| author | wenzelm | 
| Thu, 08 Aug 2019 12:11:40 +0200 | |
| changeset 70490 | c42a0a0a9a8d | 
| parent 67020 | c32254ab1901 | 
| child 74806 | ba59c691b3ee | 
| permissions | -rw-r--r-- | 
| 59813 | 1 | (* Title: HOL/Library/Multiset_Order.thy | 
| 2 | Author: Dmitriy Traytel, TU Muenchen | |
| 3 | Author: Jasmin Blanchette, Inria, LORIA, MPII | |
| 4 | *) | |
| 5 | ||
| 60500 | 6 | section \<open>More Theorems about the Multiset Order\<close> | 
| 59813 | 7 | |
| 8 | theory Multiset_Order | |
| 9 | imports Multiset | |
| 10 | begin | |
| 11 | ||
| 65546 | 12 | subsection \<open>Alternative Characterizations\<close> | 
| 59813 | 13 | |
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 14 | context preorder | 
| 59813 | 15 | begin | 
| 16 | ||
| 17 | lemma order_mult: "class.order | |
| 18 |   (\<lambda>M N. (M, N) \<in> mult {(x, y). x < y} \<or> M = N)
 | |
| 19 |   (\<lambda>M N. (M, N) \<in> mult {(x, y). x < y})"
 | |
| 20 | (is "class.order ?le ?less") | |
| 21 | proof - | |
| 22 | have irrefl: "\<And>M :: 'a multiset. \<not> ?less M M" | |
| 23 | proof | |
| 24 | fix M :: "'a multiset" | |
| 25 |     have "trans {(x'::'a, x). x' < x}"
 | |
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 26 | by (rule transI) (blast intro: less_trans) | 
| 59813 | 27 | moreover | 
| 28 |     assume "(M, M) \<in> mult {(x, y). x < y}"
 | |
| 29 | ultimately have "\<exists>I J K. M = I + J \<and> M = I + K | |
| 60495 | 30 |       \<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})"
 | 
| 59813 | 31 | by (rule mult_implies_one_step) | 
| 32 | then obtain I J K where "M = I + J" and "M = I + K" | |
| 60495 | 33 |       and "J \<noteq> {#}" and "(\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})" by blast
 | 
| 34 |     then have aux1: "K \<noteq> {#}" and aux2: "\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset K. k < j" by auto
 | |
| 35 | have "finite (set_mset K)" by simp | |
| 59813 | 36 | moreover note aux2 | 
| 60495 | 37 |     ultimately have "set_mset K = {}"
 | 
| 59813 | 38 | by (induct rule: finite_induct) | 
| 39 | (simp, metis (mono_tags) insert_absorb insert_iff insert_not_empty less_irrefl less_trans) | |
| 40 | with aux1 show False by simp | |
| 41 | qed | |
| 42 | have trans: "\<And>K M N :: 'a multiset. ?less K M \<Longrightarrow> ?less M N \<Longrightarrow> ?less K N" | |
| 43 | unfolding mult_def by (blast intro: trancl_trans) | |
| 44 | show "class.order ?le ?less" | |
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 45 | by standard (auto simp add: less_eq_multiset_def irrefl dest: trans) | 
| 59813 | 46 | qed | 
| 47 | ||
| 60500 | 48 | text \<open>The Dershowitz--Manna ordering:\<close> | 
| 59813 | 49 | |
| 50 | definition less_multiset\<^sub>D\<^sub>M where | |
| 51 | "less_multiset\<^sub>D\<^sub>M M N \<longleftrightarrow> | |
| 64587 | 52 |    (\<exists>X Y. X \<noteq> {#} \<and> X \<subseteq># N \<and> M = (N - X) + Y \<and> (\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)))"
 | 
| 59813 | 53 | |
| 54 | ||
| 60500 | 55 | text \<open>The Huet--Oppen ordering:\<close> | 
| 59813 | 56 | |
| 57 | definition less_multiset\<^sub>H\<^sub>O where | |
| 58 | "less_multiset\<^sub>H\<^sub>O M N \<longleftrightarrow> M \<noteq> N \<and> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))" | |
| 59 | ||
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 60 | lemma mult_imp_less_multiset\<^sub>H\<^sub>O: | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 61 |   "(M, N) \<in> mult {(x, y). x < y} \<Longrightarrow> less_multiset\<^sub>H\<^sub>O M N"
 | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 62 | proof (unfold mult_def, induct rule: trancl_induct) | 
| 59813 | 63 | case (base P) | 
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 64 | then show ?case | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 65 | by (auto elim!: mult1_lessE simp add: count_eq_zero_iff less_multiset\<^sub>H\<^sub>O_def split: if_splits dest!: Suc_lessD) | 
| 59813 | 66 | next | 
| 67 | case (step N P) | |
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 68 | from step(3) have "M \<noteq> N" and | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 69 | **: "\<And>y. count N y < count M y \<Longrightarrow> (\<exists>x>y. count M x < count N x)" | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 70 | by (simp_all add: less_multiset\<^sub>H\<^sub>O_def) | 
