| author | wenzelm | 
| Tue, 30 Mar 2010 00:12:42 +0200 | |
| changeset 36014 | c51a077680e4 | 
| parent 30943 | eb3dbbe971f6 | 
| child 37654 | 8e33b9d04a82 | 
| permissions | -rw-r--r-- | 
| 24333 | 1 | (* | 
| 2 | Author: Jeremy Dawson and Gerwin Klein, NICTA | |
| 3 | ||
| 4 | definition and basic theorems for bit-wise logical operations | |
| 5 | for integers expressed using Pls, Min, BIT, | |
| 6 | and converting them to and from lists of bools | |
| 7 | *) | |
| 8 | ||
| 24350 | 9 | header {* Bitwise Operations on Binary Integers *}
 | 
| 10 | ||
| 26558 | 11 | theory BinOperations | 
| 12 | imports BinGeneral BitSyntax | |
| 24333 | 13 | begin | 
| 14 | ||
| 24364 | 15 | subsection {* Logical operations *}
 | 
| 24353 | 16 | |
| 17 | text "bit-wise logical operations on the int type" | |
| 18 | ||
| 25762 | 19 | instantiation int :: bit | 
| 20 | begin | |
| 21 | ||
| 22 | definition | |
| 28562 | 23 | int_not_def [code del]: "bitNOT = bin_rec Int.Min Int.Pls | 
| 24353 | 24 | (\<lambda>w b s. s BIT (NOT b))" | 
| 25762 | 25 | |
| 26 | definition | |
| 28562 | 27 | int_and_def [code del]: "bitAND = bin_rec (\<lambda>x. Int.Pls) (\<lambda>y. y) | 
| 24353 | 28 | (\<lambda>w b s y. s (bin_rest y) BIT (b AND bin_last y))" | 
| 25762 | 29 | |
| 30 | definition | |
| 28562 | 31 | int_or_def [code del]: "bitOR = bin_rec (\<lambda>x. x) (\<lambda>y. Int.Min) | 
| 24353 | 32 | (\<lambda>w b s y. s (bin_rest y) BIT (b OR bin_last y))" | 
| 25762 | 33 | |
| 34 | definition | |
| 28562 | 35 | int_xor_def [code del]: "bitXOR = bin_rec (\<lambda>x. x) bitNOT | 
| 24353 | 36 | (\<lambda>w b s y. s (bin_rest y) BIT (b XOR bin_last y))" | 
| 25762 | 37 | |
| 38 | instance .. | |
| 39 | ||
| 40 | end | |
| 24353 | 41 | |
| 24333 | 42 | lemma int_not_simps [simp]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 43 | "NOT Int.Pls = Int.Min" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 44 | "NOT Int.Min = Int.Pls" | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 45 | "NOT (Int.Bit0 w) = Int.Bit1 (NOT w)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 46 | "NOT (Int.Bit1 w) = Int.Bit0 (NOT w)" | 
| 26558 | 47 | "NOT (w BIT b) = (NOT w) BIT (NOT b)" | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 48 | unfolding int_not_def by (simp_all add: bin_rec_simps) | 
| 24333 | 49 | |
| 28562 | 50 | declare int_not_simps(1-4) [code] | 
| 26558 | 51 | |
| 28562 | 52 | lemma int_xor_Pls [simp, code]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 53 | "Int.Pls XOR x = x" | 
| 24465 | 54 | unfolding int_xor_def by (simp add: bin_rec_PM) | 
| 24333 | 55 | |
| 28562 | 56 | lemma int_xor_Min [simp, code]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 57 | "Int.Min XOR x = NOT x" | 
| 24465 | 58 | unfolding int_xor_def by (simp add: bin_rec_PM) | 
| 24333 | 59 | |
| 60 | lemma int_xor_Bits [simp]: | |
| 24353 | 61 | "(x BIT b) XOR (y BIT c) = (x XOR y) BIT (b XOR c)" | 
| 24333 | 62 | apply (unfold int_xor_def) | 
| 63 | apply (rule bin_rec_simps (1) [THEN fun_cong, THEN trans]) | |
| 64 | apply (rule ext, simp) | |
| 65 | prefer 2 | |
| 66 | apply simp | |
| 67 | apply (rule ext) | |
| 68 | apply (simp add: int_not_simps [symmetric]) | |
| 69 | done | |
| 70 | ||
| 28562 | 71 | lemma int_xor_Bits2 [simp, code]: | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 72 | "(Int.Bit0 x) XOR (Int.Bit0 y) = Int.Bit0 (x XOR y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 73 | "(Int.Bit0 x) XOR (Int.Bit1 y) = Int.Bit1 (x XOR y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 74 | "(Int.Bit1 x) XOR (Int.Bit0 y) = Int.Bit1 (x XOR y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 75 | "(Int.Bit1 x) XOR (Int.Bit1 y) = Int.Bit0 (x XOR y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 76 | unfolding BIT_simps [symmetric] int_xor_Bits by simp_all | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 77 | |
