41959
|
1 |
(* Title: HOL/Multivariate_Analysis/L2_Norm.thy
|
36333
|
2 |
Author: Brian Huffman, Portland State University
|
|
3 |
*)
|
|
4 |
|
|
5 |
header {* Square root of sum of squares *}
|
|
6 |
|
|
7 |
theory L2_Norm
|
|
8 |
imports NthRoot
|
|
9 |
begin
|
|
10 |
|
|
11 |
definition
|
|
12 |
"setL2 f A = sqrt (\<Sum>i\<in>A. (f i)\<twosuperior>)"
|
|
13 |
|
|
14 |
lemma setL2_cong:
|
|
15 |
"\<lbrakk>A = B; \<And>x. x \<in> B \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> setL2 f A = setL2 g B"
|
|
16 |
unfolding setL2_def by simp
|
|
17 |
|
|
18 |
lemma strong_setL2_cong:
|
|
19 |
"\<lbrakk>A = B; \<And>x. x \<in> B =simp=> f x = g x\<rbrakk> \<Longrightarrow> setL2 f A = setL2 g B"
|
|
20 |
unfolding setL2_def simp_implies_def by simp
|
|
21 |
|
|
22 |
lemma setL2_infinite [simp]: "\<not> finite A \<Longrightarrow> setL2 f A = 0"
|
|
23 |
unfolding setL2_def by simp
|
|
24 |
|
|
25 |
lemma setL2_empty [simp]: "setL2 f {} = 0"
|
|
26 |
unfolding setL2_def by simp
|
|
27 |
|
|
28 |
lemma setL2_insert [simp]:
|
|
29 |
"\<lbrakk>finite F; a \<notin> F\<rbrakk> \<Longrightarrow>
|
|
30 |
setL2 f (insert a F) = sqrt ((f a)\<twosuperior> + (setL2 f F)\<twosuperior>)"
|
|
31 |
unfolding setL2_def by (simp add: setsum_nonneg)
|
|
32 |
|
|
33 |
lemma setL2_nonneg [simp]: "0 \<le> setL2 f A"
|
|
34 |
unfolding setL2_def by (simp add: setsum_nonneg)
|
|
35 |
|
|
36 |
lemma setL2_0': "\<forall>a\<in>A. f a = 0 \<Longrightarrow> setL2 f A = 0"
|
|
37 |
unfolding setL2_def by simp
|
|
38 |
|
|
39 |
lemma setL2_constant: "setL2 (\<lambda>x. y) A = sqrt (of_nat (card A)) * \<bar>y\<bar>"
|
|
40 |
unfolding setL2_def by (simp add: real_sqrt_mult)
|
|
41 |
|
|
42 |
lemma setL2_mono:
|
|
43 |
assumes "\<And>i. i \<in> K \<Longrightarrow> f i \<le> g i"
|
|
44 |
assumes "\<And>i. i \<in> K \<Longrightarrow> 0 \<le> f i"
|
|
45 |
shows "setL2 f K \<le> setL2 g K"
|
|
46 |
unfolding setL2_def
|
41891
|
47 |
by (simp add: setsum_nonneg setsum_mono power_mono assms)
|
36333
|
48 |
|
|
49 |
lemma setL2_strict_mono:
|
|
50 |
assumes "finite K" and "K \<noteq> {}"
|
|
51 |
assumes "\<And>i. i \<in> K \<Longrightarrow> f i < g i"
|
|
52 |
assumes "\<And>i. i \<in> K \<Longrightarrow> 0 \<le> f i"
|
|
53 |
shows "setL2 f K < setL2 g K"
|
|
54 |
unfolding setL2_def
|
|
55 |
by (simp add: setsum_strict_mono power_strict_mono assms)
|
|
56 |
|
|
57 |
lemma setL2_right_distrib:
|
|
58 |
"0 \<le> r \<Longrightarrow> r * setL2 f A = setL2 (\<lambda>x. r * f x) A"
|
|
59 |
unfolding setL2_def
|
|
60 |
apply (simp add: power_mult_distrib)
|
|
61 |
apply (simp add: setsum_right_distrib [symmetric])
|
|
62 |
