ALL y:S. x <= y"; |
7064 | 517 |
by (cut_facts_tac [wf_pred_nat RS wf_trancl RS (wf_eq_minimal RS iffD1)] 1); |
518 |
by (dres_inst_tac [("x","S")] spec 1); |
|
519 |
by (Asm_full_simp_tac 1); |
|
520 |
by (etac impE 1); |
|
521 |
by (Force_tac 1); |
|
522 |
by (force_tac (claset(), simpset() addsimps [less_eq,not_le_iff_less]) 1); |
|
523 |
qed "nonempty_has_least"; |