author | haftmann |
Mon, 14 Apr 2025 20:19:05 +0200 | |
changeset 82509 | c476149a3790 |
parent 82252 | 8a7620fe0e83 |
permissions | -rw-r--r-- |
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
1 |
(* Title: HOL/Order_Relation.thy |
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
2 |
Author: Tobias Nipkow |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
3 |
Author: Andrei Popescu, TU Muenchen |
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
4 |
*) |
26273 | 5 |
|
60758 | 6 |
section \<open>Orders as Relations\<close> |
26273 | 7 |
|
8 |
theory Order_Relation |
|
55027 | 9 |
imports Wfrec |
26273 | 10 |
begin |
11 |
||
63572 | 12 |
subsection \<open>Orders on a set\<close> |
26295 | 13 |
|
82248 | 14 |
definition "preorder_on A r \<equiv> r \<subseteq> A \<times> A \<and> refl_on A r \<and> trans r" |
26295 | 15 |
|
16 |
definition "partial_order_on A r \<equiv> preorder_on A r \<and> antisym r" |
|
26273 | 17 |
|
26295 | 18 |
definition "linear_order_on A r \<equiv> partial_order_on A r \<and> total_on A r" |
19 |
||
20 |
definition "strict_linear_order_on A r \<equiv> trans r \<and> irrefl r \<and> total_on A r" |
|
21 |
||
22 |
definition "well_order_on A r \<equiv> linear_order_on A r \<and> wf(r - Id)" |
|
26273 | 23 |
|
26295 | 24 |
lemmas order_on_defs = |
25 |
preorder_on_def partial_order_on_def linear_order_on_def |
|
26 |
strict_linear_order_on_def well_order_on_def |
|
27 |
||
68745
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
28 |
lemma partial_order_onD: |
82248 | 29 |
assumes "partial_order_on A r" shows "refl_on A r" and "trans r" and "antisym r" and "r \<subseteq> A \<times> A" |
68745
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
30 |
using assms unfolding partial_order_on_def preorder_on_def by auto |
26273 | 31 |
|
26295 | 32 |
lemma preorder_on_empty[simp]: "preorder_on {} {}" |
63572 | 33 |
by (simp add: preorder_on_def trans_def) |
26295 | 34 |
|
35 |
lemma partial_order_on_empty[simp]: "partial_order_on {} {}" |
|
63572 | 36 |
by (simp add: partial_order_on_def) |
26273 | 37 |
|
26295 | 38 |
lemma lnear_order_on_empty[simp]: "linear_order_on {} {}" |
63572 | 39 |
by (simp add: linear_order_on_def) |
26295 | 40 |
|
41 |
lemma well_order_on_empty[simp]: "well_order_on {} {}" |
|
63572 | 42 |
by (simp add: well_order_on_def) |
26295 | 43 |
|
26273 | 44 |
|
63572 | 45 |
lemma preorder_on_converse[simp]: "preorder_on A (r\<inverse>) = preorder_on A r" |
82248 | 46 |
by (auto simp add: preorder_on_def) |
26295 | 47 |
|
63572 | 48 |
lemma partial_order_on_converse[simp]: "partial_order_on A (r\<inverse>) = partial_order_on A r" |
49 |
by (simp add: partial_order_on_def) |
|
26273 | 50 |
|
63572 | 51 |
lemma linear_order_on_converse[simp]: "linear_order_on A (r\<inverse>) = linear_order_on A r" |
52 |
by (simp add: linear_order_on_def) |
|
26295 | 53 |
|
26273 | 54 |
|
70180 | 55 |
lemma partial_order_on_acyclic: |
56 |
"partial_order_on A r \<Longrightarrow> acyclic (r - Id)" |
|
57 |
by (simp add: acyclic_irrefl partial_order_on_def preorder_on_def trans_diff_Id) |
|
58 |
||
59 |
lemma partial_order_on_well_order_on: |
|
60 |
"finite r \<Longrightarrow> partial_order_on A r \<Longrightarrow> wf (r - Id)" |
|
61 |
by (simp add: finite_acyclic_wf partial_order_on_acyclic) |
|
62 |
||
63572 | 63 |
lemma strict_linear_order_on_diff_Id: "linear_order_on A r \<Longrightarrow> strict_linear_order_on A (r - Id)" |
64 |
by (simp add: order_on_defs trans_diff_Id) |
|
26295 | 65 |
|
63563
0bcd79da075b
prefer [simp] over [iff] as [iff] break HOL-UNITY
Andreas Lochbihler
parents:
63561
diff
changeset
|
66 |
lemma linear_order_on_singleton [simp]: "linear_order_on {x} {(x, x)}" |
63572 | 67 |
by (simp add: order_on_defs) |
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
68 |
|
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
69 |
lemma linear_order_on_acyclic: |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
70 |
assumes "linear_order_on A r" |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
71 |
shows "acyclic (r - Id)" |
63572 | 72 |
using strict_linear_order_on_diff_Id[OF assms] |
73 |
by (auto simp add: acyclic_irrefl strict_linear_order_on_def) |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
74 |
|
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
75 |
lemma linear_order_on_well_order_on: |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
76 |
assumes "finite r" |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
77 |
shows "linear_order_on A r \<longleftrightarrow> well_order_on A r" |
63572 | 78 |
unfolding well_order_on_def |
79 |
using assms finite_acyclic_wf[OF _ linear_order_on_acyclic, of r] by blast |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
80 |
|
26295 | 81 |
|
63572 | 82 |
subsection \<open>Orders on the field\<close> |
26273 | 83 |
|
30198 | 84 |
abbreviation "Refl r \<equiv> refl_on (Field r) r" |
26295 | 85 |
|
86 |
abbreviation "Preorder r \<equiv> preorder_on (Field r) r" |
|
87 |
||
88 |
abbreviation "Partial_order r \<equiv> partial_order_on (Field r) r" |
|
26273 | 89 |
|
26295 | 90 |
abbreviation "Total r \<equiv> total_on (Field r) r" |
91 |
||
92 |
abbreviation "Linear_order r \<equiv> linear_order_on (Field r) r" |
|
93 |
||
94 |
abbreviation "Well_order r \<equiv> well_order_on (Field r) r" |
|
95 |
||
26273 | 96 |
|
97 |