| 24333 | 78 | lemma int_xor_x_simps': | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 79 | "w XOR (Int.Pls BIT bit.B0) = w" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 80 | "w XOR (Int.Min BIT bit.B1) = NOT w" | 
| 24333 | 81 | apply (induct w rule: bin_induct) | 
| 82 | apply simp_all[4] | |
| 83 | apply (unfold int_xor_Bits) | |
| 84 | apply clarsimp+ | |
| 85 | done | |
| 86 | ||
| 28562 | 87 | lemma int_xor_extra_simps [simp, code]: | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 88 | "w XOR Int.Pls = w" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 89 | "w XOR Int.Min = NOT w" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 90 | using int_xor_x_simps' by simp_all | 
| 24333 | 91 | |
| 28562 | 92 | lemma int_or_Pls [simp, code]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 93 | "Int.Pls OR x = x" | 
| 24465 | 94 | by (unfold int_or_def) (simp add: bin_rec_PM) | 
| 24333 | 95 | |
| 28562 | 96 | lemma int_or_Min [simp, code]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 97 | "Int.Min OR x = Int.Min" | 
| 24465 | 98 | by (unfold int_or_def) (simp add: bin_rec_PM) | 
| 24333 | 99 | |
| 100 | lemma int_or_Bits [simp]: | |
| 24353 | 101 | "(x BIT b) OR (y BIT c) = (x OR y) BIT (b OR c)" | 
| 24333 | 102 | unfolding int_or_def by (simp add: bin_rec_simps) | 
| 103 | ||
| 28562 | 104 | lemma int_or_Bits2 [simp, code]: | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 105 | "(Int.Bit0 x) OR (Int.Bit0 y) = Int.Bit0 (x OR y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 106 | "(Int.Bit0 x) OR (Int.Bit1 y) = Int.Bit1 (x OR y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 107 | "(Int.Bit1 x) OR (Int.Bit0 y) = Int.Bit1 (x OR y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 108 | "(Int.Bit1 x) OR (Int.Bit1 y) = Int.Bit1 (x OR y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 109 | unfolding BIT_simps [symmetric] int_or_Bits by simp_all | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 110 | |
| 24333 | 111 | lemma int_or_x_simps': | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 112 | "w OR (Int.Pls BIT bit.B0) = w" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 113 | "w OR (Int.Min BIT bit.B1) = Int.Min" | 
| 24333 | 114 | apply (induct w rule: bin_induct) | 
| 115 | apply simp_all[4] | |
| 116 | apply (unfold int_or_Bits) | |
| 117 | apply clarsimp+ | |
| 118 | done | |
| 119 | ||
| 28562 | 120 | lemma int_or_extra_simps [simp, code]: | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 121 | "w OR Int.Pls = w" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 122 | "w OR Int.Min = Int.Min" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 123 | using int_or_x_simps' by simp_all | 
| 24333 | 124 | |
| 28562 | 125 | lemma int_and_Pls [simp, code]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 126 | "Int.Pls AND x = Int.Pls" | 
| 24465 | 127 | unfolding int_and_def by (simp add: bin_rec_PM) | 
| 24333 | 128 | |
| 28562 | 129 | lemma int_and_Min [simp, code]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 130 | "Int.Min AND x = x" | 
| 24465 | 131 | unfolding int_and_def by (simp add: bin_rec_PM) | 
| 24333 | 132 | |
| 133 | lemma int_and_Bits [simp]: | |
| 24353 | 134 | "(x BIT b) AND (y BIT c) = (x AND y) BIT (b AND c)" | 
| 24333 | 135 | unfolding int_and_def by (simp add: bin_rec_simps) | 
| 136 | ||
| 28562 | 137 | lemma int_and_Bits2 [simp, code]: | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 138 | "(Int.Bit0 x) AND (Int.Bit0 y) = Int.Bit0 (x AND y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 139 | "(Int.Bit0 x) AND (Int.Bit1 y) = Int.Bit0 (x AND y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 140 | "(Int.Bit1 x) AND (Int.Bit0 y) = Int.Bit0 (x AND y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 141 | "(Int.Bit1 x) AND (Int.Bit1 y) = Int.Bit1 (x AND y)" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 142 | unfolding BIT_simps [symmetric] int_and_Bits by simp_all | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 143 | |
