| author | wenzelm | 
| Tue, 09 Jan 2024 23:52:02 +0100 | |
| changeset 79459 | c53c261d91b9 | 
| parent 78132 | 177dae28697b | 
| child 80069 | 67e77f1e6d7b | 
| permissions | -rw-r--r-- | 
| 53953 | 1 | (* Title: HOL/Library/FSet.thy | 
| 2 | Author: Ondrej Kuncar, TU Muenchen | |
| 3 | Author: Cezary Kaliszyk and Christian Urban | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 4 | Author: Andrei Popescu, TU Muenchen | 
| 78109 | 5 | Author: Martin Desharnais, MPI-INF Saarbruecken | 
| 53953 | 6 | *) | 
| 7 | ||
| 60500 | 8 | section \<open>Type of finite sets defined as a subtype of sets\<close> | 
| 53953 | 9 | |
| 10 | theory FSet | |
| 66262 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 11 | imports Main Countable | 
| 53953 | 12 | begin | 
| 13 | ||
| 60500 | 14 | subsection \<open>Definition of the type\<close> | 
| 53953 | 15 | |
| 16 | typedef 'a fset = "{A :: 'a set. finite A}"  morphisms fset Abs_fset
 | |
| 17 | by auto | |
| 18 | ||
| 19 | setup_lifting type_definition_fset | |
| 20 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 21 | |
| 60500 | 22 | subsection \<open>Basic operations and type class instantiations\<close> | 
| 53953 | 23 | |
| 24 | (* FIXME transfer and right_total vs. bi_total *) | |
| 25 | instantiation fset :: (finite) finite | |
| 26 | begin | |
| 60679 | 27 | instance by (standard; transfer; simp) | 
| 53953 | 28 | end | 
| 29 | ||
| 30 | instantiation fset :: (type) "{bounded_lattice_bot, distrib_lattice, minus}"
 | |
| 31 | begin | |
| 32 | ||
| 63331 | 33 | lift_definition bot_fset :: "'a fset" is "{}" parametric empty_transfer by simp
 | 
| 53953 | 34 | |
| 63331 | 35 | lift_definition less_eq_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" is subset_eq parametric subset_transfer | 
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55414diff
changeset | 36 | . | 
| 53953 | 37 | |
| 38 | definition less_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where "xs < ys \<equiv> xs \<le> ys \<and> xs \<noteq> (ys::'a fset)" | |
| 39 | ||
| 40 | lemma less_fset_transfer[transfer_rule]: | |
| 63343 | 41 | includes lifting_syntax | 
| 63331 | 42 | assumes [transfer_rule]: "bi_unique A" | 
| 67399 | 43 | shows "((pcr_fset A) ===> (pcr_fset A) ===> (=)) (\<subset>) (<)" | 
| 53953 | 44 | unfolding less_fset_def[abs_def] psubset_eq[abs_def] by transfer_prover | 
| 63331 | 45 | |
| 53953 | 46 | |
| 47 | lift_definition sup_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is union parametric union_transfer | |
| 48 | by simp | |
| 49 | ||
| 50 | lift_definition inf_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is inter parametric inter_transfer | |
| 51 | by simp | |
| 52 | ||
| 53 | lift_definition minus_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is minus parametric Diff_transfer | |
| 54 | by simp | |
| 55 | ||
| 56 | instance | |
| 60679 | 57 | by (standard; transfer; auto)+ | 
| 53953 | 58 | |
| 59 | end | |
| 60 | ||
| 61 | abbreviation fempty :: "'a fset" ("{||}") where "{||} \<equiv> bot"
 | |
| 62 | abbreviation fsubset_eq :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<subseteq>|" 50) where "xs |\<subseteq>| ys \<equiv> xs \<le> ys" | |
| 63 | abbreviation fsubset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<subset>|" 50) where "xs |\<subset>| ys \<equiv> xs < ys" | |
| 64 | abbreviation funion :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|\<union>|" 65) where "xs |\<union>| ys \<equiv> sup xs ys" | |
| 65 | abbreviation finter :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|\<inter>|" 65) where "xs |\<inter>| ys \<equiv> inf xs ys" | |
| 66 | abbreviation fminus :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|-|" 65) where "xs |-| ys \<equiv> minus xs ys" | |
| 67 | ||
| 54014 | 68 | instantiation fset :: (equal) equal | 
| 69 | begin | |
| 70 | definition "HOL.equal A B \<longleftrightarrow> A |\<subseteq>| B \<and> B |\<subseteq>| A" | |
| 71 | instance by intro_classes (auto simp add: equal_fset_def) | |
| 63331 | 72 | end | 
| 54014 | 73 | |
| 53953 | 74 | instantiation fset :: (type) conditionally_complete_lattice | 
| 75 | begin | |
| 76 | ||
| 63343 | 77 | context includes lifting_syntax | 
| 78 | begin | |
| 53953 | 79 | |
| 80 | lemma right_total_Inf_fset_transfer: | |
| 81 | assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A" | |
| 63331 | 82 | shows "(rel_set (rel_set A) ===> rel_set A) | 
| 83 |     (\<lambda>S. if finite (\<Inter>S \<inter> Collect (Domainp A)) then \<Inter>S \<inter> Collect (Domainp A) else {})
 | |
| 53953 | 84 |       (\<lambda>S. if finite (Inf S) then Inf S else {})"
 | 
| 85 | by transfer_prover | |
| 86 | ||
| 87 | lemma Inf_fset_transfer: | |
| 88 | assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A" | |
| 63331 | 89 |   shows "(rel_set (rel_set A) ===> rel_set A) (\<lambda>A. if finite (Inf A) then Inf A else {})
 | 
| 53953 | 90 |     (\<lambda>A. if finite (Inf A) then Inf A else {})"
 | 
| 91 | by transfer_prover | |
| 92 | ||
| 63331 | 93 | lift_definition Inf_fset :: "'a fset set \<Rightarrow> 'a fset" is "\<lambda>A. if finite (Inf A) then Inf A else {}"
 | 
| 53953 | 94 | parametric right_total_Inf_fset_transfer Inf_fset_transfer by simp | 
| 95 | ||
| 96 | lemma Sup_fset_transfer: | |
| 97 | assumes [transfer_rule]: "bi_unique A" | |
| 55938 | 98 |   shows "(rel_set (rel_set A) ===> rel_set A) (\<lambda>A. if finite (Sup A) then Sup A else {})
 | 
| 53953 | 99 |   (\<lambda>A. if finite (Sup A) then Sup A else {})" by transfer_prover
 | 
| 100 | ||
| 101 | lift_definition Sup_fset :: "'a fset set \<Rightarrow> 'a fset" is "\<lambda>A. if finite (Sup A) then Sup A else {}"
 | |
| 102 | parametric Sup_fset_transfer by simp | |
| 103 | ||
| 104 | lemma finite_Sup: "\<exists>z. finite z \<and> (\<forall>a. a \<in> X \<longrightarrow> a \<le> z) \<Longrightarrow> finite (Sup X)" | |
| 105 | by (auto intro: finite_subset) | |
| 106 | ||
| 67399 | 107 | lemma transfer_bdd_below[transfer_rule]: "(rel_set (pcr_fset (=)) ===> (=)) bdd_below bdd_below" | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 108 | by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 109 | |
| 63343 | 110 | end | 
| 111 | ||
| 53953 | 112 | instance | 
| 63331 | 113 | proof | 
| 53953 | 114 | fix x z :: "'a fset" | 
| 115 | fix X :: "'a fset set" | |
| 116 |   {
 | |
| 63331 | 117 | assume "x \<in> X" "bdd_below X" | 
| 56646 | 118 | then show "Inf X |\<subseteq>| x" by transfer auto | 
| 53953 | 119 | next | 
| 120 |     assume "X \<noteq> {}" "(\<And>x. x \<in> X \<Longrightarrow> z |\<subseteq>| x)"
 | |
| 121 | then show "z |\<subseteq>| Inf X" by transfer (clarsimp, blast) | |
| 122 | next | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 123 | assume "x \<in> X" "bdd_above X" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 124 | then obtain z where "x \<in> X" "(\<And>x. x \<in> X \<Longrightarrow> x |\<subseteq>| z)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 125 | by (auto simp: bdd_above_def) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 126 | then show "x |\<subseteq>| Sup X" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 127 | by transfer (auto intro!: finite_Sup) | 