lemma subset_Image_Image_iff: |
|
63572 | 98 |
"Preorder r \<Longrightarrow> A \<subseteq> Field r \<Longrightarrow> B \<subseteq> Field r \<Longrightarrow> |
99 |
r `` A \<subseteq> r `` B \<longleftrightarrow> (\<forall>a\<in>A.\<exists>b\<in>B. (b, a) \<in> r)" |
|
100 |
apply (simp add: preorder_on_def refl_on_def Image_def subset_eq) |
|
101 |
apply (simp only: trans_def) |
|
102 |
apply fast |
|
103 |
done |
|
26273 | 104 |
|
105 |
lemma subset_Image1_Image1_iff: |
|
63572 | 106 |
"Preorder r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} \<subseteq> r `` {b} \<longleftrightarrow> (b, a) \<in> r" |
107 |
by (simp add: subset_Image_Image_iff) |
|
26273 | 108 |
|
109 |
lemma Refl_antisym_eq_Image1_Image1_iff: |
|
63572 | 110 |
assumes "Refl r" |
111 |
and as: "antisym r" |
|
112 |
and abf: "a \<in> Field r" "b \<in> Field r" |
|
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
113 |
shows "r `` {a} = r `` {b} \<longleftrightarrow> a = b" |
63572 | 114 |
(is "?lhs \<longleftrightarrow> ?rhs") |
54552
5d57cbec0f0f
moving 'Order_Relation' to 'HOL' (since it's a BNF dependency)
blanchet
parents:
54551
diff
changeset
|
115 |
proof |
63572 | 116 |
assume ?lhs |
117 |
then have *: "\<And>x. (a, x) \<in> r \<longleftrightarrow> (b, x) \<in> r" |
|
118 |
by (simp add: set_eq_iff) |
|
119 |
have "(a, a) \<in> r" "(b, b) \<in> r" using \<open>Refl r\<close> abf by (simp_all add: refl_on_def) |
|
120 |
then have "(a, b) \<in> r" "(b, a) \<in> r" using *[of a] *[of b] by simp_all |
|
121 |
then show ?rhs |
|
122 |
using \<open>antisym r\<close>[unfolded antisym_def] by blast |
|
123 |
next |
|
124 |
assume ?rhs |
|
125 |
then show ?lhs by fast |
|
126 |
qed |
|
26273 | 127 |
|
128 |
lemma Partial_order_eq_Image1_Image1_iff: |
|
63572 | 129 |
"Partial_order r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a = b" |
130 |
by (auto simp: order_on_defs Refl_antisym_eq_Image1_Image1_iff) |
|
26295 | 131 |
|
52182 | 132 |
lemma Total_Id_Field: |
63572 | 133 |
assumes "Total r" |
134 |
and not_Id: "\<not> r \<subseteq> Id" |
|
135 |
shows "Field r = Field (r - Id)" |
|
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
136 |
proof - |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
137 |
have "Field r \<subseteq> Field (r - Id)" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
138 |
proof (rule subsetI) |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
139 |
fix a assume *: "a \<in> Field r" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
140 |
from not_Id have "r \<noteq> {}" by fast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
141 |
with not_Id obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" by auto |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
142 |
then have "b \<noteq> c \<and> {b, c} \<subseteq> Field r" by (auto simp: Field_def) |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
143 |
with * obtain d where "d \<in> Field r" "d \<noteq> a" by auto |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
144 |
with * \<open>Total r\<close> have "(a, d) \<in> r \<or> (d, a) \<in> r" by (simp add: total_on_def) |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
145 |
with \<open>d \<noteq> a\<close> show "a \<in> Field (r - Id)" unfolding Field_def by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
146 |
qed |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
147 |
then show ?thesis |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
148 |
using mono_Field[of "r - Id" r] Diff_subset[of r Id] by auto |
52182 | 149 |
qed |
150 |
||
68745
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
151 |
subsection\<open>Relations given by a predicate and the field\<close> |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
152 |
|
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
153 |
definition relation_of :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
154 |
where "relation_of P A \<equiv> { (a, b) \<in> A \<times> A. P a b }" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
155 |
|
82252
8a7620fe0e83
added lemmas irrefl_relation_ofD, refl_relation_ofD, total_relation_ofD
desharna
parents:
82251
diff
changeset
|
156 |
lemma refl_relation_ofD: "refl (relation_of R S) \<Longrightarrow> reflp_on S R" |
8a7620fe0e83
added lemmas irrefl_relation_ofD, refl_relation_ofD, total_relation_ofD
desharna
parents:
82251
diff
changeset
|
157 |
by (auto simp: relation_of_def intro: reflp_onI dest: reflD) |
8a7620fe0e83
added lemmas irrefl_relation_ofD, refl_relation_ofD, total_relation_ofD
desharna
parents:
82251
diff
changeset
|
158 |
|
8a7620fe0e83
added lemmas irrefl_relation_ofD, refl_relation_ofD, total_relation_ofD
desharna
parents:
82251
diff
changeset
|
159 |
lemma irrefl_relation_ofD: "irrefl (relation_of R S) \<Longrightarrow> irreflp_on S R" |
8a7620fe0e83
added lemmas irrefl_relation_ofD, refl_relation_ofD, total_relation_ofD
desharna
parents:
82251
diff
changeset
|
160 |
by (auto simp: relation_of_def intro: irreflp_onI dest: irreflD) |
8a7620fe0e83
added lemmas irrefl_relation_ofD, refl_relation_ofD, total_relation_ofD
desharna
parents:
82251
diff
changeset
|
161 |
|
82251
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
162 |
lemma sym_relation_of[simp]: "sym (relation_of R S) \<longleftrightarrow> symp_on S R" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
163 |
