8745
|
1 |
(*<*)
|
|
2 |
theory Tree = Main:
|
|
3 |
(*>*)
|
|
4 |
|
|
5 |
text{*\noindent
|
|
6 |
Define the datatype of binary trees
|
|
7 |
*}
|
|
8 |
|
|
9 |
datatype 'a tree = Tip | Node "'a tree" 'a "'a tree";(*<*)
|
|
10 |
|
|
11 |
consts mirror :: "'a tree \\<Rightarrow> 'a tree";
|
|
12 |
primrec
|
|
13 |
"mirror Tip = Tip"
|
|
14 |
"mirror (Node l x r) = Node (mirror l) x (mirror r)";(*>*)
|
|
15 |
|
|
16 |
text{*\noindent
|
|
17 |
and a function \isa{mirror} that mirrors a binary tree
|
|
18 |
by swapping subtrees (recursively). Prove
|
|
19 |
*}
|
|
20 |
|
|
21 |
lemma mirror_mirror: "mirror(mirror t) = t";
|
|
22 |
(*<*)
|
|
23 |
apply(induct_tac t);
|
|
24 |
apply(auto).;
|
|
25 |
|
|
26 |
end
|
|
27 |
(*>*)
|