| 53953 | 128 | next | 
| 129 |     assume "X \<noteq> {}" "(\<And>x. x \<in> X \<Longrightarrow> x |\<subseteq>| z)"
 | |
| 130 | then show "Sup X |\<subseteq>| z" by transfer (clarsimp, blast) | |
| 131 | } | |
| 132 | qed | |
| 133 | end | |
| 134 | ||
| 63331 | 135 | instantiation fset :: (finite) complete_lattice | 
| 53953 | 136 | begin | 
| 137 | ||
| 60679 | 138 | lift_definition top_fset :: "'a fset" is UNIV parametric right_total_UNIV_transfer UNIV_transfer | 
| 139 | by simp | |
| 53953 | 140 | |
| 60679 | 141 | instance | 
| 142 | by (standard; transfer; auto) | |
| 143 | ||
| 53953 | 144 | end | 
| 145 | ||
| 146 | instantiation fset :: (finite) complete_boolean_algebra | |
| 147 | begin | |
| 148 | ||
| 63331 | 149 | lift_definition uminus_fset :: "'a fset \<Rightarrow> 'a fset" is uminus | 
| 53953 | 150 | parametric right_total_Compl_transfer Compl_transfer by simp | 
| 151 | ||
| 60679 | 152 | instance | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67764diff
changeset | 153 | by (standard; transfer) (simp_all add: Inf_Sup Diff_eq) | 
| 53953 | 154 | end | 
| 155 | ||
| 156 | abbreviation fUNIV :: "'a::finite fset" where "fUNIV \<equiv> top" | |
| 157 | abbreviation fuminus :: "'a::finite fset \<Rightarrow> 'a fset" ("|-| _" [81] 80) where "|-| x \<equiv> uminus x"
 | |
| 158 | ||
| 56646 | 159 | declare top_fset.rep_eq[simp] | 
| 160 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 161 | |
| 60500 | 162 | subsection \<open>Other operations\<close> | 
| 53953 | 163 | |
| 164 | lift_definition finsert :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is insert parametric Lifting_Set.insert_transfer | |
| 165 | by simp | |
| 166 | ||
| 167 | syntax | |
| 168 |   "_insert_fset"     :: "args => 'a fset"  ("{|(_)|}")
 | |
| 169 | ||
| 170 | translations | |
| 171 |   "{|x, xs|}" == "CONST finsert x {|xs|}"
 | |
| 172 |   "{|x|}"     == "CONST finsert x {||}"
 | |
| 173 | ||
| 78103 
0252d635bfb2
redefined FSet.fmember as an abbreviation based on Set.member
 desharna parents: 
78102diff
changeset | 174 | abbreviation fmember :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<in>|" 50) where | 
| 78106 | 175 | "x |\<in>| X \<equiv> x \<in> fset X" | 
| 78103 
0252d635bfb2
redefined FSet.fmember as an abbreviation based on Set.member
 desharna parents: 
78102diff
changeset | 176 | |
| 78110 | 177 | abbreviation not_fmember :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<notin>|" 50) where | 
| 78106 | 178 | "x |\<notin>| X \<equiv> x \<notin> fset X" | 
| 53953 | 179 | |
| 78117 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 180 | context | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 181 | begin | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 182 | |
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 183 | qualified abbreviation Ball :: "'a fset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 184 | "Ball X \<equiv> Set.Ball (fset X)" | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 185 | |
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 186 | alias fBall = FSet.Ball | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 187 | |
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 188 | qualified abbreviation Bex :: "'a fset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 189 | "Bex X \<equiv> Set.Bex (fset X)" | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 190 | |
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 191 | alias fBex = FSet.Bex | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 192 | |
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 193 | end | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 194 | |
| 63343 | 195 | context includes lifting_syntax | 
| 53953 | 196 | begin | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 197 | |
| 78103 
0252d635bfb2
redefined FSet.fmember as an abbreviation based on Set.member
 desharna parents: 
78102diff
changeset | 198 | lemma fmember_transfer0[transfer_rule]: | 
| 
0252d635bfb2
redefined FSet.fmember as an abbreviation based on Set.member
 desharna parents: 
78102diff
changeset | 199 | assumes [transfer_rule]: "bi_unique A" | 
| 
0252d635bfb2
redefined FSet.fmember as an abbreviation based on Set.member
 desharna parents: 
78102diff
changeset | 200 | shows "(A ===> pcr_fset A ===> (=)) (\<in>) (|\<in>|)" | 
| 
0252d635bfb2
redefined FSet.fmember as an abbreviation based on Set.member
 desharna parents: 
78102diff
changeset | 201 | by transfer_prover | 
| 
0252d635bfb2
redefined FSet.fmember as an abbreviation based on Set.member
 desharna parents: 
78102diff
changeset | 202 | |
| 78117 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 203 | lemma fBall_transfer0[transfer_rule]: | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 204 | assumes [transfer_rule]: "bi_unique A" | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 205 | shows "(pcr_fset A ===> (A ===> (=)) ===> (=)) (Ball) (fBall)" | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 206 | by transfer_prover | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 207 | |
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 208 | lemma fBex_transfer0[transfer_rule]: | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 209 | assumes [transfer_rule]: "bi_unique A" | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 210 | shows "(pcr_fset A ===> (A ===> (=)) ===> (=)) (Bex) (fBex)" | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 211 | by transfer_prover | 
| 
7735645667f0
redefined FSet.fBall and FSet.fBex as abbreviations based on Set.Ball and Set.Bex
 desharna parents: 
78110diff
changeset | 212 | |
| 63331 | 213 | lift_definition ffilter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is Set.filter
 | 
| 53953 | 214 | parametric Lifting_Set.filter_transfer unfolding Set.filter_def by simp | 
| 215 | ||
| 63331 | 216 | lift_definition fPow :: "'a fset \<Rightarrow> 'a fset fset" is Pow parametric Pow_transfer | 
| 55732 | 217 | by (simp add: finite_subset) | 
| 53953 | 218 | |
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55414diff
changeset | 219 | lift_definition fcard :: "'a fset \<Rightarrow> nat" is card parametric card_transfer . | 
| 53953 | 220 | |
| 63331 | 221 | lift_definition fimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset" (infixr "|`|" 90) is image
 | 
| 53953 | 222 | parametric image_transfer by simp | 
| 223 | ||
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55414diff
changeset | 224 | lift_definition fthe_elem :: "'a fset \<Rightarrow> 'a" is the_elem . | 
| 53953 | 225 | |
| 63331 | 226 | lift_definition fbind :: "'a fset \<Rightarrow> ('a \<Rightarrow> 'b fset) \<Rightarrow> 'b fset" is Set.bind parametric bind_transfer
 | 
| 55738 | 227 | by (simp add: Set.bind_def) | 
| 53953 | 228 | |
| 55732 | 229 | lift_definition ffUnion :: "'a fset fset \<Rightarrow> 'a fset" is Union parametric Union_transfer by simp | 
| 53953 | 230 | |
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55414diff
changeset | 231 | lift_definition ffold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a fset \<Rightarrow> 'b" is Finite_Set.fold .