proof (rule iffI) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
164 |
show "sym (relation_of R S) \<Longrightarrow> symp_on S R" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
165 |
by (auto simp: relation_of_def intro: symp_onI dest: symD) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
166 |
next |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
167 |
show "symp_on S R \<Longrightarrow> sym (relation_of R S)" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
168 |
by (auto simp: relation_of_def intro: symI dest: symp_onD) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
169 |
qed |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
170 |
|
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
171 |
lemma asym_relation_of[simp]: "asym (relation_of R S) \<longleftrightarrow> asymp_on S R" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
172 |
proof (rule iffI) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
173 |
show "asym (relation_of R S) \<Longrightarrow> asymp_on S R" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
174 |
by (auto simp: relation_of_def intro: asymp_onI dest: asymD) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
175 |
next |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
176 |
show "asymp_on S R \<Longrightarrow> asym (relation_of R S)" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
177 |
by (auto simp: relation_of_def intro: asymI dest: asymp_onD) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
178 |
qed |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
179 |
|
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
180 |
lemma antisym_relation_of[simp]: "antisym (relation_of R S) \<longleftrightarrow> antisymp_on S R" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
181 |
proof (rule iffI) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
182 |
show "antisym (relation_of R S) \<Longrightarrow> antisymp_on S R" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
183 |
by (simp add: antisym_on_def antisymp_on_def relation_of_def) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
184 |
next |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
185 |
show "antisymp_on S R \<Longrightarrow> antisym (relation_of R S)" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
186 |
by (simp add: antisym_on_def antisymp_on_def relation_of_def) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
187 |
qed |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
188 |
|
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
189 |
lemma trans_relation_of[simp]: "trans (relation_of R S) \<longleftrightarrow> transp_on S R" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
190 |
proof (rule iffI) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
191 |
show "trans (relation_of R S) \<Longrightarrow> transp_on S R" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
192 |
by (auto simp: relation_of_def intro: transp_onI dest: transD) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
193 |
next |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
194 |
show "transp_on S R \<Longrightarrow> trans (relation_of R S)" |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
195 |
by (auto simp: relation_of_def intro: transI dest: transp_onD) |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
196 |
qed |
8cf503824ccf
added lemmas antisym_relation_of[simp], asym_relation_of[simp], sym_relation_of[simp], trans_relation_of[simp]
desharna
parents:
82248
diff
changeset
|
197 |
|
82252
8a7620fe0e83
added lemmas irrefl_relation_ofD, refl_relation_ofD, total_relation_ofD
desharna
parents:
82251
diff
changeset
|
198 |
lemma total_relation_ofD: "total (relation_of R S) \<Longrightarrow> totalp_on S R" |
8a7620fe0e83
added lemmas irrefl_relation_ofD, refl_relation_ofD, total_relation_ofD
desharna
parents:
82251
diff
changeset
|
199 |
by (auto simp: relation_of_def total_on_def intro: totalp_onI) |
8a7620fe0e83
added lemmas irrefl_relation_ofD, refl_relation_ofD, total_relation_ofD
desharna
parents:
82251
diff
changeset
|
200 |
|
68745
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
201 |
lemma Field_relation_of: |
82248 | 202 |
assumes "relation_of P A \<subseteq> A \<times> A" and "refl_on A (relation_of P A)" |
203 |
shows "Field (relation_of P A) = A" |
|
68745
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
204 |
using assms unfolding refl_on_def Field_def by auto |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
205 |
|
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
206 |
lemma partial_order_on_relation_ofI: |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
207 |
assumes refl: "\<And>a. a \<in> A \<Longrightarrow> P a a" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
208 |
and trans: "\<And>a b c. \<lbrakk> a \<in> A; b \<in> A; c \<in> A \<rbrakk> \<Longrightarrow> P a b \<Longrightarrow> P b c \<Longrightarrow> P a c" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
209 |
and antisym: "\<And>a b. \<lbrakk> a \<in> A; b \<in> A \<rbrakk> \<Longrightarrow> P a b \<Longrightarrow> P b a \<Longrightarrow> a = b" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
210 |
shows "partial_order_on A (relation_of P A)" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
211 |
proof - |
82248 | 212 |
have "relation_of P A \<subseteq> A \<times> A" |
213 |
