| author | wenzelm | 
| Thu, 08 Aug 2019 12:11:40 +0200 | |
| changeset 70490 | c42a0a0a9a8d | 
| parent 69251 | d240598e8637 | 
| child 82388 | f1ff9123c62a | 
| permissions | -rw-r--r-- | 
| 69184 | 1 | (* Title: HOL/Library/Comparator.thy | 
| 2 | Author: Florian Haftmann, TU Muenchen | |
| 3 | *) | |
| 4 | ||
| 5 | theory Comparator | |
| 6 | imports Main | |
| 7 | begin | |
| 8 | ||
| 9 | section \<open>Comparators on linear quasi-orders\<close> | |
| 10 | ||
| 69251 | 11 | subsection \<open>Basic properties\<close> | 
| 12 | ||
| 69184 | 13 | datatype comp = Less | Equiv | Greater | 
| 14 | ||
| 15 | locale comparator = | |
| 16 | fixes cmp :: "'a \<Rightarrow> 'a \<Rightarrow> comp" | |
| 17 | assumes refl [simp]: "\<And>a. cmp a a = Equiv" | |
| 18 | and trans_equiv: "\<And>a b c. cmp a b = Equiv \<Longrightarrow> cmp b c = Equiv \<Longrightarrow> cmp a c = Equiv" | |
| 19 | assumes trans_less: "cmp a b = Less \<Longrightarrow> cmp b c = Less \<Longrightarrow> cmp a c = Less" | |
| 20 | and greater_iff_sym_less: "\<And>b a. cmp b a = Greater \<longleftrightarrow> cmp a b = Less" | |
| 21 | begin | |
| 22 | ||
| 23 | text \<open>Dual properties\<close> | |
| 24 | ||
| 25 | lemma trans_greater: | |
| 26 | "cmp a c = Greater" if "cmp a b = Greater" "cmp b c = Greater" | |
| 27 | using that greater_iff_sym_less trans_less by blast | |
| 28 | ||
| 29 | lemma less_iff_sym_greater: | |
| 30 | "cmp b a = Less \<longleftrightarrow> cmp a b = Greater" | |
| 31 | by (simp add: greater_iff_sym_less) | |
| 32 | ||
| 33 | text \<open>The equivalence part\<close> | |
| 34 | ||
| 35 | lemma sym: | |
| 36 | "cmp b a = Equiv \<longleftrightarrow> cmp a b = Equiv" | |
| 37 | by (metis (full_types) comp.exhaust greater_iff_sym_less) | |
| 38 | ||
| 39 | lemma reflp: | |
| 40 | "reflp (\<lambda>a b. cmp a b = Equiv)" | |
| 41 | by (rule reflpI) simp | |
| 42 | ||
| 43 | lemma symp: | |
| 44 | "symp (\<lambda>a b. cmp a b = Equiv)" | |
| 45 | by (rule sympI) (simp add: sym) | |
| 46 | ||
| 47 | lemma transp: | |
| 48 | "transp (\<lambda>a b. cmp a b = Equiv)" | |
| 49 | by (rule transpI) (fact trans_equiv) | |
| 50 | ||
| 51 | lemma equivp: | |
| 52 | "equivp (\<lambda>a b. cmp a b = Equiv)" | |
| 53 | using reflp symp transp by (rule equivpI) | |
| 54 | ||
| 55 | text \<open>The strict part\<close> | |
| 56 | ||
| 57 | lemma irreflp_less: | |
| 58 | "irreflp (\<lambda>a b. cmp a b = Less)" | |
| 59 | by (rule irreflpI) simp | |
| 60 | ||
| 61 | lemma irreflp_greater: | |
| 62 | "irreflp (\<lambda>a b. cmp a b = Greater)" | |
| 63 | by (rule irreflpI) simp | |
| 64 | ||
| 65 | lemma asym_less: | |
| 66 | "cmp b a \<noteq> Less" if "cmp a b = Less" | |
| 67 | using that greater_iff_sym_less by force | |
| 68 | ||
| 69 | lemma asym_greater: | |
| 70 | "cmp b a \<noteq> Greater" if "cmp a b = Greater" | |
| 71 | using that greater_iff_sym_less by force | |
| 72 | ||
| 73 | lemma asymp_less: | |
| 74 | "asymp (\<lambda>a b. cmp a b = Less)" | |
| 75 | using irreflp_less by (auto intro: asympI dest: asym_less) | |
| 76 | ||
| 77 | lemma asymp_greater: | |
| 78 | "asymp (\<lambda>a b. cmp a b = Greater)" | |
| 79 | using irreflp_greater by (auto intro!: asympI dest: asym_greater) | |
| 80 | ||
| 69246 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 81 | lemma trans_equiv_less: | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 82 | "cmp a c = Less" if "cmp a b = Equiv" and "cmp b c = Less" | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 83 | using that | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 84 | by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less) | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 85 | |