 | 
| 53963 | 232 | |
| 63622 | 233 | lift_definition fset_of_list :: "'a list \<Rightarrow> 'a fset" is set by (rule finite_set) | 
| 234 | ||
| 68463 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 235 | lift_definition sorted_list_of_fset :: "'a::linorder fset \<Rightarrow> 'a list" is sorted_list_of_set . | 
| 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 236 | |
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 237 | |
| 60500 | 238 | subsection \<open>Transferred lemmas from Set.thy\<close> | 
| 53953 | 239 | |
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 240 | lemma fset_eqI: "(\<And>x. (x |\<in>| A) = (x |\<in>| B)) \<Longrightarrow> A = B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 241 | by (rule set_eqI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 242 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 243 | lemma fset_eq_iff[no_atp]: "(A = B) = (\<forall>x. (x |\<in>| A) = (x |\<in>| B))" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 244 | by (rule set_eq_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 245 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 246 | lemma fBallI[no_atp]: "(\<And>x. x |\<in>| A \<Longrightarrow> P x) \<Longrightarrow> fBall A P" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 247 | by (rule ballI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 248 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 249 | lemma fbspec[no_atp]: "fBall A P \<Longrightarrow> x |\<in>| A \<Longrightarrow> P x" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 250 | by (rule bspec[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 251 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 252 | lemma fBallE[no_atp]: "fBall A P \<Longrightarrow> (P x \<Longrightarrow> Q) \<Longrightarrow> (x |\<notin>| A \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 253 | by (rule ballE[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 254 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 255 | lemma fBexI[no_atp]: "P x \<Longrightarrow> x |\<in>| A \<Longrightarrow> fBex A P" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 256 | by (rule bexI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 257 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 258 | lemma rev_fBexI[no_atp]: "x |\<in>| A \<Longrightarrow> P x \<Longrightarrow> fBex A P" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 259 | by (rule rev_bexI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 260 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 261 | lemma fBexCI[no_atp]: "(fBall A (\<lambda>x. \<not> P x) \<Longrightarrow> P a) \<Longrightarrow> a |\<in>| A \<Longrightarrow> fBex A P" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 262 | by (rule bexCI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 263 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 264 | lemma fBexE[no_atp]: "fBex A P \<Longrightarrow> (\<And>x. x |\<in>| A \<Longrightarrow> P x \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 265 | by (rule bexE[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 266 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 267 | lemma fBall_triv[no_atp]: "fBall A (\<lambda>x. P) = ((\<exists>x. x |\<in>| A) \<longrightarrow> P)" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 268 | by (rule ball_triv[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 269 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 270 | lemma fBex_triv[no_atp]: "fBex A (\<lambda>x. P) = ((\<exists>x. x |\<in>| A) \<and> P)" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 271 | by (rule bex_triv[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 272 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 273 | lemma fBex_triv_one_point1[no_atp]: "fBex A (\<lambda>x. x = a) = (a |\<in>| A)" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 274 | by (rule bex_triv_one_point1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 275 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 276 | lemma fBex_triv_one_point2[no_atp]: "fBex A ((=) a) = (a |\<in>| A)" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 277 | by (rule bex_triv_one_point2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 278 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 279 | lemma fBex_one_point1[no_atp]: "fBex A (\<lambda>x. x = a \<and> P x) = (a |\<in>| A \<and> P a)" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 280 | by (rule bex_one_point1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 281 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 282 | lemma fBex_one_point2[no_atp]: "fBex A (\<lambda>x. a = x \<and> P x) = (a |\<in>| A \<and> P a)" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 283 | by (rule bex_one_point2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 284 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 285 | lemma fBall_one_point1[no_atp]: "fBall A (\<lambda>x. x = a \<longrightarrow> P x) = (a |\<in>| A \<longrightarrow> P a)" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 286 | by (rule ball_one_point1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 287 | |
| 78121 
e72884b2da04
removed intro, desc, elim, and simp annotations from FSet lemmas that are instances of lemmas in Set
 desharna parents: 
78118diff
changeset | 288 | lemma fBall_one_point2[no_atp]: "fBall A (\<lambda>x. a = x \<longrightarrow> P x) = (a |\<in>| A \<longrightarrow> P a)" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 289 | by (rule ball_one_point2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 290 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 291 | lemma fBall_conj_distrib: "fBall A (\<lambda>x. P x \<and> Q x) = (fBall A P \<and> fBall A Q)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 292 | by (rule ball_conj_distrib[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 293 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 294 | lemma fBex_disj_distrib: "fBex A (\<lambda>x. P x \<or> Q x) = (fBex A P \<or> fBex A Q)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 295 | by (rule bex_disj_distrib[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 296 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 297 | lemma fBall_cong[fundef_cong]: "A = B \<Longrightarrow> (\<And>x. x |\<in>| B \<Longrightarrow> P x = Q x) \<Longrightarrow> fBall A P = fBall B Q" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 298 | by (rule ball_cong[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 299 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 300 | lemma fBex_cong[fundef_cong]: "A = B \<Longrightarrow> (\<And>x. x |\<in>| B \<Longrightarrow> P x = Q x) \<Longrightarrow> fBex A P = fBex B Q" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 301 | by (rule bex_cong[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 302 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 303 | lemma fsubsetI[intro!]: "(\<And>x. x |\<in>| A \<Longrightarrow> x |\<in>| B) \<Longrightarrow> A |\<subseteq>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 304 | by (rule subsetI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 305 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 306 | lemma fsubsetD[elim, intro?]: "A |\<subseteq>| B \<Longrightarrow> c |\<in>| A \<Longrightarrow> c |\<in>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 307 | by (rule subsetD[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 308 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 309 | lemma rev_fsubsetD[no_atp,intro?]: "c |\<in>| A \<Longrightarrow> A |\<subseteq>| B \<Longrightarrow> c |\<in>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 310 | by (rule rev_subsetD[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 311 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 312 | lemma fsubsetCE[no_atp,elim]: "A |\<subseteq>| B \<Longrightarrow> (c |\<notin>| A \<Longrightarrow> P) \<Longrightarrow> (c |\<in>| B \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 313 | by (rule subsetCE[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 314 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 315 | lemma fsubset_eq[no_atp]: "(A |\<subseteq>| B) = fBall A (\<lambda>x. x |\<in>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 316 | by (rule subset_eq[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 317 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 318 | lemma contra_fsubsetD[no_atp]: "A |\<subseteq>| B \<Longrightarrow> c |\<notin>| B \<Longrightarrow> c |\<notin>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 319 | by (rule contra_subsetD[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 320 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 321 | lemma fsubset_refl: "A |\<subseteq>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 322 | by (rule subset_refl[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 323 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 324 | lemma fsubset_trans: "A |\<subseteq>| B \<Longrightarrow> B |\<subseteq>| C \<Longrightarrow> A |\<subseteq>| C" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 325 | by (rule subset_trans[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 326 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 327 | lemma fset_rev_mp: "c |\<in>| A \<Longrightarrow> A |\<subseteq>| B \<Longrightarrow> c |\<in>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 328 | by (rule rev_subsetD[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 329 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 330 | lemma fset_mp: "A |\<subseteq>| B \<Longrightarrow> c |\<in>| A \<Longrightarrow> c |\<in>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 331 | by (rule subsetD[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 332 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 333 | lemma fsubset_not_fsubset_eq[code]: "(A |\<subset>| B) = (A |\<subseteq>| B \<and> \<not> B |\<subseteq>| A)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 334 | by (rule subset_not_subset_eq[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 335 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 336 | lemma eq_fmem_trans: "a = b \<Longrightarrow> b |\<in>| A \<Longrightarrow> a |\<in>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 337 | by (rule eq_mem_trans[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 338 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 339 | lemma fsubset_antisym[intro!]: "A |\<subseteq>| B \<Longrightarrow> B |\<subseteq>| A \<Longrightarrow> A = B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 340 | by (rule subset_antisym[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 341 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 342 | lemma fequalityD1: "A = B \<Longrightarrow> A |\<subseteq>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 343 | by (rule equalityD1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 344 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 345 | lemma fequalityD2: "A = B \<Longrightarrow> B |\<subseteq>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 346 | by (rule equalityD2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 347 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 348 | lemma fequalityE: "A = B \<Longrightarrow> (A |\<subseteq>| B \<Longrightarrow> B |\<subseteq>| A \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 349 | by (rule equalityE[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 350 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 351 | lemma fequalityCE[elim]: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 352 | "A = B \<Longrightarrow> (c |\<in>| A \<Longrightarrow> c |\<in>| B \<Longrightarrow> P) \<Longrightarrow> (c |\<notin>| A \<Longrightarrow> c |\<notin>| B \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 353 | by (rule equalityCE[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 354 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 355 | lemma eqfset_imp_iff: "A = B \<Longrightarrow> (x |\<in>| A) = (x |\<in>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 356 | by (rule eqset_imp_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 357 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 358 | lemma eqfelem_imp_iff: "x = y \<Longrightarrow> (x |\<in>| A) = (y |\<in>| A)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 359 | by (rule eqelem_imp_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 360 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 361 | lemma fempty_iff[simp]: "(c |\<in>| {||}) = False"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 362 | by (rule empty_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 363 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 364 | lemma fempty_fsubsetI[iff]: "{||} |\<subseteq>| x"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 365 | by (rule empty_subsetI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 366 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 367 | lemma equalsffemptyI: "(\<And>y. y |\<in>| A \<Longrightarrow> False) \<Longrightarrow> A = {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 368 | by (rule equals0I[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 369 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 370 | lemma equalsffemptyD: "A = {||} \<Longrightarrow> a |\<notin>| A"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 371 | by (rule equals0D[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 372 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 373 | lemma fBall_fempty[simp]: "fBall {||} P = True"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 374 | by (rule ball_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 375 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 376 | lemma fBex_fempty[simp]: "fBex {||} P = False"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 377 | by (rule bex_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 378 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 379 | lemma fPow_iff[iff]: "(A |\<in>| fPow B) = (A |\<subseteq>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 380 | by (rule Pow_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 381 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 382 | lemma fPowI: "A |\<subseteq>| B \<Longrightarrow> A |\<in>| fPow B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 383 | by (rule PowI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 384 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 385 | lemma fPowD: "A |\<in>| fPow B \<Longrightarrow> A |\<subseteq>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 386 | by (rule PowD[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 387 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 388 | lemma fPow_bottom: "{||} |\<in>| fPow B"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 389 | by (rule Pow_bottom[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 390 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 391 | lemma fPow_top: "A |\<in>| fPow A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 392 | by (rule Pow_top[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 393 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 394 | lemma fPow_not_fempty: "fPow A \<noteq> {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 395 | by (rule Pow_not_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 396 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 397 | lemma finter_iff[simp]: "(c |\<in>| A |\<inter>| B) = (c |\<in>| A \<and> c |\<in>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 398 | by (rule Int_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 399 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 400 | lemma finterI[intro!]: "c |\<in>| A \<Longrightarrow> c |\<in>| B \<Longrightarrow> c |\<in>| A |\<inter>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 401 | by (rule IntI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 402 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 403 | lemma finterD1: "c |\<in>| A |\<inter>| B \<Longrightarrow> c |\<in>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 404 | by (rule IntD1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 405 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 406 | lemma finterD2: "c |\<in>| A |\<inter>| B \<Longrightarrow> c |\<in>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 407 | by (rule IntD2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 408 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 409 | lemma finterE[elim!]: "c |\<in>| A |\<inter>| B \<Longrightarrow> (c |\<in>| A \<Longrightarrow> c |\<in>| B \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 410 | by (rule IntE[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 411 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 412 | lemma funion_iff[simp]: "(c |\<in>| A |\<union>| B) = (c |\<in>| A \<or> c |\<in>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 413 | by (rule Un_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 414 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 415 | lemma funionI1[elim?]: "c |\<in>| A \<Longrightarrow> c |\<in>| A |\<union>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 416 | by (rule UnI1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 417 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 418 | lemma funionI2[elim?]: "c |\<in>| B \<Longrightarrow> c |\<in>| A |\<union>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 419 | by (rule UnI2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 420 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 421 | lemma funionCI[intro!]: "(c |\<notin>| B \<Longrightarrow> c |\<in>| A) \<Longrightarrow> c |\<in>| A |\<union>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 422 | by (rule UnCI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 423 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 424 | lemma funionE[elim!]: "c |\<in>| A |\<union>| B \<Longrightarrow> (c |\<in>| A \<Longrightarrow> P) \<Longrightarrow> (c |\<in>| B \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 425 | by (rule UnE[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 426 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 427 | lemma fminus_iff[simp]: "(c |\<in>| A |-| B) = (c |\<in>| A \<and> c |\<notin>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 428 | by (rule Diff_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 429 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 430 | lemma fminusI[intro!]: "c |\<in>| A \<Longrightarrow> c |\<notin>| B \<Longrightarrow> c |\<in>| A |-| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 431 | by (rule DiffI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 432 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 433 | lemma fminusD1: "c |\<in>| A |-| B \<Longrightarrow> c |\<in>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 434 | by (rule DiffD1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 435 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 436 | lemma fminusD2: "c |\<in>| A |-| B \<Longrightarrow> c |\<in>| B \<Longrightarrow> P" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 437 | by (rule DiffD2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 438 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 439 | lemma fminusE[elim!]: "c |\<in>| A |-| B \<Longrightarrow> (c |\<in>| A \<Longrightarrow> c |\<notin>| B \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 440 | by (rule DiffE[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 441 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 442 | lemma finsert_iff[simp]: "(a |\<in>| finsert b A) = (a = b \<or> a |\<in>| A)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 443 | by (rule insert_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 444 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 445 | lemma finsertI1: "a |\<in>| finsert a B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 446 | by (rule insertI1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 447 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 448 | lemma finsertI2: "a |\<in>| B \<Longrightarrow> a |\<in>| finsert b B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 449 | by (rule insertI2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 450 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 451 | lemma finsertE[elim!]: "a |\<in>| finsert b A \<Longrightarrow> (a = b \<Longrightarrow> P) \<Longrightarrow> (a |\<in>| A \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 452 | by (rule insertE[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 453 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 454 | lemma finsertCI[intro!]: "(a |\<notin>| B \<Longrightarrow> a = b) \<Longrightarrow> a |\<in>| finsert b B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 455 | by (rule insertCI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 456 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 457 | lemma fsubset_finsert_iff: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 458 |   "(A |\<subseteq>| finsert x B) = (if x |\<in>| A then A |-| {|x|} |\<subseteq>| B else A |\<subseteq>| B)"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 459 | by (rule subset_insert_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 460 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 461 | lemma finsert_ident: "x |\<notin>| A \<Longrightarrow> x |\<notin>| B \<Longrightarrow> (finsert x A = finsert x B) = (A = B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 462 | by (rule insert_ident[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 463 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 464 | lemma fsingletonI[intro!,no_atp]: "a |\<in>| {|a|}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 465 | by (rule singletonI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 466 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 467 | lemma fsingletonD[dest!,no_atp]: "b |\<in>| {|a|} \<Longrightarrow> b = a"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 468 | by (rule singletonD[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 469 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 470 | lemma fsingleton_iff: "(b |\<in>| {|a|}) = (b = a)"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 471 | by (rule singleton_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 472 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 473 | lemma fsingleton_inject[dest!]: "{|a|} = {|b|} \<Longrightarrow> a = b"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 474 | by (rule singleton_inject[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 475 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 476 | lemma fsingleton_finsert_inj_eq[iff,no_atp]: "({|b|} = finsert a A) = (a = b \<and> A |\<subseteq>| {|b|})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 477 | by (rule singleton_insert_inj_eq[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 478 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 479 | lemma fsingleton_finsert_inj_eq'[iff,no_atp]: "(finsert a A = {|b|}) = (a = b \<and> A |\<subseteq>| {|b|})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 480 | by (rule singleton_insert_inj_eq'[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 481 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 482 | lemma fsubset_fsingletonD: "A |\<subseteq>| {|x|} \<Longrightarrow> A = {||} \<or> A = {|x|}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 483 | by (rule subset_singletonD[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 484 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 485 | lemma fminus_single_finsert: "A |-| {|x|} |\<subseteq>| B \<Longrightarrow> A |\<subseteq>| finsert x B"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 486 | by (rule Diff_single_insert[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 487 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 488 | lemma fdoubleton_eq_iff: "({|a, b|} = {|c, d|}) = (a = c \<and> b = d \<or> a = d \<and> b = c)"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 489 | by (rule doubleton_eq_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 490 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 491 | lemma funion_fsingleton_iff: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 492 |   "(A |\<union>| B = {|x|}) = (A = {||} \<and> B = {|x|} \<or> A = {|x|} \<and> B = {||} \<or> A = {|x|} \<and> B = {|x|})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 493 | by (rule Un_singleton_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 494 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 495 | lemma fsingleton_funion_iff: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 496 |   "({|x|} = A |\<union>| B) = (A = {||} \<and> B = {|x|} \<or> A = {|x|} \<and> B = {||} \<or> A = {|x|} \<and> B = {|x|})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 497 | by (rule singleton_Un_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 498 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 499 | lemma fimage_eqI[simp, intro]: "b = f x \<Longrightarrow> x |\<in>| A \<Longrightarrow> b |\<in>| f |`| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 500 | by (rule image_eqI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 501 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 502 | lemma fimageI: "x |\<in>| A \<Longrightarrow> f x |\<in>| f |`| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 503 | by (rule imageI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 504 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 505 | lemma rev_fimage_eqI: "x |\<in>| A \<Longrightarrow> b = f x \<Longrightarrow> b |\<in>| f |`| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 506 | by (rule rev_image_eqI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 507 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 508 | lemma fimageE[elim!]: "b |\<in>| f |`| A \<Longrightarrow> (\<And>x. b = f x \<Longrightarrow> x |\<in>| A \<Longrightarrow> thesis) \<Longrightarrow> thesis" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 