unfolding relation_of_def by auto |
|
214 |
moreover have "refl_on A (relation_of P A)" |
|
215 |
using refl unfolding refl_on_def relation_of_def by auto |
|
68745
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
216 |
moreover have "trans (relation_of P A)" and "antisym (relation_of P A)" |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
217 |
unfolding relation_of_def |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
218 |
by (auto intro: transI dest: trans, auto intro: antisymI dest: antisym) |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
219 |
ultimately show ?thesis |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
220 |
unfolding partial_order_on_def preorder_on_def by simp |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
221 |
qed |
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
222 |
|
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
223 |
lemma Partial_order_relation_ofI: |
82248 | 224 |
assumes "partial_order_on A (relation_of P A)" |
225 |
shows "Partial_order (relation_of P A)" |
|
226 |
proof - |
|
227 |
have *: "Field (relation_of P A) = A" |
|
228 |
using assms by (simp_all only: Field_relation_of partial_order_on_def preorder_on_def) |
|
229 |
show ?thesis |
|
230 |
unfolding * |
|
231 |
using assms . |
|
232 |
qed |
|
68745
345ce5f262ea
Zorn's lemma for relations defined by predicates
paulson <lp15@cam.ac.uk>
parents:
68484
diff
changeset
|
233 |
|
26295 | 234 |
|
63572 | 235 |
subsection \<open>Orders on a type\<close> |
26295 | 236 |
|
237 |
abbreviation "strict_linear_order \<equiv> strict_linear_order_on UNIV" |
|
238 |
||
239 |
abbreviation "linear_order \<equiv> linear_order_on UNIV" |
|
240 |
||
54551 | 241 |
abbreviation "well_order \<equiv> well_order_on UNIV" |
26273 | 242 |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
243 |
|
60758 | 244 |
subsection \<open>Order-like relations\<close> |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
245 |
|
63572 | 246 |
text \<open> |
247 |
In this subsection, we develop basic concepts and results pertaining |
|
248 |
to order-like relations, i.e., to reflexive and/or transitive and/or symmetric and/or |
|
249 |
total relations. We also further define upper and lower bounds operators. |
|
250 |
\<close> |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
251 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
252 |
|
60758 | 253 |
subsubsection \<open>Auxiliaries\<close> |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
254 |
|
63572 | 255 |
corollary well_order_on_domain: "well_order_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A" |
82248 | 256 |
by (auto simp add: order_on_defs) |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
257 |
|
63572 | 258 |
lemma well_order_on_Field: "well_order_on A r \<Longrightarrow> A = Field r" |
259 |
by (auto simp add: refl_on_def Field_def order_on_defs) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
260 |
|
63572 | 261 |
lemma well_order_on_Well_order: "well_order_on A r \<Longrightarrow> A = Field r \<and> Well_order r" |
262 |
using well_order_on_Field [of A] by auto |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
263 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
264 |
lemma Total_subset_Id: |
63572 | 265 |
assumes "Total r" |
266 |
and "r \<subseteq> Id" |
|
267 |
shows "r = {} \<or> (\<exists>a. r = {(a, a)})" |
|
268 |
proof - |
|
269 |
have "\<exists>a. r = {(a, a)}" if "r \<noteq> {}" |
|
270 |
proof - |
|
271 |
from that obtain a b where ab: "(a, b) \<in> r" by fast |
|
272 |
with \<open>r \<subseteq> Id\<close> have "a = b" by blast |
|
273 |
with ab have aa: "(a, a) \<in> r" by simp |
|
274 |
have "a = c \<and> a = d" if "(c, d) \<in> r" for c d |
|
275 |
proof - |
|
276 |
from that have "{a, c, d} \<subseteq> Field r" |
|
277 |
using ab unfolding Field_def by blast |
|
278 |
then have "((a, c) \<in> r \<or> (c, a) \<in> r \<or> a = c) \<and> ((a, d) \<in> r \<or> (d, a) \<in> r \<or> a = d)" |
|
279 |
using \<open>Total r\<close> unfolding total_on_def by blast |
|
280 |
with \<open>r \<subseteq> Id\<close> show ?thesis by blast |
|
281 |
qed |
|
282 |
then have "r \<subseteq> {(a, a)}" by auto |
|
283 |
with aa show ?thesis by blast |
|
284 |
qed |
|
285 |
then show ?thesis by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
286 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
287 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
288 |
lemma Linear_order_in_diff_Id: |
63572 | 289 |
assumes "Linear_order r" |
290 |
and "a \<in> Field r" |
|
291 |
and "b \<in> Field r" |
|
292 |
shows "(a, b) \<in> r \<longleftrightarrow> (b, a) \<notin> r - Id" |
|
293 |
using assms unfolding order_on_defs total_on_def antisym_def Id_def refl_on_def by force |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
294 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
295 |
|
60758 | 296 |
subsubsection \<open>The upper and lower bounds operators\<close> |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
297 |
|
63572 | 298 |
text \<open> |
299 |
Here we define upper (``above") and lower (``below") bounds operators. We |
|
300 |
think of \<open>r\<close> as a \<^emph>\<open>non-strict\<close> relation. The suffix \<open>S\<close> at the names of |
|
301 |
some operators indicates that the bounds are strict -- e.g., \<open>underS a\<close> is |
|