| 24333 | 144 | lemma int_and_x_simps': | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 145 | "w AND (Int.Pls BIT bit.B0) = Int.Pls" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 146 | "w AND (Int.Min BIT bit.B1) = w" | 
| 24333 | 147 | apply (induct w rule: bin_induct) | 
| 148 | apply simp_all[4] | |
| 149 | apply (unfold int_and_Bits) | |
| 150 | apply clarsimp+ | |
| 151 | done | |
| 152 | ||
| 28562 | 153 | lemma int_and_extra_simps [simp, code]: | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 154 | "w AND Int.Pls = Int.Pls" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 155 | "w AND Int.Min = w" | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 156 | using int_and_x_simps' by simp_all | 
| 24333 | 157 | |
| 158 | (* commutativity of the above *) | |
| 159 | lemma bin_ops_comm: | |
| 160 | shows | |
| 24353 | 161 | int_and_comm: "!!y::int. x AND y = y AND x" and | 
| 162 | int_or_comm: "!!y::int. x OR y = y OR x" and | |
| 163 | int_xor_comm: "!!y::int. x XOR y = y XOR x" | |
| 24333 | 164 | apply (induct x rule: bin_induct) | 
| 165 | apply simp_all[6] | |
| 166 | apply (case_tac y rule: bin_exhaust, simp add: bit_ops_comm)+ | |
| 167 | done | |
| 168 | ||
| 169 | lemma bin_ops_same [simp]: | |
| 24353 | 170 | "(x::int) AND x = x" | 
| 171 | "(x::int) OR x = x" | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 172 | "(x::int) XOR x = Int.Pls" | 
| 24333 | 173 | by (induct x rule: bin_induct) auto | 
| 174 | ||
| 24353 | 175 | lemma int_not_not [simp]: "NOT (NOT (x::int)) = x" | 
| 24333 | 176 | by (induct x rule: bin_induct) auto | 
| 177 | ||
| 178 | lemmas bin_log_esimps = | |
| 179 | int_and_extra_simps int_or_extra_simps int_xor_extra_simps | |
| 180 | int_and_Pls int_and_Min int_or_Pls int_or_Min int_xor_Pls int_xor_Min | |
| 181 | ||
| 182 | (* basic properties of logical (bit-wise) operations *) | |
| 183 | ||
| 184 | lemma bbw_ao_absorb: | |
| 24353 | 185 | "!!y::int. x AND (y OR x) = x & x OR (y AND x) = x" | 
| 24333 | 186 | apply (induct x rule: bin_induct) | 
| 187 | apply auto | |
| 188 | apply (case_tac [!] y rule: bin_exhaust) | |
| 189 | apply auto | |
| 190 | apply (case_tac [!] bit) | |
| 191 | apply auto | |
| 192 | done | |
| 193 | ||
| 194 | lemma bbw_ao_absorbs_other: | |
| 24353 | 195 | "x AND (x OR y) = x \<and> (y AND x) OR x = (x::int)" | 
| 196 | "(y OR x) AND x = x \<and> x OR (x AND y) = (x::int)" | |
| 197 | "(x OR y) AND x = x \<and> (x AND y) OR x = (x::int)" | |
| 24333 | 198 | apply (auto simp: bbw_ao_absorb int_or_comm) | 
| 199 | apply (subst int_or_comm) | |
| 200 | apply (simp add: bbw_ao_absorb) | |
| 201 | apply (subst int_and_comm) | |
| 202 | apply (subst int_or_comm) | |
| 203 | apply (simp add: bbw_ao_absorb) | |
| 204 | apply (subst int_and_comm) | |
| 205 | apply (simp add: bbw_ao_absorb) | |
| 206 | done | |
| 24353 | 207 | |
| 24333 | 208 | lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other | 
| 209 | ||
| 210 | lemma int_xor_not: | |
| 24353 | 211 | "!!y::int. (NOT x) XOR y = NOT (x XOR y) & | 
| 212 | x XOR (NOT y) = NOT (x XOR y)" | |
| 24333 | 213 | apply (induct x rule: bin_induct) | 
| 214 | apply auto | |
| 215 | apply (case_tac y rule: bin_exhaust, auto, | |
| 216 | case_tac b, auto)+ | |
| 217 | done | |
| 218 | ||
| 219 | lemma bbw_assocs': | |
| 24353 | 220 | "!!y z::int. (x AND y) AND z = x AND (y AND z) & | 
| 221 | (x OR y) OR z = x OR (y OR z) & | |
| 222 | (x XOR y) XOR z = x XOR (y XOR z)" | |
| 24333 | 223 | apply (induct x rule: bin_induct) | 
| 224 | apply (auto simp: int_xor_not) | |