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 86 | lemma trans_less_equiv: | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 87 | "cmp a c = Less" if "cmp a b = Less" and "cmp b c = Equiv" | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 88 | using that | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 89 | by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less) | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 90 | |
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 91 | lemma trans_equiv_greater: | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 92 | "cmp a c = Greater" if "cmp a b = Equiv" and "cmp b c = Greater" | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 93 | using that by (simp add: sym [of a b] greater_iff_sym_less trans_less_equiv) | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 94 | |
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 95 | lemma trans_greater_equiv: | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 96 | "cmp a c = Greater" if "cmp a b = Greater" and "cmp b c = Equiv" | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 97 | using that by (simp add: sym [of b c] greater_iff_sym_less trans_equiv_less) | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 98 | |
| 69184 | 99 | lemma transp_less: | 
| 100 | "transp (\<lambda>a b. cmp a b = Less)" | |
| 101 | by (rule transpI) (fact trans_less) | |
| 102 | ||
| 103 | lemma transp_greater: | |
| 104 | "transp (\<lambda>a b. cmp a b = Greater)" | |
| 105 | by (rule transpI) (fact trans_greater) | |
| 106 | ||
| 107 | text \<open>The reflexive part\<close> | |
| 108 | ||
| 109 | lemma reflp_not_less: | |
| 110 | "reflp (\<lambda>a b. cmp a b \<noteq> Less)" | |
| 111 | by (rule reflpI) simp | |
| 112 | ||
| 113 | lemma reflp_not_greater: | |
| 114 | "reflp (\<lambda>a b. cmp a b \<noteq> Greater)" | |
| 115 | by (rule reflpI) simp | |
| 116 | ||
| 117 | lemma quasisym_not_less: | |
| 118 | "cmp a b = Equiv" if "cmp a b \<noteq> Less" and "cmp b a \<noteq> Less" | |
| 119 | using that comp.exhaust greater_iff_sym_less by auto | |
| 120 | ||
| 121 | lemma quasisym_not_greater: | |
| 122 | "cmp a b = Equiv" if "cmp a b \<noteq> Greater" and "cmp b a \<noteq> Greater" | |
| 123 | using that comp.exhaust greater_iff_sym_less by auto | |
| 124 | ||
| 125 | lemma trans_not_less: | |
| 126 | "cmp a c \<noteq> Less" if "cmp a b \<noteq> Less" "cmp b c \<noteq> Less" | |
| 127 | using that by (metis comp.exhaust greater_iff_sym_less trans_equiv trans_less) | |
| 128 | ||
| 129 | lemma trans_not_greater: | |
| 130 | "cmp a c \<noteq> Greater" if "cmp a b \<noteq> Greater" "cmp b c \<noteq> Greater" | |
| 131 | using that greater_iff_sym_less trans_not_less by blast | |
| 132 | ||
| 133 | lemma transp_not_less: | |
| 134 | "transp (\<lambda>a b. cmp a b \<noteq> Less)" | |
| 135 | by (rule transpI) (fact trans_not_less) | |
| 136 | ||
| 137 | lemma transp_not_greater: | |
| 138 | "transp (\<lambda>a b. cmp a b \<noteq> Greater)" | |
| 139 | by (rule transpI) (fact trans_not_greater) | |
| 140 | ||
| 69246 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 141 | text \<open>Substitution under equivalences\<close> | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 142 | |