302 |
the set of all strict lower bounds of \<open>a\<close> (w.r.t. \<open>r\<close>). Capitalization of |
|
303 |
the first letter in the name reminds that the operator acts on sets, rather |
|
304 |
than on individual elements. |
|
305 |
\<close> |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
306 |
|
63572 | 307 |
definition under :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
308 |
where "under r a \<equiv> {b. (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
309 |
|
63572 | 310 |
definition underS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
311 |
where "underS r a \<equiv> {b. b \<noteq> a \<and> (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
312 |
|
63572 | 313 |
definition Under :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
314 |
where "Under r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
315 |
|
63572 | 316 |
definition UnderS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
317 |
where "UnderS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (b, a) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
318 |
|
63572 | 319 |
definition above :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
320 |
where "above r a \<equiv> {b. (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
321 |
|
63572 | 322 |
definition aboveS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" |
323 |
where "aboveS r a \<equiv> {b. b \<noteq> a \<and> (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
324 |
|
63572 | 325 |
definition Above :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
326 |
where "Above r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
327 |
|
63572 | 328 |
definition AboveS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" |
329 |
where "AboveS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (a, b) \<in> r}" |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
330 |
|
55173 | 331 |
definition ofilter :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" |
63572 | 332 |
where "ofilter r A \<equiv> A \<subseteq> Field r \<and> (\<forall>a \<in> A. under r a \<subseteq> A)" |
55173 | 333 |
|
63572 | 334 |
text \<open> |
335 |
Note: In the definitions of \<open>Above[S]\<close> and \<open>Under[S]\<close>, we bounded |
|
336 |
comprehension by \<open>Field r\<close> in order to properly cover the case of \<open>A\<close> being |
|
337 |
empty. |
|
338 |
\<close> |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
339 |
|
63572 | 340 |
lemma underS_subset_under: "underS r a \<subseteq> under r a" |
341 |
by (auto simp add: underS_def under_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
342 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
343 |
lemma underS_notIn: "a \<notin> underS r a" |
63572 | 344 |
by (simp add: underS_def) |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
345 |
|
63572 | 346 |
lemma Refl_under_in: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> a \<in> under r a" |
347 |
by (simp add: refl_on_def under_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
348 |
|
63572 | 349 |
lemma AboveS_disjoint: "A \<inter> (AboveS r A) = {}" |
350 |
by (auto simp add: AboveS_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
351 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
352 |
lemma in_AboveS_underS: "a \<in> Field r \<Longrightarrow> a \<in> AboveS r (underS r a)" |
63572 | 353 |
by (auto simp add: AboveS_def underS_def) |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
354 |
|
63572 | 355 |
lemma Refl_under_underS: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> under r a = underS r a \<union> {a}" |
356 |
unfolding under_def underS_def |
|
357 |
using refl_on_def[of _ r] by fastforce |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
358 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
359 |
lemma underS_empty: "a \<notin> Field r \<Longrightarrow> underS r a = {}" |
63572 | 360 |
by (auto simp: Field_def underS_def) |
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
361 |
|
63572 | 362 |
lemma under_Field: "under r a \<subseteq> Field r" |
363 |
by (auto simp: under_def Field_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
364 |
|
63572 | 365 |
lemma underS_Field: "underS r a \<subseteq> Field r" |
366 |
by (auto simp: underS_def Field_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
367 |
|
63572 | 368 |
lemma underS_Field2: "a \<in> Field r \<Longrightarrow> underS r a \<subset> Field r" |
369 |
using underS_notIn underS_Field by fast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
370 |
|
63572 | 371 |
lemma underS_Field3: "Field r \<noteq> {} \<Longrightarrow> underS r a \<subset> Field r" |
372 |
by (cases "a \<in> Field r") (auto simp: underS_Field2 underS_empty) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
373 |
|
63572 | 374 |
lemma AboveS_Field: "AboveS r A \<subseteq> Field r" |
375 |
by (auto simp: AboveS_def Field_def) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
376 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
377 |
lemma under_incr: |
63572 | 378 |
assumes "trans r" |
379 |
and "(a, b) \<in> r" |
|
380 |
shows "under r a \<subseteq> under r b" |
|
381 |
unfolding under_def |
|
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
382 |
proof safe |
63572 | 383 |
fix x assume "(x, a) \<in> r" |
384 |