| 225 | apply (case_tac [!] y rule: bin_exhaust) | |
| 226 | apply (case_tac [!] z rule: bin_exhaust) | |
| 227 | apply (case_tac [!] bit) | |
| 228 | apply (case_tac [!] b) | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 229 | apply (auto simp del: BIT_simps) | 
| 24333 | 230 | done | 
| 231 | ||
| 232 | lemma int_and_assoc: | |
| 24353 | 233 | "(x AND y) AND (z::int) = x AND (y AND z)" | 
| 24333 | 234 | by (simp add: bbw_assocs') | 
| 235 | ||
| 236 | lemma int_or_assoc: | |
| 24353 | 237 | "(x OR y) OR (z::int) = x OR (y OR z)" | 
| 24333 | 238 | by (simp add: bbw_assocs') | 
| 239 | ||
| 240 | lemma int_xor_assoc: | |
| 24353 | 241 | "(x XOR y) XOR (z::int) = x XOR (y XOR z)" | 
| 24333 | 242 | by (simp add: bbw_assocs') | 
| 243 | ||
| 244 | lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc | |
| 245 | ||
| 246 | lemma bbw_lcs [simp]: | |
| 24353 | 247 | "(y::int) AND (x AND z) = x AND (y AND z)" | 
| 248 | "(y::int) OR (x OR z) = x OR (y OR z)" | |
| 249 | "(y::int) XOR (x XOR z) = x XOR (y XOR z)" | |
| 24333 | 250 | apply (auto simp: bbw_assocs [symmetric]) | 
| 251 | apply (auto simp: bin_ops_comm) | |
| 252 | done | |
| 253 | ||
| 254 | lemma bbw_not_dist: | |
| 24353 | 255 | "!!y::int. NOT (x OR y) = (NOT x) AND (NOT y)" | 
| 256 | "!!y::int. NOT (x AND y) = (NOT x) OR (NOT y)" | |
| 24333 | 257 | apply (induct x rule: bin_induct) | 
| 258 | apply auto | |
| 259 | apply (case_tac [!] y rule: bin_exhaust) | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 260 | apply (case_tac [!] bit, auto simp del: BIT_simps) | 
| 24333 | 261 | done | 
| 262 | ||
| 263 | lemma bbw_oa_dist: | |
| 24353 | 264 | "!!y z::int. (x AND y) OR z = | 
| 265 | (x OR z) AND (y OR z)" | |
| 24333 | 266 | apply (induct x rule: bin_induct) | 
| 267 | apply auto | |
| 268 | apply (case_tac y rule: bin_exhaust) | |
| 269 | apply (case_tac z rule: bin_exhaust) | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 270 | apply (case_tac ba, auto simp del: BIT_simps) | 
| 24333 | 271 | done | 
| 272 | ||
| 273 | lemma bbw_ao_dist: | |
| 24353 | 274 | "!!y z::int. (x OR y) AND z = | 
| 275 | (x AND z) OR (y AND z)" | |
| 24333 | 276 | apply (induct x rule: bin_induct) | 
| 277 | apply auto | |
| 278 | apply (case_tac y rule: bin_exhaust) | |
| 279 | apply (case_tac z rule: bin_exhaust) | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 280 | apply (case_tac ba, auto simp del: BIT_simps) | 
| 24333 | 281 | done | 
| 282 | ||
| 24367 
3e29eafabe16
AC rules for bitwise logical operators no longer declared simp
 huffman parents: 
24366diff
changeset | 283 | (* | 
| 
3e29eafabe16
AC rules for bitwise logical operators no longer declared simp
 huffman parents: 
24366diff
changeset | 284 | Why were these declared simp??? | 
| 24333 | 285 | declare bin_ops_comm [simp] bbw_assocs [simp] | 
| 24367 
3e29eafabe16
AC rules for bitwise logical operators no longer declared simp
 huffman parents: 
24366diff
changeset | 286 | *) | 
| 24333 | 287 | |
| 288 | lemma plus_and_or [rule_format]: | |
| 24353 | 289 | "ALL y::int. (x AND y) + (x OR y) = x + y" | 
| 24333 | 290 | apply (induct x rule: bin_induct) | 
| 291 | apply clarsimp | |
| 292 | apply clarsimp | |
| 293 | apply clarsimp | |
| 294 | apply (case_tac y rule: bin_exhaust) | |
| 295 | apply clarsimp | |
| 296 | apply (unfold Bit_def) | |
| 297 | apply clarsimp | |
| 298 | apply (erule_tac x = "x" in allE) | |
| 299 | apply (simp split: bit.split) | |
| 300 | done | |
| 301 | ||
| 302 | lemma le_int_or: | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 303 | "!!x. bin_sign y = Int.Pls ==> x <= x OR y" | 
| 24333 | 304 | apply (induct y rule: bin_induct) | 
| 305 | apply clarsimp | |
| 306 | apply clarsimp | |
| 307 | apply (case_tac x rule: bin_exhaust) | |
| 308 | apply (case_tac b) | |
| 309 | apply (case_tac [!] bit) | |