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 143 | lemma equiv_subst_left: | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 144 | "cmp z y = comp \<longleftrightarrow> cmp x y = comp" if "cmp z x = Equiv" for comp | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 145 | proof - | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 146 | from that have "cmp x z = Equiv" | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 147 | by (simp add: sym) | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 148 | with that show ?thesis | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 149 | by (cases comp) (auto intro: trans_equiv trans_equiv_less trans_equiv_greater) | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 150 | qed | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 151 | |
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 152 | lemma equiv_subst_right: | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 153 | "cmp x z = comp \<longleftrightarrow> cmp x y = comp" if "cmp z y = Equiv" for comp | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 154 | proof - | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 155 | from that have "cmp y z = Equiv" | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 156 | by (simp add: sym) | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 157 | with that show ?thesis | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 158 | by (cases comp) (auto intro: trans_equiv trans_less_equiv trans_greater_equiv) | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 159 | qed | 
| 
c1fe9dcc274a
concrecte sorting algorithms beyond insertion sort
 haftmann parents: 
69194diff
changeset | 160 | |
| 69184 | 161 | end | 
| 162 | ||
| 163 | typedef 'a comparator = "{cmp :: 'a \<Rightarrow> 'a \<Rightarrow> comp. comparator cmp}"
 | |
| 164 | morphisms compare Abs_comparator | |
| 165 | proof - | |
| 166 | have "comparator (\<lambda>_ _. Equiv)" | |
| 167 | by standard simp_all | |
| 168 | then show ?thesis | |
| 169 | by auto | |
| 170 | qed | |
| 171 | ||
| 172 | setup_lifting type_definition_comparator | |
| 173 | ||
| 174 | global_interpretation compare: comparator "compare cmp" | |
| 175 | using compare [of cmp] by simp | |
| 176 | ||
| 177 | lift_definition flat :: "'a comparator" | |
| 178 | is "\<lambda>_ _. Equiv" by standard simp_all | |
| 179 | ||
| 180 | instantiation comparator :: (linorder) default | |
| 181 | begin | |
| 182 | ||
| 183 | lift_definition default_comparator :: "'a comparator" | |
| 184 | is "\<lambda>x y. if x < y then Less else if x > y then Greater else Equiv" | |
| 185 | by standard (auto split: if_splits) | |
| 186 | ||
| 187 | instance .. | |
| 188 | ||
| 189 | end | |
| 190 | ||
| 191 | text \<open>A rudimentary quickcheck setup\<close> | |
| 192 | ||
| 193 | instantiation comparator :: (enum) equal | |
| 194 | begin | |
| 195 | ||
| 196 | lift_definition equal_comparator :: "'a comparator \<Rightarrow> 'a comparator \<Rightarrow> bool" | |
| 197 | is "\<lambda>f g. \<forall>x \<in> set Enum.enum. f x = g x" . | |
| 198 | ||
| 199 | instance | |
| 200 | by (standard; transfer) (auto simp add: enum_UNIV) | |
| 201 | ||
| 202 | end | |
| 203 | ||
| 204 | lemma [code]: | |
| 205 | "HOL.equal cmp1 cmp2 \<longleftrightarrow> Enum.enum_all (\<lambda>x. compare cmp1 x = compare cmp2 x)" | |
| 206 | by transfer (simp add: enum_UNIV) | |
| 207 | ||
| 208 | lemma [code nbe]: | |
| 209 | "HOL.equal (cmp :: 'a::enum comparator) cmp \<longleftrightarrow> True" | |
| 210 | by (fact equal_refl) | |
| 211 | ||
| 212 | instantiation comparator :: ("{linorder, typerep}") full_exhaustive
 | |
| 213 | begin | |
| 214 | ||
| 215 | definition full_exhaustive_comparator :: | |
| 216 |   "('a comparator \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option)
 | |