apply (simp add: real_sqrt_mult setsum_nonneg)
|
|
63 |
done
|
|
64 |
|
|
65 |
lemma setL2_left_distrib:
|
|
66 |
"0 \<le> r \<Longrightarrow> setL2 f A * r = setL2 (\<lambda>x. f x * r) A"
|
|
67 |
unfolding setL2_def
|
|
68 |
apply (simp add: power_mult_distrib)
|
|
69 |
apply (simp add: setsum_left_distrib [symmetric])
|
|
70 |
apply (simp add: real_sqrt_mult setsum_nonneg)
|
|
71 |
done
|
|
72 |
|
|
73 |
lemma setsum_nonneg_eq_0_iff:
|
|
74 |
fixes f :: "'a \<Rightarrow> 'b::ordered_ab_group_add"
|
|
75 |
shows "\<lbrakk>finite A; \<forall>x\<in>A. 0 \<le> f x\<rbrakk> \<Longrightarrow> setsum f A = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)"
|
|
76 |
apply (induct set: finite, simp)
|
|
77 |
apply (simp add: add_nonneg_eq_0_iff setsum_nonneg)
|
|
78 |
done
|
|
79 |
|
|
80 |
lemma setL2_eq_0_iff: "finite A \<Longrightarrow> setL2 f A = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)"
|
|
81 |
unfolding setL2_def
|
|
82 |
by (simp add: setsum_nonneg setsum_nonneg_eq_0_iff)
|
|
83 |
|
|
84 |
lemma setL2_triangle_ineq:
|
|
85 |
shows "setL2 (\<lambda>i. f i + g i) A \<le> setL2 f A + setL2 g A"
|
|
86 |
proof (cases "finite A")
|
|
87 |
case False
|
|
88 |
thus ?thesis by simp
|
|
89 |
next
|
|
90 |
case True
|
|
91 |
thus ?thesis
|
|
92 |
proof (induct set: finite)
|
|
93 |
case empty
|
|
94 |
show ?case by simp
|
|
95 |
next
|
|
96 |
case (insert x F)
|
|
97 |
hence "sqrt ((f x + g x)\<twosuperior> + (setL2 (\<lambda>i. f i + g i) F)\<twosuperior>) \<le>
|
|
98 |
sqrt ((f x + g x)\<twosuperior> + (setL2 f F + setL2 g F)\<twosuperior>)"
|
|
99 |
by (intro real_sqrt_le_mono add_left_mono power_mono insert
|
|
100 |
setL2_nonneg add_increasing zero_le_power2)
|
|
101 |
also have
|
|
102 |
"\<dots> \<le> sqrt ((f x)\<twosuperior> + (setL2 f F)\<twosuperior>) + sqrt ((g x)\<twosuperior> + (setL2 g F)\<twosuperior>)"
|
|
103 |
by (rule real_sqrt_sum_squares_triangle_ineq)
|
|
104 |
finally show ?case
|
|
105 |
using insert by simp
|
|
106 |
qed
|
|
107 |
qed
|
|
108 |
|
|
109 |
lemma sqrt_sum_squares_le_sum:
|
|
110 |
"\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> sqrt (x\<twosuperior> + y\<twosuperior>) \<le> x + y"
|
|
111 |
apply (rule power2_le_imp_le)
|
|
112 |
apply (simp add: power2_sum)
|
|
113 |
apply (simp add: mult_nonneg_nonneg)
|
|
114 |
apply (simp add: add_nonneg_nonneg)
|
|
115 |
done
|
|
116 |
|
|
117 |
lemma setL2_le_setsum [rule_format]:
|
|
118 |
"(\<forall>i\<in>A. 0 \<le> f i) \<longrightarrow> setL2 f A \<le> setsum f A"
|
|
119 |
apply (cases "finite A")
|
|
120 |
apply (induct set: finite)
|
|
121 |
apply simp
|
|
122 |
apply clarsimp
|
|
123 |
apply (erule order_trans [OF sqrt_sum_squares_le_sum])