| 26514 | 310 | apply (auto simp: less_eq_int_code) | 
| 24333 | 311 | done | 
| 312 | ||
| 313 | lemmas int_and_le = | |
| 314 | xtr3 [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or] ; | |
| 315 | ||
| 24364 | 316 | lemma bin_nth_ops: | 
| 317 | "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)" | |
| 318 | "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)" | |
| 319 | "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)" | |
| 320 | "!!x. bin_nth (NOT x) n = (~ bin_nth x n)" | |
| 321 | apply (induct n) | |
| 322 | apply safe | |
| 323 | apply (case_tac [!] x rule: bin_exhaust) | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 324 | apply (simp_all del: BIT_simps) | 
| 24364 | 325 | apply (case_tac [!] y rule: bin_exhaust) | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 326 | apply (simp_all del: BIT_simps) | 
| 24364 | 327 | apply (auto dest: not_B1_is_B0 intro: B1_ass_B0) | 
| 328 | done | |
| 329 | ||
| 330 | (* interaction between bit-wise and arithmetic *) | |
| 331 | (* good example of bin_induction *) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 332 | lemma bin_add_not: "x + NOT x = Int.Min" | 
| 24364 | 333 | apply (induct x rule: bin_induct) | 
| 334 | apply clarsimp | |
| 335 | apply clarsimp | |
| 336 | apply (case_tac bit, auto) | |
| 337 | done | |
| 338 | ||
| 339 | (* truncating results of bit-wise operations *) | |
| 340 | lemma bin_trunc_ao: | |
| 341 | "!!x y. (bintrunc n x) AND (bintrunc n y) = bintrunc n (x AND y)" | |
| 342 | "!!x y. (bintrunc n x) OR (bintrunc n y) = bintrunc n (x OR y)" | |
| 343 | apply (induct n) | |
| 344 | apply auto | |
| 345 | apply (case_tac [!] x rule: bin_exhaust) | |
| 346 | apply (case_tac [!] y rule: bin_exhaust) | |
| 347 | apply auto | |
| 348 | done | |
| 349 | ||
| 350 | lemma bin_trunc_xor: | |
| 351 | "!!x y. bintrunc n (bintrunc n x XOR bintrunc n y) = | |
| 352 | bintrunc n (x XOR y)" | |
| 353 | apply (induct n) | |
| 354 | apply auto | |
| 355 | apply (case_tac [!] x rule: bin_exhaust) | |
| 356 | apply (case_tac [!] y rule: bin_exhaust) | |
| 357 | apply auto | |
| 358 | done | |
| 359 | ||
| 360 | lemma bin_trunc_not: | |
| 361 | "!!x. bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)" | |
| 362 | apply (induct n) | |
| 363 | apply auto | |
| 364 | apply (case_tac [!] x rule: bin_exhaust) | |
| 365 | apply auto | |
| 366 | done | |
| 367 | ||
| 368 | (* want theorems of the form of bin_trunc_xor *) | |
| 369 | lemma bintr_bintr_i: | |
| 370 | "x = bintrunc n y ==> bintrunc n x = bintrunc n y" | |
| 371 | by auto | |
| 372 | ||
| 373 | lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i] | |
| 374 | lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i] | |
| 375 | ||
| 376 | subsection {* Setting and clearing bits *}
 | |
| 377 | ||
| 26558 | 378 | primrec | 
| 24364 | 379 | bin_sc :: "nat => bit => int => int" | 
| 26558 | 380 | where | 
| 381 | Z: "bin_sc 0 b w = bin_rest w BIT b" | |
| 382 | | Suc: "bin_sc (Suc n) b w = bin_sc n b (bin_rest w) BIT bin_last w" | |
| 24364 | 383 | |
| 24333 | 384 | (** nth bit, set/clear **) | 
| 385 | ||
| 386 | lemma bin_nth_sc [simp]: | |
| 387 | "!!w. bin_nth (bin_sc n b w) n = (b = bit.B1)" | |
| 388 | by (induct n) auto | |
| 389 | ||
| 390 | lemma bin_sc_sc_same [simp]: | |
| 391 | "!!w. bin_sc n c (bin_sc n b w) = bin_sc n c w" | |
| 392 | by (induct n) auto | |
| 393 | ||
| 394 | lemma bin_sc_sc_diff: | |
| 395 | "!!w m. m ~= n ==> | |
| 396 | bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)" | |
| 397 | apply (induct n) | |
| 398 | apply (case_tac [!] m) | |
| 399 | apply auto | |
| 400 | done | |
| 401 | ||
| 402 | lemma bin_nth_sc_gen: | |
| 403 | "!!w m. bin_nth (bin_sc n b w) m = (if m = n then b = bit.B1 else bin_nth w m)" | |
| 404 | by (induct n) (case_tac [!] m, auto) | |
| 405 | ||
| 406 | lemma bin_sc_nth [simp]: | |