509 | by (rule imageE[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 510 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 511 | lemma Compr_fimage_eq: "{x. x |\<in>| f |`| A \<and> P x} = f ` {x. x |\<in>| A \<and> P (f x)}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 512 | by (rule Compr_image_eq[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 513 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 514 | lemma fimage_funion: "f |`| (A |\<union>| B) = f |`| A |\<union>| f |`| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 515 | by (rule image_Un[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 516 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 517 | lemma fimage_iff: "(z |\<in>| f |`| A) = fBex A (\<lambda>x. z = f x)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 518 | by (rule image_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 519 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 520 | lemma fimage_fsubset_iff[no_atp]: "(f |`| A |\<subseteq>| B) = fBall A (\<lambda>x. f x |\<in>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 521 | by (rule image_subset_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 522 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 523 | lemma fimage_fsubsetI: "(\<And>x. x |\<in>| A \<Longrightarrow> f x |\<in>| B) \<Longrightarrow> f |`| A |\<subseteq>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 524 | by (rule image_subsetI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 525 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 526 | lemma fimage_ident[simp]: "(\<lambda>x. x) |`| Y = Y" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 527 | by (rule image_ident[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 528 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 529 | lemma if_split_fmem1: "((if Q then x else y) |\<in>| b) = ((Q \<longrightarrow> x |\<in>| b) \<and> (\<not> Q \<longrightarrow> y |\<in>| b))" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 530 | by (rule if_split_mem1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 531 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 532 | lemma if_split_fmem2: "(a |\<in>| (if Q then x else y)) = ((Q \<longrightarrow> a |\<in>| x) \<and> (\<not> Q \<longrightarrow> a |\<in>| y))" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 533 | by (rule if_split_mem2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 534 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 535 | lemma pfsubsetI[intro!,no_atp]: "A |\<subseteq>| B \<Longrightarrow> A \<noteq> B \<Longrightarrow> A |\<subset>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 536 | by (rule psubsetI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 537 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 538 | lemma pfsubsetE[elim!,no_atp]: "A |\<subset>| B \<Longrightarrow> (A |\<subseteq>| B \<Longrightarrow> \<not> B |\<subseteq>| A \<Longrightarrow> R) \<Longrightarrow> R" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 539 | by (rule psubsetE[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 540 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 541 | lemma pfsubset_finsert_iff: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 542 | "(A |\<subset>| finsert x B) = | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 543 |     (if x |\<in>| B then A |\<subset>| B else if x |\<in>| A then A |-| {|x|} |\<subset>| B else A |\<subseteq>| B)"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 544 | by (rule psubset_insert_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 545 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 546 | lemma pfsubset_eq: "(A |\<subset>| B) = (A |\<subseteq>| B \<and> A \<noteq> B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 547 | by (rule psubset_eq[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 548 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 549 | lemma pfsubset_imp_fsubset: "A |\<subset>| B \<Longrightarrow> A |\<subseteq>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 550 | by (rule psubset_imp_subset[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 551 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 552 | lemma pfsubset_trans: "A |\<subset>| B \<Longrightarrow> B |\<subset>| C \<Longrightarrow> A |\<subset>| C" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 553 | by (rule psubset_trans[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 554 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 555 | lemma pfsubsetD: "A |\<subset>| B \<Longrightarrow> c |\<in>| A \<Longrightarrow> c |\<in>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 556 | by (rule psubsetD[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 557 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 558 | lemma pfsubset_fsubset_trans: "A |\<subset>| B \<Longrightarrow> B |\<subseteq>| C \<Longrightarrow> A |\<subset>| C" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 559 | by (rule psubset_subset_trans[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 560 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 561 | lemma fsubset_pfsubset_trans: "A |\<subseteq>| B \<Longrightarrow> B |\<subset>| C \<Longrightarrow> A |\<subset>| C" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 562 | by (rule subset_psubset_trans[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 563 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 564 | lemma pfsubset_imp_ex_fmem: "A |\<subset>| B \<Longrightarrow> \<exists>b. b |\<in>| B |-| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 565 | by (rule psubset_imp_ex_mem[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 566 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 567 | lemma fimage_fPow_mono: "f |`| A |\<subseteq>| B \<Longrightarrow> (|`|) f |`| fPow A |\<subseteq>| fPow B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 568 | by (rule image_Pow_mono[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 569 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 570 | lemma fimage_fPow_surj: "f |`| A = B \<Longrightarrow> (|`|) f |`| fPow A = fPow B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 571 | by (rule image_Pow_surj[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 572 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 573 | lemma fsubset_finsertI: "B |\<subseteq>| finsert a B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 574 | by (rule subset_insertI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 575 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 576 | lemma fsubset_finsertI2: "A |\<subseteq>| B \<Longrightarrow> A |\<subseteq>| finsert b B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 577 | by (rule subset_insertI2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 578 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 579 | lemma fsubset_finsert: "x |\<notin>| A \<Longrightarrow> (A |\<subseteq>| finsert x B) = (A |\<subseteq>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 580 | by (rule subset_insert[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 581 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 582 | lemma funion_upper1: "A |\<subseteq>| A |\<union>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 583 | by (rule Un_upper1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 584 | |
| 78104 | 585 | lemma funion_upper2: "B |\<subseteq>| A |\<union>| B" | 
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 586 | by (rule Un_upper2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 587 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 588 | lemma funion_least: "A |\<subseteq>| C \<Longrightarrow> B |\<subseteq>| C \<Longrightarrow> A |\<union>| B |\<subseteq>| C" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 589 | by (rule Un_least[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 590 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 591 | lemma finter_lower1: "A |\<inter>| B |\<subseteq>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 592 | by (rule Int_lower1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 593 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 594 | lemma finter_lower2: "A |\<inter>| B |\<subseteq>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 595 | by (rule Int_lower2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 596 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 597 | lemma finter_greatest: "C |\<subseteq>| A \<Longrightarrow> C |\<subseteq>| B \<Longrightarrow> C |\<subseteq>| A |\<inter>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 598 | by (rule Int_greatest[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 599 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 600 | lemma fminus_fsubset: "A |-| B |\<subseteq>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 601 | by (rule Diff_subset[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 602 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 603 | lemma fminus_fsubset_conv: "(A |-| B |\<subseteq>| C) = (A |\<subseteq>| B |\<union>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 604 | by (rule Diff_subset_conv[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 605 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 606 | lemma fsubset_fempty[simp]: "(A |\<subseteq>| {||}) = (A = {||})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 607 | by (rule subset_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 608 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 609 | lemma not_pfsubset_fempty[iff]: "\<not> A |\<subset>| {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 610 | by (rule not_psubset_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 611 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 612 | lemma finsert_is_funion: "finsert a A = {|a|} |\<union>| A"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 613 | by (rule insert_is_Un[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 614 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 615 | lemma finsert_not_fempty[simp]: "finsert a A \<noteq> {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 616 | by (rule insert_not_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 617 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 618 | lemma fempty_not_finsert: "{||} \<noteq> finsert a A"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 619 | by (rule empty_not_insert[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 620 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 621 | lemma finsert_absorb: "a |\<in>| A \<Longrightarrow> finsert a A = A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 622 | by (rule insert_absorb[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 623 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 624 | lemma finsert_absorb2[simp]: "finsert x (finsert x A) = finsert x A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 625 | by (rule insert_absorb2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 626 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 627 | lemma finsert_commute: "finsert x (finsert y A) = finsert y (finsert x A)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 628 | by (rule insert_commute[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 629 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 630 | lemma finsert_fsubset[simp]: "(finsert x A |\<subseteq>| B) = (x |\<in>| B \<and> A |\<subseteq>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 631 | by (rule insert_subset[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 632 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 633 | lemma finsert_inter_finsert[simp]: "finsert a A |\<inter>| finsert a B = finsert a (A |\<inter>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 634 | by (rule insert_inter_insert[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 635 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 636 | lemma finsert_disjoint[simp,no_atp]: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 637 |   "(finsert a A |\<inter>| B = {||}) = (a |\<notin>| B \<and> A |\<inter>| B = {||})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 638 |   "({||} = finsert a A |\<inter>| B) = (a |\<notin>| B \<and> {||} = A |\<inter>| B)"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 639 | by (rule insert_disjoint[Transfer.transferred])+ | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 640 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 641 | lemma disjoint_finsert[simp,no_atp]: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 642 |   "(B |\<inter>| finsert a A = {||}) = (a |\<notin>| B \<and> B |\<inter>| A = {||})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 643 |   "({||} = A |\<inter>| finsert b B) = (b |\<notin>| A \<and> {||} = A |\<inter>| B)"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 644 | by (rule disjoint_insert[Transfer.transferred])+ | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 645 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 