| 217 | \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option" | |
| 218 | where "full_exhaustive_comparator f s = | |
| 219 | Quickcheck_Exhaustive.orelse | |
| 220 |       (f (flat, (\<lambda>u. Code_Evaluation.Const (STR ''Comparator.flat'') TYPEREP('a comparator))))
 | |
| 221 |       (f (default, (\<lambda>u. Code_Evaluation.Const (STR ''HOL.default_class.default'') TYPEREP('a comparator))))"
 | |
| 222 | ||
| 223 | instance .. | |
| 224 | ||
| 225 | end | |
| 226 | ||
| 69251 | 227 | |
| 228 | subsection \<open>Fundamental comparator combinators\<close> | |
| 69194 | 229 | |
| 69184 | 230 | lift_definition reversed :: "'a comparator \<Rightarrow> 'a comparator" | 
| 231 | is "\<lambda>cmp a b. cmp b a" | |
| 232 | proof - | |
| 233 | fix cmp :: "'a \<Rightarrow> 'a \<Rightarrow> comp" | |
| 234 | assume "comparator cmp" | |
| 235 | then interpret comparator cmp . | |
| 236 | show "comparator (\<lambda>a b. cmp b a)" | |
| 237 | by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less) | |
| 238 | qed | |
| 239 | ||
| 240 | lift_definition key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a comparator \<Rightarrow> 'b comparator"
 | |
| 241 | is "\<lambda>f cmp a b. cmp (f a) (f b)" | |
| 242 | proof - | |
| 243 | fix cmp :: "'a \<Rightarrow> 'a \<Rightarrow> comp" and f :: "'b \<Rightarrow> 'a" | |
| 244 | assume "comparator cmp" | |
| 245 | then interpret comparator cmp . | |
| 246 | show "comparator (\<lambda>a b. cmp (f a) (f b))" | |
| 247 | by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less) | |
| 248 | qed | |
| 249 | ||
| 69251 | 250 | |
| 251 | subsection \<open>Direct implementations for linear orders on selected types\<close> | |
| 252 | ||
| 253 | definition comparator_bool :: "bool comparator" | |
| 254 | where [simp, code_abbrev]: "comparator_bool = default" | |
| 255 | ||
| 256 | lemma compare_comparator_bool [code abstract]: | |
| 257 | "compare comparator_bool = (\<lambda>p q. | |
| 258 | if p then if q then Equiv else Greater | |
| 259 | else if q then Less else Equiv)" | |
| 260 | by (auto simp add: fun_eq_iff) (transfer; simp)+ | |
| 261 | ||
| 262 | definition raw_comparator_nat :: "nat \<Rightarrow> nat \<Rightarrow> comp" | |
| 263 | where [simp]: "raw_comparator_nat = compare default" | |
| 264 | ||
| 265 | lemma default_comparator_nat [simp, code]: | |
| 266 | "raw_comparator_nat (0::nat) 0 = Equiv" | |
| 267 | "raw_comparator_nat (Suc m) 0 = Greater" | |
| 268 | "raw_comparator_nat 0 (Suc n) = Less" | |
| 269 | "raw_comparator_nat (Suc m) (Suc n) = raw_comparator_nat m n" | |
| 270 | by (transfer; simp)+ | |
| 271 | ||
| 272 | definition comparator_nat :: "nat comparator" | |
| 273 | where [simp, code_abbrev]: "comparator_nat = default" | |
| 274 | ||
| 275 | lemma compare_comparator_nat [code abstract]: | |
| 276 | "compare comparator_nat = raw_comparator_nat" | |
| 277 | by simp | |
| 278 | ||
| 279 | definition comparator_linordered_group :: "'a::linordered_ab_group_add comparator" | |
| 280 | where [simp, code_abbrev]: "comparator_linordered_group = default" | |
| 281 | ||
| 282 | lemma comparator_linordered_group [code abstract]: | |
| 283 | "compare comparator_linordered_group = (\<lambda>a b. | |
| 284 | let c = a - b in if c < 0 then Less | |
| 285 | else if c = 0 then Equiv else Greater)" | |
| 286 | proof (rule ext)+ | |
| 287 | fix a b :: 'a | |
| 288 | show "compare comparator_linordered_group a b = | |
| 289 | (let c = a - b in if c < 0 then Less | |
| 290 | else if c = 0 then Equiv else Greater)" | |
| 291 | by (simp add: Let_def not_less) (transfer; auto) | |
| 292 | qed | |
| 293 | ||
| 69184 | 294 | end |