| 407 | "!!w. (bin_sc n (If (bin_nth w n) bit.B1 bit.B0) w) = w" | |
| 24465 | 408 | by (induct n) auto | 
| 24333 | 409 | |
| 410 | lemma bin_sign_sc [simp]: | |
| 411 | "!!w. bin_sign (bin_sc n b w) = bin_sign w" | |
| 412 | by (induct n) auto | |
| 413 | ||
| 414 | lemma bin_sc_bintr [simp]: | |
| 415 | "!!w m. bintrunc m (bin_sc n x (bintrunc m (w))) = bintrunc m (bin_sc n x w)" | |
| 416 | apply (induct n) | |
| 417 | apply (case_tac [!] w rule: bin_exhaust) | |
| 418 | apply (case_tac [!] m, auto) | |
| 419 | done | |
| 420 | ||
| 421 | lemma bin_clr_le: | |
| 422 | "!!w. bin_sc n bit.B0 w <= w" | |
| 423 | apply (induct n) | |
| 424 | apply (case_tac [!] w rule: bin_exhaust) | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 425 | apply (auto simp del: BIT_simps) | 
| 24333 | 426 | apply (unfold Bit_def) | 
| 427 | apply (simp_all split: bit.split) | |
| 428 | done | |
| 429 | ||
| 430 | lemma bin_set_ge: | |
| 431 | "!!w. bin_sc n bit.B1 w >= w" | |
| 432 | apply (induct n) | |
| 433 | apply (case_tac [!] w rule: bin_exhaust) | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 434 | apply (auto simp del: BIT_simps) | 
| 24333 | 435 | apply (unfold Bit_def) | 
| 436 | apply (simp_all split: bit.split) | |
| 437 | done | |
| 438 | ||
| 439 | lemma bintr_bin_clr_le: | |
| 440 | "!!w m. bintrunc n (bin_sc m bit.B0 w) <= bintrunc n w" | |
| 441 | apply (induct n) | |
| 442 | apply simp | |
| 443 | apply (case_tac w rule: bin_exhaust) | |
| 444 | apply (case_tac m) | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 445 | apply (auto simp del: BIT_simps) | 
| 24333 | 446 | apply (unfold Bit_def) | 
| 447 | apply (simp_all split: bit.split) | |
| 448 | done | |
| 449 | ||
| 450 | lemma bintr_bin_set_ge: | |
| 451 | "!!w m. bintrunc n (bin_sc m bit.B1 w) >= bintrunc n w" | |
| 452 | apply (induct n) | |
| 453 | apply simp | |
| 454 | apply (case_tac w rule: bin_exhaust) | |
| 455 | apply (case_tac m) | |
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
25919diff
changeset | 456 | apply (auto simp del: BIT_simps) | 
| 24333 | 457 | apply (unfold Bit_def) | 
| 458 | apply (simp_all split: bit.split) | |
| 459 | done | |
| 460 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 461 | lemma bin_sc_FP [simp]: "bin_sc n bit.B0 Int.Pls = Int.Pls" | 
| 24333 | 462 | by (induct n) auto | 
| 463 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 464 | lemma bin_sc_TM [simp]: "bin_sc n bit.B1 Int.Min = Int.Min" | 
| 24333 | 465 | by (induct n) auto | 
| 466 | ||
| 467 | lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP | |
| 468 | ||
| 469 | lemma bin_sc_minus: | |
| 470 | "0 < n ==> bin_sc (Suc (n - 1)) b w = bin_sc n b w" | |
| 471 | by auto | |
| 472 | ||
| 473 | lemmas bin_sc_Suc_minus = | |
| 474 | trans [OF bin_sc_minus [symmetric] bin_sc.Suc, standard] | |
| 475 | ||
| 476 | lemmas bin_sc_Suc_pred [simp] = | |
| 477 | bin_sc_Suc_minus [of "number_of bin", simplified nobm1, standard] | |
| 478 | ||
| 24465 | 479 | subsection {* Operations on lists of booleans *}
 | 
| 480 | ||
| 26558 | 481 | primrec bl_to_bin_aux :: "bool list \<Rightarrow> int \<Rightarrow> int" where | 
| 482 | Nil: "bl_to_bin_aux [] w = w" | |
| 483 | | Cons: "bl_to_bin_aux (b # bs) w = | |
| 484 | bl_to_bin_aux bs (w BIT (if b then bit.B1 else bit.B0))" | |
| 24465 | 485 | |
| 26558 | 486 | definition bl_to_bin :: "bool list \<Rightarrow> int" where | 
| 487 | bl_to_bin_def : "bl_to_bin bs = bl_to_bin_aux bs Int.Pls" | |
| 24465 | 488 | |
| 26558 | 489 | primrec bin_to_bl_aux :: "nat \<Rightarrow> int \<Rightarrow> bool list \<Rightarrow> bool list" where | 
| 490 | Z: "bin_to_bl_aux 0 w bl = bl" | |
| 491 | | Suc: "bin_to_bl_aux (Suc n) w bl = | |
| 492 | bin_to_bl_aux n (bin_rest w) ((bin_last w = bit.B1) # bl)" | |
| 24465 | 493 | |