646 | lemma fimage_fempty[simp]: "f |`| {||} = {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 647 | by (rule image_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 648 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 649 | lemma fimage_finsert[simp]: "f |`| finsert a B = finsert (f a) (f |`| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 650 | by (rule image_insert[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 651 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 652 | lemma fimage_constant: "x |\<in>| A \<Longrightarrow> (\<lambda>x. c) |`| A = {|c|}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 653 | by (rule image_constant[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 654 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 655 | lemma fimage_constant_conv: "(\<lambda>x. c) |`| A = (if A = {||} then {||} else {|c|})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 656 | by (rule image_constant_conv[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 657 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 658 | lemma fimage_fimage: "f |`| g |`| A = (\<lambda>x. f (g x)) |`| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 659 | by (rule image_image[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 660 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 661 | lemma finsert_fimage[simp]: "x |\<in>| A \<Longrightarrow> finsert (f x) (f |`| A) = f |`| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 662 | by (rule insert_image[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 663 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 664 | lemma fimage_is_fempty[iff]: "(f |`| A = {||}) = (A = {||})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 665 | by (rule image_is_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 666 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 667 | lemma fempty_is_fimage[iff]: "({||} = f |`| A) = (A = {||})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 668 | by (rule empty_is_image[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 669 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 670 | lemma fimage_cong: "M = N \<Longrightarrow> (\<And>x. x |\<in>| N \<Longrightarrow> f x = g x) \<Longrightarrow> f |`| M = g |`| N" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 671 | by (rule image_cong[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 672 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 673 | lemma fimage_finter_fsubset: "f |`| (A |\<inter>| B) |\<subseteq>| f |`| A |\<inter>| f |`| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 674 | by (rule image_Int_subset[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 675 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 676 | lemma fimage_fminus_fsubset: "f |`| A |-| f |`| B |\<subseteq>| f |`| (A |-| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 677 | by (rule image_diff_subset[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 678 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 679 | lemma finter_absorb: "A |\<inter>| A = A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 680 | by (rule Int_absorb[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 681 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 682 | lemma finter_left_absorb: "A |\<inter>| (A |\<inter>| B) = A |\<inter>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 683 | by (rule Int_left_absorb[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 684 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 685 | lemma finter_commute: "A |\<inter>| B = B |\<inter>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 686 | by (rule Int_commute[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 687 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 688 | lemma finter_left_commute: "A |\<inter>| (B |\<inter>| C) = B |\<inter>| (A |\<inter>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 689 | by (rule Int_left_commute[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 690 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 691 | lemma finter_assoc: "A |\<inter>| B |\<inter>| C = A |\<inter>| (B |\<inter>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 692 | by (rule Int_assoc[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 693 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 694 | lemma finter_ac: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 695 | "A |\<inter>| B |\<inter>| C = A |\<inter>| (B |\<inter>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 696 | "A |\<inter>| (A |\<inter>| B) = A |\<inter>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 697 | "A |\<inter>| B = B |\<inter>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 698 | "A |\<inter>| (B |\<inter>| C) = B |\<inter>| (A |\<inter>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 699 | by (rule Int_ac[Transfer.transferred])+ | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 700 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 701 | lemma finter_absorb1: "B |\<subseteq>| A \<Longrightarrow> A |\<inter>| B = B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 702 | by (rule Int_absorb1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 703 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 704 | lemma finter_absorb2: "A |\<subseteq>| B \<Longrightarrow> A |\<inter>| B = A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 705 | by (rule Int_absorb2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 706 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 707 | lemma finter_fempty_left: "{||} |\<inter>| B = {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 708 | by (rule Int_empty_left[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 709 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 710 | lemma finter_fempty_right: "A |\<inter>| {||} = {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 711 | by (rule Int_empty_right[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 712 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 713 | lemma disjoint_iff_fnot_equal: "(A |\<inter>| B = {||}) = fBall A (\<lambda>x. fBall B ((\<noteq>) x))"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 714 | by (rule disjoint_iff_not_equal[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 715 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 716 | lemma finter_funion_distrib: "A |\<inter>| (B |\<union>| C) = A |\<inter>| B |\<union>| (A |\<inter>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 717 | by (rule Int_Un_distrib[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 718 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 719 | lemma finter_funion_distrib2: "B |\<union>| C |\<inter>| A = B |\<inter>| A |\<union>| (C |\<inter>| A)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 720 | by (rule Int_Un_distrib2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 721 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 722 | lemma finter_fsubset_iff[no_atp, simp]: "(C |\<subseteq>| A |\<inter>| B) = (C |\<subseteq>| A \<and> C |\<subseteq>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 723 | by (rule Int_subset_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 724 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 725 | lemma funion_absorb: "A |\<union>| A = A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 726 | by (rule Un_absorb[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 727 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 728 | lemma funion_left_absorb: "A |\<union>| (A |\<union>| B) = A |\<union>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 729 | by (rule Un_left_absorb[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 730 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 731 | lemma funion_commute: "A |\<union>| B = B |\<union>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 732 | by (rule Un_commute[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 733 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 734 | lemma funion_left_commute: "A |\<union>| (B |\<union>| C) = B |\<union>| (A |\<union>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 735 | by (rule Un_left_commute[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 736 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 737 | lemma funion_assoc: "A |\<union>| B |\<union>| C = A |\<union>| (B |\<union>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 738 | by (rule Un_assoc[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 739 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 740 | lemma funion_ac: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 741 | "A |\<union>| B |\<union>| C = A |\<union>| (B |\<union>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 742 | "A |\<union>| (A |\<union>| B) = A |\<union>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 743 | "A |\<union>| B = B |\<union>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 744 | "A |\<union>| (B |\<union>| C) = B |\<union>| (A |\<union>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 745 | by (rule Un_ac[Transfer.transferred])+ | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 746 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 747 | lemma funion_absorb1: "A |\<subseteq>| B \<Longrightarrow> A |\<union>| B = B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 748 | by (rule Un_absorb1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 749 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 750 | lemma funion_absorb2: "B |\<subseteq>| A \<Longrightarrow> A |\<union>| B = A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 751 | by (rule Un_absorb2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 752 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 753 | lemma funion_fempty_left: "{||} |\<union>| B = B"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 754 | by (rule Un_empty_left[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 755 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 756 | lemma funion_fempty_right: "A |\<union>| {||} = A"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 757 | by (rule Un_empty_right[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 758 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 759 | lemma funion_finsert_left[simp]: "finsert a B |\<union>| C = finsert a (B |\<union>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 760 | by (rule Un_insert_left[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 761 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 762 | lemma funion_finsert_right[simp]: "A |\<union>| finsert a B = finsert a (A |\<union>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 763 | by (rule Un_insert_right[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 764 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 765 | lemma finter_finsert_left: "finsert a B |\<inter>| C = (if a |\<in>| C then finsert a (B |\<inter>| C) else B |\<inter>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 766 | by (rule Int_insert_left[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 767 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 768 | lemma finter_finsert_left_ifffempty[simp]: "a |\<notin>| C \<Longrightarrow> finsert a B |\<inter>| C = B |\<inter>| C" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 769 | by (rule Int_insert_left_if0[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 770 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 771 | lemma finter_finsert_left_if1[simp]: "a |\<in>| C \<Longrightarrow> finsert a B |\<inter>| C = finsert a (B |\<inter>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 772 | by (rule Int_insert_left_if1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 773 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 774 | lemma finter_finsert_right: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 775 | "A |\<inter>| finsert a B = (if a |\<in>| A then finsert a (A |\<inter>| B) else A |\<inter>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 776 | by (rule Int_insert_right[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 777 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 778 | lemma finter_finsert_right_ifffempty[simp]: "a |\<notin>| A \<Longrightarrow> A |\<inter>| finsert a B = A |\<inter>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 779 | by (rule Int_insert_right_if0[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 780 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 781 | lemma finter_finsert_right_if1[simp]: "a |\<in>| A \<Longrightarrow> A |\<inter>| finsert a B = finsert a (A |\<inter>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 782 | by (rule Int_insert_right_if1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 783 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 784 | lemma funion_finter_distrib: "A |\<union>| (B |\<inter>| C) = A |\<union>| B |\<inter>| (A |\<union>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 785 | by (rule Un_Int_distrib[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 