| 59813 | 71 | from step(2) obtain M0 a K where | 
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 72 | *: "P = add_mset a M0" "N = M0 + K" "a \<notin># K" "\<And>b. b \<in># K \<Longrightarrow> b < a" | 
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 73 | by (blast elim: mult1_lessE) | 
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 74 | from \<open>M \<noteq> N\<close> ** *(1,2,3) have "M \<noteq> P" by (force dest: *(4) elim!: less_asym split: if_splits ) | 
| 59813 | 75 | moreover | 
| 76 |   { assume "count P a \<le> count M a"
 | |
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 77 | with \<open>a \<notin># K\<close> have "count N a < count M a" unfolding *(1,2) | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 78 | by (auto simp add: not_in_iff) | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 79 | with ** obtain z where z: "z > a" "count M z < count N z" | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 80 | by blast | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 81 | with * have "count N z \<le> count P z" | 
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 82 | by (auto elim: less_asym intro: count_inI) | 
| 59813 | 83 | with z have "\<exists>z > a. count M z < count P z" by auto | 
| 84 | } note count_a = this | |
| 85 |   { fix y
 | |
| 86 | assume count_y: "count P y < count M y" | |
| 87 | have "\<exists>x>y. count M x < count P x" | |
| 88 | proof (cases "y = a") | |
| 89 | case True | |
| 90 | with count_y count_a show ?thesis by auto | |
| 91 | next | |
| 92 | case False | |
| 93 | show ?thesis | |
| 94 | proof (cases "y \<in># K") | |
| 95 | case True | |
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 96 | with *(4) have "y < a" by simp | 
| 59813 | 97 | then show ?thesis by (cases "count P a \<le> count M a") (auto dest: count_a intro: less_trans) | 
| 98 | next | |
| 99 | case False | |
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 100 | with \<open>y \<noteq> a\<close> have "count P y = count N y" unfolding *(1,2) | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 101 | by (simp add: not_in_iff) | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 102 | with count_y ** obtain z where z: "z > y" "count M z < count N z" by auto | 
| 59813 | 103 | show ?thesis | 
| 104 | proof (cases "z \<in># K") | |
| 105 | case True | |
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 106 | with *(4) have "z < a" by simp | 
| 59813 | 107 | with z(1) show ?thesis | 
| 108 | by (cases "count P a \<le> count M a") (auto dest!: count_a intro: less_trans) | |
| 109 | next | |
| 110 | case False | |
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 111 | with \<open>a \<notin># K\<close> have "count N z \<le> count P z" unfolding * | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 112 | by (auto simp add: not_in_iff) | 
| 59813 | 113 | with z show ?thesis by auto | 
| 114 | qed | |
| 115 | qed | |
| 116 | qed | |
| 117 | } | |
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 118 | ultimately show ?case unfolding less_multiset\<^sub>H\<^sub>O_def by blast | 
| 59813 | 119 | qed | 
| 120 | ||
| 121 | lemma less_multiset\<^sub>D\<^sub>M_imp_mult: | |
| 122 |   "less_multiset\<^sub>D\<^sub>M M N \<Longrightarrow> (M, N) \<in> mult {(x, y). x < y}"
 | |
| 123 | proof - | |
| 124 | assume "less_multiset\<^sub>D\<^sub>M M N" | |
| 125 | then obtain X Y where | |
| 64587 | 126 |     "X \<noteq> {#}" and "X \<subseteq># N" and "M = N - X + Y" and "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)"
 | 
| 59813 | 127 | unfolding less_multiset\<^sub>D\<^sub>M_def by blast | 
| 128 |   then have "(N - X + Y, N - X + X) \<in> mult {(x, y). x < y}"
 | |
| 129 | by (intro one_step_implies_mult) (auto simp: Bex_def trans_def) | |
| 64587 | 130 |   with \<open>M = N - X + Y\<close> \<open>X \<subseteq># N\<close> show "(M, N) \<in> mult {(x, y). x < y}"
 | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59958diff
changeset | 131 | by (metis subset_mset.diff_add) | 
| 59813 | 132 | qed | 
| 133 | ||
| 134 | lemma less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M: "less_multiset\<^sub>H\<^sub>O M N \<Longrightarrow> less_multiset\<^sub>D\<^sub>M M N" | |
| 135 | unfolding less_multiset\<^sub>D\<^sub>M_def | |
| 136 | proof (intro iffI exI conjI) | |