| 26558 | 494 | definition bin_to_bl :: "nat \<Rightarrow> int \<Rightarrow> bool list" where | 
| 495 | bin_to_bl_def : "bin_to_bl n w = bin_to_bl_aux n w []" | |
| 24465 | 496 | |
| 26558 | 497 | primrec bl_of_nth :: "nat \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> bool list" where | 
| 498 | Suc: "bl_of_nth (Suc n) f = f n # bl_of_nth n f" | |
| 499 | | Z: "bl_of_nth 0 f = []" | |
| 24465 | 500 | |
| 26558 | 501 | primrec takefill :: "'a \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 502 | Z: "takefill fill 0 xs = []" | |
| 503 | | Suc: "takefill fill (Suc n) xs = ( | |
| 504 | case xs of [] => fill # takefill fill n xs | |
| 505 | | y # ys => y # takefill fill n ys)" | |
| 24465 | 506 | |
| 26558 | 507 | definition map2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list" where
 | 
| 508 | "map2 f as bs = map (split f) (zip as bs)" | |
| 24465 | 509 | |
| 510 | ||
| 24364 | 511 | subsection {* Splitting and concatenation *}
 | 
| 24333 | 512 | |
| 26558 | 513 | definition bin_rcat :: "nat \<Rightarrow> int list \<Rightarrow> int" where | 
| 514 | "bin_rcat n = foldl (%u v. bin_cat u n v) Int.Pls" | |
| 515 | ||
| 28042 | 516 | fun bin_rsplit_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list" where | 
| 26558 | 517 | "bin_rsplit_aux n m c bs = | 
| 24364 | 518 | (if m = 0 | n = 0 then bs else | 
| 519 | let (a, b) = bin_split n c | |
| 26558 | 520 | in bin_rsplit_aux n (m - n) a (b # bs))" | 
| 24364 | 521 | |
| 26558 | 522 | definition bin_rsplit :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list" where | 
| 523 | "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []" | |
| 524 | ||
| 28042 | 525 | fun bin_rsplitl_aux :: "nat \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int list \<Rightarrow> int list" where | 
| 26558 | 526 | "bin_rsplitl_aux n m c bs = | 
| 24364 | 527 | (if m = 0 | n = 0 then bs else | 
| 528 | let (a, b) = bin_split (min m n) c | |
| 26558 | 529 | in bin_rsplitl_aux n (m - n) a (b # bs))" | 
| 24364 | 530 | |
| 26558 | 531 | definition bin_rsplitl :: "nat \<Rightarrow> nat \<times> int \<Rightarrow> int list" where | 
| 532 | "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []" | |
| 533 | ||
| 24364 | 534 | declare bin_rsplit_aux.simps [simp del] | 
| 535 | declare bin_rsplitl_aux.simps [simp del] | |
| 536 | ||
| 537 | lemma bin_sign_cat: | |
| 538 | "!!y. bin_sign (bin_cat x n y) = bin_sign x" | |
| 539 | by (induct n) auto | |
| 540 | ||
| 541 | lemma bin_cat_Suc_Bit: | |
| 542 | "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b" | |
| 543 | by auto | |
| 544 | ||
| 545 | lemma bin_nth_cat: | |
| 546 | "!!n y. bin_nth (bin_cat x k y) n = | |
| 547 | (if n < k then bin_nth y n else bin_nth x (n - k))" | |
| 548 | apply (induct k) | |
| 549 | apply clarsimp | |
| 550 | apply (case_tac n, auto) | |
| 24333 | 551 | done | 
| 552 | ||
| 24364 | 553 | lemma bin_nth_split: | 
| 554 | "!!b c. bin_split n c = (a, b) ==> | |
| 555 | (ALL k. bin_nth a k = bin_nth c (n + k)) & | |
| 556 | (ALL k. bin_nth b k = (k < n & bin_nth c k))" | |
| 24333 | 557 | apply (induct n) | 
| 24364 | 558 | apply clarsimp | 
| 559 | apply (clarsimp simp: Let_def split: ls_splits) | |
| 560 | apply (case_tac k) | |
| 561 | apply auto | |
| 562 | done | |
| 563 | ||
| 564 | lemma bin_cat_assoc: | |
| 565 | "!!z. bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)" | |
| 566 | by (induct n) auto | |
| 567 | ||
| 568 | lemma bin_cat_assoc_sym: "!!z m. | |
| 569 | bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z" | |
| 570 | apply (induct n, clarsimp) | |
| 571 | apply (case_tac m, auto) | |
| 24333 | 572 | done | 
| 573 | ||
| 24364 | 574 | lemma bin_cat_Pls [simp]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 575 | "!!w. bin_cat Int.Pls n w = bintrunc n w" | 
| 24364 | 576 | by (induct n) auto | 
| 577 | ||
| 578 | lemma bintr_cat1: | |