with assms trans_def[of r] show "(x, b) \<in> r" by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
385 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
386 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
387 |
lemma underS_incr: |
63572 | 388 |
assumes "trans r" |
389 |
and "antisym r" |
|
390 |
and ab: "(a, b) \<in> r" |
|
391 |
shows "underS r a \<subseteq> underS r b" |
|
392 |
unfolding underS_def |
|
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
393 |
proof safe |
63572 | 394 |
assume *: "b \<noteq> a" and **: "(b, a) \<in> r" |
395 |
with \<open>antisym r\<close> antisym_def[of r] ab show False |
|
396 |
by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
397 |
next |
63572 | 398 |
fix x assume "x \<noteq> a" "(x, a) \<in> r" |
399 |
with ab \<open>trans r\<close> trans_def[of r] show "(x, b) \<in> r" |
|
400 |
by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
401 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
402 |
|
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
403 |
lemma underS_incl_iff: |
63572 | 404 |
assumes LO: "Linear_order r" |
405 |
and INa: "a \<in> Field r" |
|
406 |
and INb: "b \<in> Field r" |
|
407 |
shows "underS r a \<subseteq> underS r b \<longleftrightarrow> (a, b) \<in> r" |
|
408 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
409 |
proof |
63572 | 410 |
assume ?rhs |
411 |
with \<open>Linear_order r\<close> show ?lhs |
|
412 |
by (simp add: order_on_defs underS_incr) |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
413 |
next |
63572 | 414 |
assume *: ?lhs |
415 |
have "(a, b) \<in> r" if "a = b" |
|
416 |
using assms that by (simp add: order_on_defs refl_on_def) |
|
417 |
moreover have False if "a \<noteq> b" "(b, a) \<in> r" |
|
418 |
proof - |
|
419 |
from that have "b \<in> underS r a" unfolding underS_def by blast |
|
420 |
with * have "b \<in> underS r b" by blast |
|
421 |
then show ?thesis by (simp add: underS_notIn) |
|
422 |
qed |
|
423 |
ultimately show "(a,b) \<in> r" |
|
424 |
using assms order_on_defs[of "Field r" r] total_on_def[of "Field r" r] by blast |
|
55026
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
425 |
qed |
258fa7b5a621
folded 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54552
diff
changeset
|
426 |
|
70180 | 427 |
lemma finite_Partial_order_induct[consumes 3, case_names step]: |
428 |
assumes "Partial_order r" |
|
429 |
and "x \<in> Field r" |
|
430 |
and "finite r" |
|
431 |
and step: "\<And>x. x \<in> Field r \<Longrightarrow> (\<And>y. y \<in> aboveS r x \<Longrightarrow> P y) \<Longrightarrow> P x" |
|
432 |
shows "P x" |
|
433 |
using assms(2) |
|
434 |
proof (induct rule: wf_induct[of "r\<inverse> - Id"]) |
|
435 |
case 1 |
|
436 |
from assms(1,3) show "wf (r\<inverse> - Id)" |
|
437 |
using partial_order_on_well_order_on partial_order_on_converse by blast |
|
438 |
next |
|
439 |
case prems: (2 x) |
|
440 |
show ?case |
|
441 |
by (rule step) (use prems in \<open>auto simp: aboveS_def intro: FieldI2\<close>) |
|
442 |
qed |
|
443 |
||
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
444 |
lemma finite_Linear_order_induct[consumes 3, case_names step]: |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
445 |
assumes "Linear_order r" |
63572 | 446 |
and "x \<in> Field r" |
447 |
and "finite r" |
|
448 |
and step: "\<And>x. x \<in> Field r \<Longrightarrow> (\<And>y. y \<in> aboveS r x \<Longrightarrow> P y) \<Longrightarrow> P x" |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
449 |
shows "P x" |
63572 | 450 |
using assms(2) |
451 |
proof (induct rule: wf_induct[of "r\<inverse> - Id"]) |
|
452 |
case 1 |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
453 |
from assms(1,3) show "wf (r\<inverse> - Id)" |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
454 |
using linear_order_on_well_order_on linear_order_on_converse |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
455 |
unfolding well_order_on_def by blast |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
456 |
next |
63572 | 457 |
case prems: (2 x) |
458 |
show ?case |
|
459 |
by (rule step) (use prems in \<open>auto simp: aboveS_def intro: FieldI2\<close>) |
|
63561
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
460 |
qed |
fba08009ff3e
add lemmas contributed by Peter Gammie
Andreas Lochbihler
parents:
61799
diff
changeset
|
461 |
|
55027 | 462 |
|
60758 | 463 |
subsection \<open>Variations on Well-Founded Relations\<close> |
55027 | 464 |
|
60758 | 465 |
text \<open> |
68484 | 466 |
This subsection contains some variations of the results from \<^theory>\<open>HOL.Wellfounded\<close>: |
63572 | 467 |
\<^item> means for slightly more direct definitions by well-founded recursion; |
468 |
\<^item> variations of well-founded induction; |
|
469 |
\<^item> means for proving a linear order to be a well-order. |
|
60758 | 470 |
\<close> |
55027 | 471 |
|
472 |
||
60758 | 473 |
subsubsection \<open>Characterizations of well-foundedness\<close> |
55027 | 474 |
|
63572 | 475 |
text \<open> |
476 |
A transitive relation is well-founded iff it is ``locally'' well-founded, |
|
477 |
i.e., iff its restriction to the lower bounds of of any element is |
|
478 |
well-founded. |
|
479 |
\<close> |
|
55027 | 480 |
|
481 |
lemma trans_wf_iff: |
|
63572 | 482 |
assumes "trans r" |
483 |
shows "wf r \<longleftrightarrow> (\<forall>a. wf (r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})))" |