| 137 | assume "less_multiset\<^sub>H\<^sub>O M N" | |
| 138 | then obtain z where z: "count M z < count N z" | |
| 139 | unfolding less_multiset\<^sub>H\<^sub>O_def by (auto simp: multiset_eq_iff nat_neq_iff) | |
| 63040 | 140 | define X where "X = N - M" | 
| 141 | define Y where "Y = M - N" | |
| 59813 | 142 |   from z show "X \<noteq> {#}" unfolding X_def by (auto simp: multiset_eq_iff not_less_eq_eq Suc_le_eq)
 | 
| 64587 | 143 | from z show "X \<subseteq># N" unfolding X_def by auto | 
| 59813 | 144 | show "M = (N - X) + Y" unfolding X_def Y_def multiset_eq_iff count_union count_diff by force | 
| 145 | show "\<forall>k. k \<in># Y \<longrightarrow> (\<exists>a. a \<in># X \<and> k < a)" | |
| 146 | proof (intro allI impI) | |
| 147 | fix k | |
| 148 | assume "k \<in># Y" | |
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 149 | then have "count N k < count M k" unfolding Y_def | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 150 | by (auto simp add: in_diff_count) | 
| 60500 | 151 | with \<open>less_multiset\<^sub>H\<^sub>O M N\<close> obtain a where "k < a" and "count M a < count N a" | 
| 59813 | 152 | unfolding less_multiset\<^sub>H\<^sub>O_def by blast | 
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 153 | then show "\<exists>a. a \<in># X \<and> k < a" unfolding X_def | 
| 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 154 | by (auto simp add: in_diff_count) | 
| 59813 | 155 | qed | 
| 156 | qed | |
| 157 | ||
| 158 | lemma mult_less_multiset\<^sub>D\<^sub>M: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>D\<^sub>M M N"
 | |
| 159 | by (metis less_multiset\<^sub>D\<^sub>M_imp_mult less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M mult_imp_less_multiset\<^sub>H\<^sub>O) | |
| 160 | ||
| 161 | lemma mult_less_multiset\<^sub>H\<^sub>O: "(M, N) \<in> mult {(x, y). x < y} \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N"
 | |
| 162 | by (metis less_multiset\<^sub>D\<^sub>M_imp_mult less_multiset\<^sub>H\<^sub>O_imp_less_multiset\<^sub>D\<^sub>M mult_imp_less_multiset\<^sub>H\<^sub>O) | |
| 163 | ||
| 164 | lemmas mult\<^sub>D\<^sub>M = mult_less_multiset\<^sub>D\<^sub>M[unfolded less_multiset\<^sub>D\<^sub>M_def] | |
| 165 | lemmas mult\<^sub>H\<^sub>O = mult_less_multiset\<^sub>H\<^sub>O[unfolded less_multiset\<^sub>H\<^sub>O_def] | |
| 166 | ||
| 167 | end | |
| 168 | ||
| 67020 | 169 | lemma less_multiset_less_multiset\<^sub>H\<^sub>O: "M < N \<longleftrightarrow> less_multiset\<^sub>H\<^sub>O M N" | 
| 59813 | 170 | unfolding less_multiset_def mult\<^sub>H\<^sub>O less_multiset\<^sub>H\<^sub>O_def .. | 
| 171 | ||
| 172 | lemmas less_multiset\<^sub>D\<^sub>M = mult\<^sub>D\<^sub>M[folded less_multiset_def] | |
| 173 | lemmas less_multiset\<^sub>H\<^sub>O = mult\<^sub>H\<^sub>O[folded less_multiset_def] | |
| 174 | ||
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 175 | lemma subset_eq_imp_le_multiset: | 
| 64587 | 176 | shows "M \<subseteq># N \<Longrightarrow> M \<le> N" | 
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 177 | unfolding less_eq_multiset_def less_multiset\<^sub>H\<^sub>O | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59958diff
changeset | 178 | by (simp add: less_le_not_le subseteq_mset_def) | 
| 59813 | 179 | |
| 67020 | 180 | (* FIXME: "le" should be "less" in this and other names *) | 
| 181 | lemma le_multiset_right_total: "M < add_mset x M" | |
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 182 | unfolding less_eq_multiset_def less_multiset\<^sub>H\<^sub>O by simp | 
| 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 183 | |
| 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 184 | lemma less_eq_multiset_empty_left[simp]: | 
| 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 185 |   shows "{#} \<le> M"
 | 
| 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 186 | by (simp add: subset_eq_imp_le_multiset) | 
| 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 187 | |
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 188 | lemma ex_gt_imp_less_multiset: "(\<exists>y. y \<in># N \<and> (\<forall>x. x \<in># M \<longrightarrow> x < y)) \<Longrightarrow> M < N" | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 189 | unfolding less_multiset\<^sub>H\<^sub>O | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 190 | by (metis count_eq_zero_iff count_greater_zero_iff less_le_not_le) | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 191 | |