| 579 | "!!b. bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b" | |
| 580 | by (induct n) auto | |
| 581 | ||
| 582 | lemma bintr_cat: "bintrunc m (bin_cat a n b) = | |
| 583 | bin_cat (bintrunc (m - n) a) n (bintrunc (min m n) b)" | |
| 584 | by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr) | |
| 585 | ||
| 586 | lemma bintr_cat_same [simp]: | |
| 587 | "bintrunc n (bin_cat a n b) = bintrunc n b" | |
| 588 | by (auto simp add : bintr_cat) | |
| 589 | ||
| 590 | lemma cat_bintr [simp]: | |
| 591 | "!!b. bin_cat a n (bintrunc n b) = bin_cat a n b" | |
| 592 | by (induct n) auto | |
| 593 | ||
| 594 | lemma split_bintrunc: | |
| 595 | "!!b c. bin_split n c = (a, b) ==> b = bintrunc n c" | |
| 596 | by (induct n) (auto simp: Let_def split: ls_splits) | |
| 597 | ||
| 598 | lemma bin_cat_split: | |
| 599 | "!!v w. bin_split n w = (u, v) ==> w = bin_cat u n v" | |
| 600 | by (induct n) (auto simp: Let_def split: ls_splits) | |
| 601 | ||
| 602 | lemma bin_split_cat: | |
| 603 | "!!w. bin_split n (bin_cat v n w) = (v, bintrunc n w)" | |
| 604 | by (induct n) auto | |
| 605 | ||
| 606 | lemma bin_split_Pls [simp]: | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 607 | "bin_split n Int.Pls = (Int.Pls, Int.Pls)" | 
| 24364 | 608 | by (induct n) (auto simp: Let_def split: ls_splits) | 
| 609 | ||
| 610 | lemma bin_split_Min [simp]: | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25762diff
changeset | 611 | "bin_split n Int.Min = (Int.Min, bintrunc n Int.Min)" | 
| 24364 | 612 | by (induct n) (auto simp: Let_def split: ls_splits) | 
| 613 | ||
| 614 | lemma bin_split_trunc: | |
| 615 | "!!m b c. bin_split (min m n) c = (a, b) ==> | |
| 616 | bin_split n (bintrunc m c) = (bintrunc (m - n) a, b)" | |
| 617 | apply (induct n, clarsimp) | |
| 618 | apply (simp add: bin_rest_trunc Let_def split: ls_splits) | |
| 619 | apply (case_tac m) | |
| 620 | apply (auto simp: Let_def split: ls_splits) | |
| 24333 | 621 | done | 
| 622 | ||
| 24364 | 623 | lemma bin_split_trunc1: | 
| 624 | "!!m b c. bin_split n c = (a, b) ==> | |
| 625 | bin_split n (bintrunc m c) = (bintrunc (m - n) a, bintrunc m b)" | |
| 626 | apply (induct n, clarsimp) | |
| 627 | apply (simp add: bin_rest_trunc Let_def split: ls_splits) | |
| 628 | apply (case_tac m) | |
| 629 | apply (auto simp: Let_def split: ls_splits) | |
| 630 | done | |
| 24333 | 631 | |
| 24364 | 632 | lemma bin_cat_num: | 
| 633 | "!!b. bin_cat a n b = a * 2 ^ n + bintrunc n b" | |
| 634 | apply (induct n, clarsimp) | |
| 635 | apply (simp add: Bit_def cong: number_of_False_cong) | |
| 636 | done | |
| 637 | ||
| 638 | lemma bin_split_num: | |
| 639 | "!!b. bin_split n b = (b div 2 ^ n, b mod 2 ^ n)" | |
| 640 | apply (induct n, clarsimp) | |
| 641 | apply (simp add: bin_rest_div zdiv_zmult2_eq) | |
| 642 | apply (case_tac b rule: bin_exhaust) | |
| 643 | apply simp | |
| 30943 
eb3dbbe971f6
zmod_zmult_zmult1 now subsumed by mod_mult_mult1
 haftmann parents: 
29631diff
changeset | 644 | apply (simp add: Bit_def mod_mult_mult1 p1mod22k | 
| 24364 | 645 | split: bit.split | 
| 646 | cong: number_of_False_cong) | |
| 647 | done | |
| 648 | ||
| 649 | subsection {* Miscellaneous lemmas *}
 | |
| 24333 | 650 | |
| 651 | lemma nth_2p_bin: | |
| 652 | "!!m. bin_nth (2 ^ n) m = (m = n)" | |
| 653 | apply (induct n) | |
| 654 | apply clarsimp | |
| 655 | apply safe | |
| 656 | apply (case_tac m) | |
| 657 | apply (auto simp: trans [OF numeral_1_eq_1 [symmetric] number_of_eq]) | |
| 658 | apply (case_tac m) | |
| 659 | apply (auto simp: Bit_B0_2t [symmetric]) | |
| 660 | done | |
| 661 | ||
| 662 | (* for use when simplifying with bin_nth_Bit *) | |
| 663 | ||
| 664 | lemma ex_eq_or: | |
| 665 | "(EX m. n = Suc m & (m = k | P m)) = (n = Suc k | (EX m. n = Suc m & P m))" | |
| 666 | by auto | |
| 667 | ||
| 668 | end | |
| 669 |