| 
0
 | 
     1  | 
(*  Title: 	ZF/perm
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1991  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
The theory underlying permutation groups
  | 
| 
 | 
     7  | 
  -- Composition of relations, the identity relation
  | 
| 
 | 
     8  | 
  -- Injections, surjections, bijections
  | 
| 
 | 
     9  | 
  -- Lemmas for the Schroeder-Bernstein Theorem
  | 
| 
 | 
    10  | 
*)
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
Perm = ZF +
  | 
| 
 | 
    13  | 
consts
  | 
| 
 | 
    14  | 
    O    	::      "[i,i]=>i"      (infixr 60)
  | 
| 
 | 
    15  | 
    id  	::      "i=>i"
  | 
| 
 | 
    16  | 
    inj,surj,bij::      "[i,i]=>i"
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
rules
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
    (*composition of relations and functions; NOT Suppes's relative product*)
  | 
| 
 | 
    21  | 
    comp_def	"r O s == {xz : domain(s)*range(r) . \
 | 
| 
 | 
    22  | 
\                  		EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r}"
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
    (*the identity function for A*)
  | 
| 
 | 
    25  | 
    id_def	"id(A) == (lam x:A. x)"
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
    (*one-to-one functions from A to B*)
  | 
| 
 | 
    28  | 
    inj_def      "inj(A,B) == { f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x}"
 | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
    (*onto functions from A to B*)
  | 
| 
 | 
    31  | 
    surj_def	"surj(A,B) == { f: A->B . ALL y:B. EX x:A. f`x=y}"
 | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
    (*one-to-one and onto functions*)
  | 
| 
 | 
    34  | 
    bij_def	"bij(A,B) == inj(A,B) Int surj(A,B)"
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
end
  |