| 67020 | 192 | lemma less_eq_multiset_empty_right[simp]: "M \<noteq> {#} \<Longrightarrow> \<not> M \<le> {#}"
 | 
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 193 | by (metis less_eq_multiset_empty_left antisym) | 
| 59813 | 194 | |
| 67020 | 195 | (* FIXME: "le" should be "less" in this and other names *) | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 196 | lemma le_multiset_empty_left[simp]: "M \<noteq> {#} \<Longrightarrow> {#} < M"
 | 
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 197 | by (simp add: less_multiset\<^sub>H\<^sub>O) | 
| 59813 | 198 | |
| 67020 | 199 | (* FIXME: "le" should be "less" in this and other names *) | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 200 | lemma le_multiset_empty_right[simp]: "\<not> M < {#}"
 | 
| 64076 | 201 | using subset_mset.le_zero_eq less_multiset\<^sub>D\<^sub>M by blast | 
| 59813 | 202 | |
| 67020 | 203 | (* FIXME: "le" should be "less" in this and other names *) | 
| 64587 | 204 | lemma union_le_diff_plus: "P \<subseteq># M \<Longrightarrow> N < P \<Longrightarrow> M - P + N < M" | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 205 | by (drule subset_mset.diff_add[symmetric]) (metis union_le_mono2) | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 206 | |
| 63525 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 207 | instantiation multiset :: (preorder) ordered_ab_semigroup_monoid_add_imp_le | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 208 | begin | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 209 | |
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 210 | lemma less_eq_multiset\<^sub>H\<^sub>O: | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 211 | "M \<le> N \<longleftrightarrow> (\<forall>y. count N y < count M y \<longrightarrow> (\<exists>x. y < x \<and> count M x < count N x))" | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 212 | by (auto simp: less_eq_multiset_def less_multiset\<^sub>H\<^sub>O) | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 213 | |
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 214 | instance by standard (auto simp: less_eq_multiset\<^sub>H\<^sub>O) | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 215 | |
| 59813 | 216 | lemma | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 217 | fixes M N :: "'a multiset" | 
| 59813 | 218 | shows | 
| 63525 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 219 | less_eq_multiset_plus_left: "N \<le> (M + N)" and | 
| 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 220 | less_eq_multiset_plus_right: "M \<le> (M + N)" | 
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 221 | by simp_all | 
| 59813 | 222 | |
| 223 | lemma | |
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 224 | fixes M N :: "'a multiset" | 
| 59813 | 225 | shows | 
| 63525 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 226 |     le_multiset_plus_left_nonempty: "M \<noteq> {#} \<Longrightarrow> N < M + N" and
 | 
| 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 227 |     le_multiset_plus_right_nonempty: "N \<noteq> {#} \<Longrightarrow> M < M + N"
 | 
| 
f01d1e393f3f
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63410diff
changeset | 228 | by simp_all | 
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 229 | |
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 230 | end | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 231 | |
| 65546 | 232 | lemma all_lt_Max_imp_lt_mset: "N \<noteq> {#} \<Longrightarrow> (\<forall>a \<in># M. a < Max (set_mset N)) \<Longrightarrow> M < N"
 | 
| 233 | by (meson Max_in[OF finite_set_mset] ex_gt_imp_less_multiset set_mset_eq_empty_iff) | |
| 234 | ||
| 235 | lemma lt_imp_ex_count_lt: "M < N \<Longrightarrow> \<exists>y. count M y < count N y" | |
| 236 | by (meson less_eq_multiset\<^sub>H\<^sub>O less_le_not_le) | |
| 237 | ||
| 238 | lemma subset_imp_less_mset: "A \<subset># B \<Longrightarrow> A < B" | |
| 239 | by (simp add: order.not_eq_order_implies_strict subset_eq_imp_le_multiset) | |
| 240 | ||
| 241 | lemma image_mset_strict_mono: | |
| 242 | assumes | |
| 243 | mono_f: "\<forall>x \<in> set_mset M. \<forall>y \<in> set_mset N. x < y \<longrightarrow> f x < f y" and | |
| 244 | less: "M < N" | |