|
484 |
proof - |
|
485 |
define R where "R a = r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})" for a |
|
486 |
have "wf (R a)" if "wf r" for a |
|
487 |
using that R_def wf_subset[of r "R a"] by auto |
|
55027 | 488 |
moreover |
63572 | 489 |
have "wf r" if *: "\<forall>a. wf(R a)" |
490 |
unfolding wf_def |
|
491 |
proof clarify |
|
492 |
fix phi a |
|
493 |
assume **: "\<forall>a. (\<forall>b. (b, a) \<in> r \<longrightarrow> phi b) \<longrightarrow> phi a" |
|
494 |
define chi where "chi b \<longleftrightarrow> (b, a) \<in> r \<longrightarrow> phi b" for b |
|
495 |
with * have "wf (R a)" by auto |
|
496 |
then have "(\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b) \<longrightarrow> (\<forall>b. chi b)" |
|
497 |
unfolding wf_def by blast |
|
498 |
also have "\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b" |
|
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
499 |
proof safe |
63572 | 500 |
fix b |
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
501 |
assume "\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
502 |
moreover have "(b, a) \<in> r \<Longrightarrow> \<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c \<Longrightarrow> phi b" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
503 |
proof - |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
504 |
assume "(b, a) \<in> r" and "\<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
505 |
then have "\<forall>c. (c, b) \<in> r \<longrightarrow> phi c" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
506 |
using assms trans_def[of r] by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
507 |
with ** show "phi b" by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
508 |
qed |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
509 |
ultimately show "chi b" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
510 |
by (auto simp add: chi_def R_def) |
63572 | 511 |
qed |
512 |
finally have "\<forall>b. chi b" . |
|
513 |
with ** chi_def show "phi a" by blast |
|
514 |
qed |
|
515 |
ultimately show ?thesis unfolding R_def by blast |
|
55027 | 516 |
qed |
517 |
||
63952
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
518 |
text\<open>A transitive relation is well-founded if all initial segments are finite.\<close> |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
519 |
corollary wf_finite_segments: |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
520 |
assumes "irrefl r" and "trans r" and "\<And>x. finite {y. (y, x) \<in> r}" |
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
521 |
shows "wf r" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
522 |
proof - |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
523 |
have "\<And>a. acyclic (r \<inter> {x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r})" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
524 |
proof - |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
525 |
fix a |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
526 |
have "trans (r \<inter> ({x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r}))" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
527 |
using assms unfolding trans_def Field_def by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
528 |
then show "acyclic (r \<inter> {x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r})" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
529 |
using assms acyclic_def assms irrefl_def by fastforce |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
530 |
qed |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
531 |
then show ?thesis |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
532 |
by (clarsimp simp: trans_wf_iff wf_iff_acyclic_if_finite converse_def assms) |
63952
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
533 |
qed |
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents:
63572
diff
changeset
|
534 |
|
61799 | 535 |
text \<open>The next lemma is a variation of \<open>wf_eq_minimal\<close> from Wellfounded, |
63572 | 536 |
allowing one to assume the set included in the field.\<close> |
55027 | 537 |
|
63572 | 538 |
lemma wf_eq_minimal2: "wf r \<longleftrightarrow> (\<forall>A. A \<subseteq> Field r \<and> A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r))" |
55027 | 539 |
proof- |
63572 | 540 |
let ?phi = "\<lambda>A. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r)" |
541 |
have "wf r \<longleftrightarrow> (\<forall>A. ?phi A)" |
|
75669
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
542 |
proof |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
543 |
assume "wf r" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
544 |
show "\<forall>A. ?phi A" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
545 |
proof clarify |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
546 |
fix A:: "'a set" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
547 |
assume "A \<noteq> {}" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
548 |
then obtain x where "x \<in> A" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
549 |
by auto |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
550 |
show "\<exists>a\<in>A. \<forall>a'\<in>A. (a', a) \<notin> r" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
551 |
apply (rule wfE_min[of r x A]) |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