|
|
124 |
apply simp
|
|
125 |
apply simp
|
|
126 |
apply simp
|
|
127 |
done
|
|
128 |
|
|
129 |
lemma sqrt_sum_squares_le_sum_abs: "sqrt (x\<twosuperior> + y\<twosuperior>) \<le> \<bar>x\<bar> + \<bar>y\<bar>"
|
|
130 |
apply (rule power2_le_imp_le)
|
|
131 |
apply (simp add: power2_sum)
|
|
132 |
apply (simp add: mult_nonneg_nonneg)
|
|
133 |
apply (simp add: add_nonneg_nonneg)
|
|
134 |
done
|
|
135 |
|
|
136 |
lemma setL2_le_setsum_abs: "setL2 f A \<le> (\<Sum>i\<in>A. \<bar>f i\<bar>)"
|
|
137 |
apply (cases "finite A")
|
|
138 |
apply (induct set: finite)
|
|
139 |
apply simp
|
|
140 |
apply simp
|
|
141 |
apply (rule order_trans [OF sqrt_sum_squares_le_sum_abs])
|
|
142 |
apply simp
|
|
143 |
apply simp
|
|
144 |
done
|
|
145 |
|
|
146 |
lemma setL2_mult_ineq_lemma:
|
|
147 |
fixes a b c d :: real
|
|
148 |
shows "2 * (a * c) * (b * d) \<le> a\<twosuperior> * d\<twosuperior> + b\<twosuperior> * c\<twosuperior>"
|
|
149 |
proof -
|
|
150 |
have "0 \<le> (a * d - b * c)\<twosuperior>" by simp
|
|
151 |
also have "\<dots> = a\<twosuperior> * d\<twosuperior> + b\<twosuperior> * c\<twosuperior> - 2 * (a * d) * (b * c)"
|
|
152 |
by (simp only: power2_diff power_mult_distrib)
|
|
153 |
also have "\<dots> = a\<twosuperior> * d\<twosuperior> + b\<twosuperior> * c\<twosuperior> - 2 * (a * c) * (b * d)"
|
|
154 |
by simp
|
|
155 |
finally show "2 * (a * c) * (b * d) \<le> a\<twosuperior> * d\<twosuperior> + b\<twosuperior> * c\<twosuperior>"
|
|
156 |
by simp
|
|
157 |
qed
|
|
158 |
|
|
159 |
lemma setL2_mult_ineq: "(\<Sum>i\<in>A. \<bar>f i\<bar> * \<bar>g i\<bar>) \<le> setL2 f A * setL2 g A"
|
|
160 |
apply (cases "finite A")
|
|
161 |
apply (induct set: finite)
|
|
162 |
apply simp
|
|
163 |
apply (rule power2_le_imp_le, simp)
|
|
164 |
apply (rule order_trans)
|
|
165 |
apply (rule power_mono)
|
|
166 |
apply (erule add_left_mono)
|
|
167 |
apply (simp add: add_nonneg_nonneg mult_nonneg_nonneg setsum_nonneg)
|
|
168 |
apply (simp add: power2_sum)
|
|
169 |
apply (simp add: power_mult_distrib)
|
|
170 |
apply (simp add: right_distrib left_distrib)
|
|
171 |
apply (rule ord_le_eq_trans)
|
|
172 |
apply (rule setL2_mult_ineq_lemma)
|
|
173 |
apply simp
|
|
174 |
apply (intro mult_nonneg_nonneg setL2_nonneg)
|
|
175 |
apply simp
|
|
176 |
done
|
|
177 |
|
|
178 |
lemma member_le_setL2: "\<lbrakk>finite A; i \<in> A\<rbrakk> \<Longrightarrow> f i \<le> setL2 f A"
|
|
179 |
apply (rule_tac s="insert i (A - {i})" and t="A" in subst)
|
|
180 |
apply fast
|
|
181 |
apply (subst setL2_insert)
|
|
182 |
apply simp
|
|
183 |
apply simp
|
|
184 |
apply simp
|
|
185 |
done
|
|
186 |
|
|
187 |
end
|