| 245 | shows "image_mset f M < image_mset f N" | |
| 246 | proof - | |
| 247 | obtain Y X where | |
| 248 |     y_nemp: "Y \<noteq> {#}" and y_sub_N: "Y \<subseteq># N" and M_eq: "M = N - Y + X" and
 | |
| 249 | ex_y: "\<forall>x. x \<in># X \<longrightarrow> (\<exists>y. y \<in># Y \<and> x < y)" | |
| 250 | using less[unfolded less_multiset\<^sub>D\<^sub>M] by blast | |
| 251 | ||
| 252 | have x_sub_M: "X \<subseteq># M" | |
| 253 | using M_eq by simp | |
| 254 | ||
| 255 | let ?fY = "image_mset f Y" | |
| 256 | let ?fX = "image_mset f X" | |
| 257 | ||
| 258 | show ?thesis | |
| 259 | unfolding less_multiset\<^sub>D\<^sub>M | |
| 260 | proof (intro exI conjI) | |
| 261 | show "image_mset f M = image_mset f N - ?fY + ?fX" | |
| 262 | using M_eq[THEN arg_cong, of "image_mset f"] y_sub_N | |
| 263 | by (metis image_mset_Diff image_mset_union) | |
| 264 | next | |
| 265 | obtain y where y: "\<forall>x. x \<in># X \<longrightarrow> y x \<in># Y \<and> x < y x" | |
| 266 | using ex_y by moura | |
| 267 | ||
| 268 | show "\<forall>fx. fx \<in># ?fX \<longrightarrow> (\<exists>fy. fy \<in># ?fY \<and> fx < fy)" | |
| 269 | proof (intro allI impI) | |
| 270 | fix fx | |
| 271 | assume "fx \<in># ?fX" | |
| 272 | then obtain x where fx: "fx = f x" and x_in: "x \<in># X" | |
| 273 | by auto | |
| 274 | hence y_in: "y x \<in># Y" and y_gt: "x < y x" | |
| 275 | using y[rule_format, OF x_in] by blast+ | |
| 276 | hence "f (y x) \<in># ?fY \<and> f x < f (y x)" | |
| 277 | using mono_f y_sub_N x_sub_M x_in | |
| 278 | by (metis image_eqI in_image_mset mset_subset_eqD) | |
| 279 | thus "\<exists>fy. fy \<in># ?fY \<and> fx < fy" | |
| 280 | unfolding fx by auto | |
| 281 | qed | |
| 282 | qed (auto simp: y_nemp y_sub_N image_mset_subseteq_mono) | |
| 283 | qed | |
| 284 | ||
| 285 | lemma image_mset_mono: | |
| 286 | assumes | |
| 287 | mono_f: "\<forall>x \<in> set_mset M. \<forall>y \<in> set_mset N. x < y \<longrightarrow> f x < f y" and | |
| 288 | less: "M \<le> N" | |
| 289 | shows "image_mset f M \<le> image_mset f N" | |
| 290 | by (metis eq_iff image_mset_strict_mono less less_imp_le mono_f order.not_eq_order_implies_strict) | |
| 291 | ||
| 292 | lemma mset_lt_single_right_iff[simp]: "M < {#y#} \<longleftrightarrow> (\<forall>x \<in># M. x < y)" for y :: "'a::linorder"
 | |
| 293 | proof (rule iffI) | |
| 294 |   assume M_lt_y: "M < {#y#}"
 | |
| 295 | show "\<forall>x \<in># M. x < y" | |
| 296 | proof | |
| 297 | fix x | |
| 298 | assume x_in: "x \<in># M" | |
| 299 |     hence M: "M - {#x#} + {#x#} = M"
 | |
| 300 | by (meson insert_DiffM2) | |
| 301 |     hence "\<not> {#x#} < {#y#} \<Longrightarrow> x < y"
 | |
| 302 | using x_in M_lt_y | |
| 303 | by (metis diff_single_eq_union le_multiset_empty_left less_add_same_cancel2 mset_le_trans) | |
| 304 |     also have "\<not> {#y#} < M"
 | |
| 305 | using M_lt_y mset_le_not_sym by blast | |
| 306 | ultimately show "x < y" | |
| 307 | by (metis (no_types) Max_ge all_lt_Max_imp_lt_mset empty_iff finite_set_mset insertE | |
| 308 | less_le_trans linorder_less_linear mset_le_not_sym set_mset_add_mset_insert | |
| 309 | set_mset_eq_empty_iff x_in) | |
| 310 | qed | |
| 311 | next | |
| 312 | assume y_max: "\<forall>x \<in># M. x < y" | |
| 313 |   show "M < {#y#}"
 | |
| 314 | by (rule all_lt_Max_imp_lt_mset) (auto intro!: y_max) | |
| 315 | qed | |
| 316 | ||
| 317 | lemma mset_le_single_right_iff[simp]: | |
| 318 |   "M \<le> {#y#} \<longleftrightarrow> M = {#y#} \<or> (\<forall>x \<in># M. x < y)" for y :: "'a::linorder"
 | |
| 319 | by (meson less_eq_multiset_def mset_lt_single_right_iff) | |
| 320 | ||
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 321 | |
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 322 | subsection \<open>Simprocs\<close> | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 323 | |
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 324 | lemma mset_le_add_iff1: | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 325 | "j \<le> (i::nat) \<Longrightarrow> (repeat_mset i u + m \<le> repeat_mset j u + n) = (repeat_mset (i-j) u + m \<le> n)" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 326 | proof - | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 327 | assume "j \<le> i" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 328 | then have "j + (i - j) = i" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 329 | using le_add_diff_inverse by blast | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 330 | then show ?thesis | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 331 | by (metis (no_types) add_le_cancel_left left_add_mult_distrib_mset) | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 332 | qed | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 333 | |