552 |
apply fact+ |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
553 |
by blast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
554 |
qed |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
555 |
next |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
556 |
assume *: "\<forall>A. ?phi A" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
557 |
then show "wf r" |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
558 |
apply (clarsimp simp: ex_in_conv [THEN sym]) |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
559 |
apply (rule wfI_min) |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
560 |
by fast |
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents:
70180
diff
changeset
|
561 |
qed |
63572 | 562 |
also have "(\<forall>A. ?phi A) \<longleftrightarrow> (\<forall>B \<subseteq> Field r. ?phi B)" |
55027 | 563 |
proof |
564 |
assume "\<forall>A. ?phi A" |
|
63572 | 565 |
then show "\<forall>B \<subseteq> Field r. ?phi B" by simp |
55027 | 566 |
next |
63572 | 567 |
assume *: "\<forall>B \<subseteq> Field r. ?phi B" |
55027 | 568 |
show "\<forall>A. ?phi A" |
63572 | 569 |
proof clarify |
570 |
fix A :: "'a set" |
|
571 |
assume **: "A \<noteq> {}" |
|
572 |
define B where "B = A \<inter> Field r" |
|
573 |
show "\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r" |
|
574 |
proof (cases "B = {}") |
|
575 |
case True |
|
576 |
with ** obtain a where a: "a \<in> A" "a \<notin> Field r" |
|
577 |
unfolding B_def by blast |
|
578 |
with a have "\<forall>a' \<in> A. (a',a) \<notin> r" |
|
579 |
unfolding Field_def by blast |
|
580 |
with a show ?thesis by blast |
|
55027 | 581 |
next |
63572 | 582 |
case False |
583 |
have "B \<subseteq> Field r" unfolding B_def by blast |
|
584 |
with False * obtain a where a: "a \<in> B" "\<forall>a' \<in> B. (a', a) \<notin> r" |
|
585 |
by blast |
|
586 |
have "(a', a) \<notin> r" if "a' \<in> A" for a' |
|
587 |
proof |
|
588 |
assume a'a: "(a', a) \<in> r" |
|
589 |
with that have "a' \<in> B" unfolding B_def Field_def by blast |
|
590 |
with a a'a show False by blast |
|
55027 | 591 |
qed |
63572 | 592 |
with a show ?thesis unfolding B_def by blast |
55027 | 593 |
qed |
594 |
qed |
|
595 |
qed |
|
596 |
finally show ?thesis by blast |
|
597 |
qed |
|
598 |
||
599 |
||
60758 | 600 |
subsubsection \<open>Characterizations of well-foundedness\<close> |
55027 | 601 |
|
63572 | 602 |
text \<open> |
603 |
The next lemma and its corollary enable one to prove that a linear order is |
|
604 |
a well-order in a way which is more standard than via well-foundedness of |
|
605 |
the strict version of the relation. |
|
606 |
\<close> |
|
55027 | 607 |
|
608 |
lemma Linear_order_wf_diff_Id: |
|
63572 | 609 |
assumes "Linear_order r" |
610 |
shows "wf (r - Id) \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))" |
|
611 |
proof (cases "r \<subseteq> Id") |
|
612 |
case True |
|
613 |
then have *: "r - Id = {}" by blast |
|
614 |
have "wf (r - Id)" by (simp add: *) |
|
615 |
moreover have "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" |
|
616 |
if *: "A \<subseteq> Field r" and **: "A \<noteq> {}" for A |
|
617 |
proof - |
|
618 |
from \<open>Linear_order r\<close> True |
|
619 |
obtain a where a: "r = {} \<or> r = {(a, a)}" |
|
620 |
unfolding order_on_defs using Total_subset_Id [of r] by blast |
|
621 |
with * ** have "A = {a} \<and> r = {(a, a)}" |
|
622 |
unfolding Field_def by blast |
|
623 |
with a show ?thesis by blast |
|
624 |
qed |
|
55027 | 625 |
ultimately show ?thesis by blast |
626 |
next |
|
63572 | 627 |
case False |
628 |
with \<open>Linear_order r\<close> have Field: "Field r = Field (r - Id)" |
|
629 |
unfolding order_on_defs using Total_Id_Field [of r] by blast |
|
55027 | 630 |
show ?thesis |
631 |
proof |
|
63572 | 632 |
assume *: "wf (r - Id)" |
633 |
show "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)" |
|
634 |
proof clarify |
|
635 |
fix A |
|
636 |
assume **: "A \<subseteq> Field r" and ***: "A \<noteq> {}" |
|
637 |
then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" |
|
638 |
using Field * unfolding wf_eq_minimal2 by simp |
|
639 |
moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id" |
|
640 |
using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** by blast |
|
641 |
ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" by blast |
|
55027 | 642 |
qed |
643 |
next |
|
63572 | 644 |
assume *: "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)" |
645 |
show "wf (r - Id)" |
|
646 |
unfolding wf_eq_minimal2 |
|
647 |
proof clarify |
|
648 |
fix A |
|
649 |
assume **: "A \<subseteq> Field(r - Id)" and ***: "A \<noteq> {}" |
|
650 |
then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" |
|
651 |
using Field * by simp |
|
652 |
moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id" |
|
653 |
using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** mono_Field[of "r - Id" r] by blast |
|
654 |
ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" |
|
655 |
by blast |
|
55027 | 656 |
qed |
657 |
qed |
|
658 |
qed |
|
659 |
||
660 |
corollary Linear_order_Well_order_iff: |
|
63572 | 661 |
"Linear_order r \<Longrightarrow> |
662 |
Well_order r \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))" |
|
663 |
unfolding well_order_on_def using Linear_order_wf_diff_Id[of r] by blast |
|
55027 | 664 |
|
26273 | 665 |
end |