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 334 | lemma mset_le_add_iff2: | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 335 | "i \<le> (j::nat) \<Longrightarrow> (repeat_mset i u + m \<le> repeat_mset j u + n) = (m \<le> repeat_mset (j-i) u + n)" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 336 | proof - | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 337 | assume "i \<le> j" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 338 | then have "i + (j - i) = j" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 339 | using le_add_diff_inverse by blast | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 340 | then show ?thesis | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 341 | by (metis (no_types) add_le_cancel_left left_add_mult_distrib_mset) | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 342 | qed | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 343 | |
| 65027 
2b8583507891
renaming multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
64978diff
changeset | 344 | simproc_setup msetless_cancel | 
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 345 |   ("(l::'a::preorder multiset) + m < n" | "(l::'a multiset) < m + n" |
 | 
| 65028 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 346 | "add_mset a m < n" | "m < add_mset a n" | | 
| 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 347 | "replicate_mset p a < n" | "m < replicate_mset p a" | | 
| 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 348 | "repeat_mset p m < n" | "m < repeat_mset p n") = | 
| 65031 
52e2c99f3711
use the cancellation simprocs directly
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65028diff
changeset | 349 | \<open>fn phi => Cancel_Simprocs.less_cancel\<close> | 
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 350 | |
| 65027 
2b8583507891
renaming multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
64978diff
changeset | 351 | simproc_setup msetle_cancel | 
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 352 |   ("(l::'a::preorder multiset) + m \<le> n" | "(l::'a multiset) \<le> m + n" |
 | 
| 65028 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 353 | "add_mset a m \<le> n" | "m \<le> add_mset a n" | | 
| 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 354 | "replicate_mset p a \<le> n" | "m \<le> replicate_mset p a" | | 
| 
87e003397834
adding simplification patterns to multiset simprocs
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65027diff
changeset | 355 | "repeat_mset p m \<le> n" | "m \<le> repeat_mset p n") = | 
| 65031 
52e2c99f3711
use the cancellation simprocs directly
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
65028diff
changeset | 356 | \<open>fn phi => Cancel_Simprocs.less_eq_cancel\<close> | 
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 357 | |
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 358 | |
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 359 | subsection \<open>Additional facts and instantiations\<close> | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63525diff
changeset | 360 | |
| 63388 
a095acd4cfbf
instantiate multiset with multiset ordering
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 361 | lemma ex_gt_count_imp_le_multiset: | 
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 362 | "(\<forall>y :: 'a :: order. y \<in># M + N \<longrightarrow> y \<le> x) \<Longrightarrow> count M x < count N x \<Longrightarrow> M < N" | 
| 62430 
9527ff088c15
more succint formulation of membership for multisets, similar to lists;
 haftmann parents: 
61424diff
changeset | 363 | unfolding less_multiset\<^sub>H\<^sub>O | 
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 364 | by (metis count_greater_zero_iff le_imp_less_or_eq less_imp_not_less not_gr_zero union_iff) | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 365 | |
| 64418 | 366 | lemma mset_lt_single_iff[iff]: "{#x#} < {#y#} \<longleftrightarrow> x < y"
 | 
| 367 | unfolding less_multiset\<^sub>H\<^sub>O by simp | |
| 368 | ||
| 369 | lemma mset_le_single_iff[iff]: "{#x#} \<le> {#y#} \<longleftrightarrow> x \<le> y" for x y :: "'a::order"
 | |
| 370 | unfolding less_eq_multiset\<^sub>H\<^sub>O by force | |
| 371 | ||
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 372 | instance multiset :: (linorder) linordered_cancel_ab_semigroup_add | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 373 | by standard (metis less_eq_multiset\<^sub>H\<^sub>O not_less_iff_gr_or_eq) | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 374 | |
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 375 | lemma less_eq_multiset_total: | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 376 | fixes M N :: "'a :: linorder multiset" | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 377 | shows "\<not> M \<le> N \<Longrightarrow> N \<le> M" | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 378 | by simp | 
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 379 | |
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 380 | instantiation multiset :: (wellorder) wellorder | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 381 | begin | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 382 | |
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 383 | lemma wf_less_multiset: "wf {(M :: 'a multiset, N). M < N}"
 | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 384 | unfolding less_multiset_def by (auto intro: wf_mult wf) | 
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 385 | |
| 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 386 | instance by standard (metis less_multiset_def wf wf_def wf_mult) | 
| 59813 | 387 | |
| 388 | end | |
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 389 | |
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 390 | instantiation multiset :: (preorder) order_bot | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 391 | begin | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 392 | |
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 393 | definition bot_multiset :: "'a multiset" where "bot_multiset = {#}"
 | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 394 | |
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 395 | instance by standard (simp add: bot_multiset_def) | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 396 | |
| 63409 
3f3223b90239
moved lemmas and locales around (with minor incompatibilities)
 blanchet parents: 
63407diff
changeset | 397 | end | 
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 398 | |
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 399 | instance multiset :: (preorder) no_top | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 400 | proof standard | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 401 | fix x :: "'a multiset" | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 402 | obtain a :: 'a where True by simp | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 403 |   have "x < x + (x + {#a#})"
 | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 404 | by simp | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 405 | then show "\<exists>y. x < y" | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 406 | by blast | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 407 | qed | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 408 | |
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 409 | instance multiset :: (preorder) ordered_cancel_comm_monoid_add | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 410 | by standard | 
| 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 411 | |
| 65546 | 412 | instantiation multiset :: (linorder) distrib_lattice | 
| 413 | begin | |
| 414 | ||
| 415 | definition inf_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" where | |
| 416 | "inf_multiset A B = (if A < B then A else B)" | |
| 417 | ||
| 418 | definition sup_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" where | |
| 419 | "sup_multiset A B = (if B > A then B else A)" | |
| 420 | ||
| 421 | instance | |
| 422 | by intro_classes (auto simp: inf_multiset_def sup_multiset_def) | |
| 423 | ||
| 63410 
9789ccc2a477
more instantiations for multiset
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63409diff
changeset | 424 | end | 
| 65546 | 425 | |
| 426 | end |