786 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 787 | lemma funion_finter_distrib2: "B |\<inter>| C |\<union>| A = B |\<union>| A |\<inter>| (C |\<union>| A)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 788 | by (rule Un_Int_distrib2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 789 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 790 | lemma funion_finter_crazy: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 791 | "A |\<inter>| B |\<union>| (B |\<inter>| C) |\<union>| (C |\<inter>| A) = A |\<union>| B |\<inter>| (B |\<union>| C) |\<inter>| (C |\<union>| A)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 792 | by (rule Un_Int_crazy[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 793 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 794 | lemma fsubset_funion_eq: "(A |\<subseteq>| B) = (A |\<union>| B = B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 795 | by (rule subset_Un_eq[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 796 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 797 | lemma funion_fempty[iff]: "(A |\<union>| B = {||}) = (A = {||} \<and> B = {||})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 798 | by (rule Un_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 799 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 800 | lemma funion_fsubset_iff[no_atp, simp]: "(A |\<union>| B |\<subseteq>| C) = (A |\<subseteq>| C \<and> B |\<subseteq>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 801 | by (rule Un_subset_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 802 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 803 | lemma funion_fminus_finter: "A |-| B |\<union>| (A |\<inter>| B) = A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 804 | by (rule Un_Diff_Int[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 805 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 806 | lemma ffunion_empty[simp]: "ffUnion {||} = {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 807 | by (rule Union_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 808 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 809 | lemma ffunion_mono: "A |\<subseteq>| B \<Longrightarrow> ffUnion A |\<subseteq>| ffUnion B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 810 | by (rule Union_mono[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 811 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 812 | lemma ffunion_insert[simp]: "ffUnion (finsert a B) = a |\<union>| ffUnion B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 813 | by (rule Union_insert[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 814 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 815 | lemma fminus_finter2: "A |\<inter>| C |-| (B |\<inter>| C) = A |\<inter>| C |-| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 816 | by (rule Diff_Int2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 817 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 818 | lemma funion_finter_assoc_eq: "(A |\<inter>| B |\<union>| C = A |\<inter>| (B |\<union>| C)) = (C |\<subseteq>| A)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 819 | by (rule Un_Int_assoc_eq[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 820 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 821 | lemma fBall_funion: "fBall (A |\<union>| B) P = (fBall A P \<and> fBall B P)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 822 | by (rule ball_Un[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 823 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 824 | lemma fBex_funion: "fBex (A |\<union>| B) P = (fBex A P \<or> fBex B P)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 825 | by (rule bex_Un[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 826 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 827 | lemma fminus_eq_fempty_iff[simp,no_atp]: "(A |-| B = {||}) = (A |\<subseteq>| B)"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 828 | by (rule Diff_eq_empty_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 829 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 830 | lemma fminus_cancel[simp]: "A |-| A = {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 831 | by (rule Diff_cancel[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 832 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 833 | lemma fminus_idemp[simp]: "A |-| B |-| B = A |-| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 834 | by (rule Diff_idemp[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 835 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 836 | lemma fminus_triv: "A |\<inter>| B = {||} \<Longrightarrow> A |-| B = A"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 837 | by (rule Diff_triv[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 838 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 839 | lemma fempty_fminus[simp]: "{||} |-| A = {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 840 | by (rule empty_Diff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 841 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 842 | lemma fminus_fempty[simp]: "A |-| {||} = A"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 843 | by (rule Diff_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 844 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 845 | lemma fminus_finsertffempty[simp,no_atp]: "x |\<notin>| A \<Longrightarrow> A |-| finsert x B = A |-| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 846 | by (rule Diff_insert0[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 847 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 848 | lemma fminus_finsert: "A |-| finsert a B = A |-| B |-| {|a|}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 849 | by (rule Diff_insert[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 850 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 851 | lemma fminus_finsert2: "A |-| finsert a B = A |-| {|a|} |-| B"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 852 | by (rule Diff_insert2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 853 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 854 | lemma finsert_fminus_if: "finsert x A |-| B = (if x |\<in>| B then A |-| B else finsert x (A |-| B))" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 855 | by (rule insert_Diff_if[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 856 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 857 | lemma finsert_fminus1[simp]: "x |\<in>| B \<Longrightarrow> finsert x A |-| B = A |-| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 858 | by (rule insert_Diff1[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 859 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 860 | lemma finsert_fminus_single[simp]: "finsert a (A |-| {|a|}) = finsert a A"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 861 | by (rule insert_Diff_single[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 862 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 863 | lemma finsert_fminus: "a |\<in>| A \<Longrightarrow> finsert a (A |-| {|a|}) = A"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 864 | by (rule insert_Diff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 865 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 866 | lemma fminus_finsert_absorb: "x |\<notin>| A \<Longrightarrow> finsert x A |-| {|x|} = A"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 867 | by (rule Diff_insert_absorb[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 868 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 869 | lemma fminus_disjoint[simp]: "A |\<inter>| (B |-| A) = {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 870 | by (rule Diff_disjoint[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 871 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 872 | lemma fminus_partition: "A |\<subseteq>| B \<Longrightarrow> A |\<union>| (B |-| A) = B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 873 | by (rule Diff_partition[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 874 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 875 | lemma double_fminus: "A |\<subseteq>| B \<Longrightarrow> B |\<subseteq>| C \<Longrightarrow> B |-| (C |-| A) = A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 876 | by (rule double_diff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 877 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 878 | lemma funion_fminus_cancel[simp]: "A |\<union>| (B |-| A) = A |\<union>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 879 | by (rule Un_Diff_cancel[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 880 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 881 | lemma funion_fminus_cancel2[simp]: "B |-| A |\<union>| A = B |\<union>| A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 882 | by (rule Un_Diff_cancel2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 883 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 884 | lemma fminus_funion: "A |-| (B |\<union>| C) = A |-| B |\<inter>| (A |-| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 885 | by (rule Diff_Un[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 886 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 887 | lemma fminus_finter: "A |-| (B |\<inter>| C) = A |-| B |\<union>| (A |-| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 888 | by (rule Diff_Int[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 889 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 890 | lemma funion_fminus: "A |\<union>| B |-| C = A |-| C |\<union>| (B |-| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 891 | by (rule Un_Diff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 892 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 893 | lemma finter_fminus: "A |\<inter>| B |-| C = A |\<inter>| (B |-| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 894 | by (rule Int_Diff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 895 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 896 | lemma fminus_finter_distrib: "C |\<inter>| (A |-| B) = C |\<inter>| A |-| (C |\<inter>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 897 | by (rule Diff_Int_distrib[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 898 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 899 | lemma fminus_finter_distrib2: "A |-| B |\<inter>| C = A |\<inter>| C |-| (B |\<inter>| C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 900 | by (rule Diff_Int_distrib2[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 901 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 902 | lemma fUNIV_bool[no_atp]: "fUNIV = {|False, True|}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 903 | by (rule UNIV_bool[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 904 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 905 | lemma fPow_fempty[simp]: "fPow {||} = {|{||}|}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 906 | by (rule Pow_empty[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 907 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 908 | lemma fPow_finsert: "fPow (finsert a A) = fPow A |\<union>| finsert a |`| fPow A" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 909 | by (rule Pow_insert[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 910 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 911 | lemma funion_fPow_fsubset: "fPow A |\<union>| fPow B |\<subseteq>| fPow (A |\<union>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 912 | by (rule Un_Pow_subset[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 913 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 914 | lemma fPow_finter_eq[simp]: "fPow (A |\<inter>| B) = fPow A |\<inter>| fPow B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 915 | by (rule Pow_Int_eq[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 916 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 917 | lemma fset_eq_fsubset: "(A = B) = (A |\<subseteq>| B \<and> B |\<subseteq>| A)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 918 | by (rule set_eq_subset[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 919 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 920 | lemma fsubset_iff[no_atp]: "(A |\<subseteq>| B) = (\<forall>t. t |\<in>| A \<longrightarrow> t |\<in>| B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 921 | by (rule subset_iff[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 922 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 923 | lemma fsubset_iff_pfsubset_eq: "(A |\<subseteq>| B) = (A |\<subset>| B \<or> A = B)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 924 | by (rule subset_iff_psubset_eq[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 925 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 926 | lemma all_not_fin_conv[simp]: "(\<forall>x. x |\<notin>| A) = (A = {||})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 927 | by (rule all_not_in_conv[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 928 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 929 | lemma ex_fin_conv: "(\<exists>x. x |\<in>| A) = (A \<noteq> {||})"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 930 | by (rule ex_in_conv[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 931 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 932 | lemma fimage_mono: "A |\<subseteq>| B \<Longrightarrow> f |`| A |\<subseteq>| f |`| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 933 | by (rule image_mono[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 934 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 935 | lemma fPow_mono: "A |\<subseteq>| B \<Longrightarrow> fPow A |\<subseteq>| fPow B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 936 | by (rule Pow_mono[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 937 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 938 | lemma finsert_mono: "C |\<subseteq>| D \<Longrightarrow> finsert a C |\<subseteq>| finsert a D" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 939 | by (rule insert_mono[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 940 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 941 | lemma funion_mono: "A |\<subseteq>| C \<Longrightarrow> B |\<subseteq>| D \<Longrightarrow> A |\<union>| B |\<subseteq>| C |\<union>| D" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 942 | by (rule Un_mono[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 943 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 944 | lemma finter_mono: "A |\<subseteq>| C \<Longrightarrow> B |\<subseteq>| D \<Longrightarrow> A |\<inter>| B |\<subseteq>| C |\<inter>| D" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 945 | by (rule Int_mono[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 946 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 947 | lemma fminus_mono: "A |\<subseteq>| C \<Longrightarrow> D |\<subseteq>| B \<Longrightarrow> A |-| B |\<subseteq>| C |-| D" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 948 | by (rule Diff_mono[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 949 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 950 | lemma fin_mono: "A |\<subseteq>| B \<Longrightarrow> x |\<in>| A \<longrightarrow> x |\<in>| B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 951 | by (rule in_mono[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 952 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 953 | lemma fthe_felem_eq[simp]: "fthe_elem {|x|} = x"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 954 | by (rule the_elem_eq[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 955 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 956 | lemma fLeast_mono: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 957 | "mono f \<Longrightarrow> fBex S (\<lambda>x. fBall S ((\<le>) x)) \<Longrightarrow> (LEAST y. y |\<in>| f |`| S) = f (LEAST x. x |\<in>| S)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 958 | by (rule Least_mono[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 959 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 960 | lemma fbind_fbind: "fbind (fbind A B) C = fbind A (\<lambda>x. fbind (B x) C)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 961 | by (rule Set.bind_bind[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 962 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 963 | lemma fempty_fbind[simp]: "fbind {||} f = {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 964 | by (rule empty_bind[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 965 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 966 | lemma nonfempty_fbind_const: "A \<noteq> {||} \<Longrightarrow> fbind A (\<lambda>_. B) = B"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 967 | by (rule nonempty_bind_const[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 968 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 969 | lemma fbind_const: "fbind A (\<lambda>_. B) = (if A = {||} then {||} else B)"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 970 | by (rule bind_const[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 971 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 972 | lemma ffmember_filter[simp]: "(x |\<in>| ffilter P A) = (x |\<in>| A \<and> P x)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 973 | by (rule member_filter[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 974 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 975 | lemma fequalityI: "A |\<subseteq>| B \<Longrightarrow> B |\<subseteq>| A \<Longrightarrow> A = B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 976 | by (rule equalityI[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 977 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 978 | lemma fset_of_list_simps[simp]: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 979 |   "fset_of_list [] = {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 980 | "fset_of_list (x21 # x22) = finsert x21 (fset_of_list x22)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 981 | by (rule set_simps[Transfer.transferred])+ | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 982 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 983 | lemma fset_of_list_append[simp]: "fset_of_list (xs @ ys) = fset_of_list xs |\<union>| fset_of_list ys" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 984 | by (rule set_append[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 985 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 986 | lemma fset_of_list_rev[simp]: "fset_of_list (rev xs) = fset_of_list xs" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 987 | by (rule set_rev[Transfer.transferred]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 988 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 989 | lemma fset_of_list_map[simp]: "fset_of_list (map f xs) = f |`| fset_of_list xs" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 990 | by (rule set_map[Transfer.transferred]) | 
| 53953 | 991 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 992 | |
| 60500 | 993 | subsection \<open>Additional lemmas\<close> | 
| 53953 | 994 | |
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 995 | subsubsection \<open>\<open>ffUnion\<close>\<close> | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 996 | |
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 997 | lemma ffUnion_funion_distrib[simp]: "ffUnion (A |\<union>| B) = ffUnion A |\<union>| ffUnion B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 998 | by (rule Union_Un_distrib[Transfer.transferred]) | 
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 999 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1000 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1001 | subsubsection \<open>\<open>fbind\<close>\<close> | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1002 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1003 | lemma fbind_cong[fundef_cong]: "A = B \<Longrightarrow> (\<And>x. x |\<in>| B \<Longrightarrow> f x = g x) \<Longrightarrow> fbind A f = fbind B g" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1004 | by transfer force | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1005 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1006 | |
| 61585 | 1007 | subsubsection \<open>\<open>fsingleton\<close>\<close> | 
| 53953 | 1008 | |
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1009 | lemma fsingletonE: " b |\<in>| {|a|} \<Longrightarrow> (b = a \<Longrightarrow> thesis) \<Longrightarrow> thesis"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1010 | by (rule fsingletonD [elim_format]) | 
| 53953 | 1011 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1012 | |
| 61585 | 1013 | subsubsection \<open>\<open>femepty\<close>\<close> | 
| 53953 | 1014 | |
| 1015 | lemma fempty_ffilter[simp]: "ffilter (\<lambda>_. False) A = {||}"
 | |
| 1016 | by transfer auto | |
| 1017 | ||
| 1018 | (* FIXME, transferred doesn't work here *) | |
| 1019 | lemma femptyE [elim!]: "a |\<in>| {||} \<Longrightarrow> P"
 | |
| 1020 | by simp | |
| 1021 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1022 | |
| 61585 | 1023 | subsubsection \<open>\<open>fset\<close>\<close> | 
| 53953 | 1024 | |
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1025 | lemma fset_simps[simp]: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1026 |   "fset {||} = {}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1027 | "fset (finsert x X) = insert x (fset X)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1028 | by (rule bot_fset.rep_eq finsert.rep_eq)+ | 
| 53953 | 1029 | |
| 63331 | 1030 | lemma finite_fset [simp]: | 
| 53953 | 1031 | shows "finite (fset S)" | 
| 1032 | by transfer simp | |
| 1033 | ||
| 53963 | 1034 | lemmas fset_cong = fset_inject | 
| 53953 | 1035 | |
| 1036 | lemma filter_fset [simp]: | |
| 1037 | shows "fset (ffilter P xs) = Collect P \<inter> fset xs" | |
| 1038 | by transfer auto | |
| 1039 | ||
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1040 | lemma inter_fset[simp]: "fset (A |\<inter>| B) = fset A \<inter> fset B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1041 | by (rule inf_fset.rep_eq) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1042 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1043 | lemma union_fset[simp]: "fset (A |\<union>| B) = fset A \<union> fset B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1044 | by (rule sup_fset.rep_eq) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1045 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1046 | lemma minus_fset[simp]: "fset (A |-| B) = fset A - fset B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1047 | by (rule minus_fset.rep_eq) | 
| 53953 | 1048 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1049 | |
| 63622 | 1050 | subsubsection \<open>\<open>ffilter\<close>\<close> | 
| 53953 | 1051 | |
| 63331 | 1052 | lemma subset_ffilter: | 
| 53953 | 1053 | "ffilter P A |\<subseteq>| ffilter Q A = (\<forall> x. x |\<in>| A \<longrightarrow> P x \<longrightarrow> Q x)" | 
| 1054 | by transfer auto | |
| 1055 | ||
| 63331 | 1056 | lemma eq_ffilter: | 
| 53953 | 1057 | "(ffilter P A = ffilter Q A) = (\<forall>x. x |\<in>| A \<longrightarrow> P x = Q x)" | 
| 1058 | by transfer auto | |
| 1059 | ||
| 53964 | 1060 | lemma pfsubset_ffilter: | 
| 67091 | 1061 | "(\<And>x. x |\<in>| A \<Longrightarrow> P x \<Longrightarrow> Q x) \<Longrightarrow> (x |\<in>| A \<and> \<not> P x \<and> Q x) \<Longrightarrow> | 
| 53953 | 1062 | ffilter P A |\<subset>| ffilter Q A" | 
| 1063 | unfolding less_fset_def by (auto simp add: subset_ffilter eq_ffilter) | |
| 1064 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1065 | |
| 63622 | 1066 | subsubsection \<open>\<open>fset_of_list\<close>\<close> | 
| 1067 | ||
| 1068 | lemma fset_of_list_filter[simp]: | |
| 1069 | "fset_of_list (filter P xs) = ffilter P (fset_of_list xs)" | |
| 1070 | by transfer (auto simp: Set.filter_def) | |
| 1071 | ||
| 1072 | lemma fset_of_list_subset[intro]: | |
| 1073 | "set xs \<subseteq> set ys \<Longrightarrow> fset_of_list xs |\<subseteq>| fset_of_list ys" | |
| 1074 | by transfer simp | |
| 1075 | ||
| 1076 | lemma fset_of_list_elem: "(x |\<in>| fset_of_list xs) \<longleftrightarrow> (x \<in> set xs)" | |
| 1077 | by transfer simp | |
| 1078 | ||
| 1079 | ||
| 61585 | 1080 | subsubsection \<open>\<open>finsert\<close>\<close> | 
| 53953 | 1081 | |
| 1082 | (* FIXME, transferred doesn't work here *) | |
| 1083 | lemma set_finsert: | |
| 1084 | assumes "x |\<in>| A" | |
| 1085 | obtains B where "A = finsert x B" and "x |\<notin>| B" | |
| 1086 | using assms by transfer (metis Set.set_insert finite_insert) | |
| 1087 | ||
| 1088 | lemma mk_disjoint_finsert: "a |\<in>| A \<Longrightarrow> \<exists>B. A = finsert a B \<and> a |\<notin>| B" | |
| 63649 | 1089 |   by (rule exI [where x = "A |-| {|a|}"]) blast
 | 
| 53953 | 1090 | |
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1091 | lemma finsert_eq_iff: | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1092 | assumes "a |\<notin>| A" and "b |\<notin>| B" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1093 | shows "(finsert a A = finsert b B) = | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1094 | (if a = b then A = B else \<exists>C. A = finsert b C \<and> b |\<notin>| C \<and> B = finsert a C \<and> a |\<notin>| C)" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1095 | using assms by transfer (force simp: insert_eq_iff) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1096 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1097 | |
| 61585 | 1098 | subsubsection \<open>\<open>fimage\<close>\<close> | 
| 53953 | 1099 | |
| 1100 | lemma subset_fimage_iff: "(B |\<subseteq>| f|`|A) = (\<exists> AA. AA |\<subseteq>| A \<and> B = f|`|AA)" | |
| 1101 | by transfer (metis mem_Collect_eq rev_finite_subset subset_image_iff) | |
| 1102 | ||
| 76269 | 1103 | lemma fimage_strict_mono: | 
| 1104 | assumes "inj_on f (fset B)" and "A |\<subset>| B" | |
| 1105 | shows "f |`| A |\<subset>| f |`| B" | |
| 76281 
457f1cba78fb
renamed lemma inj_on_strict_subset to image_strict_mono for symmetry with image_mono and to distinguish from inj_on_subset
 desharna parents: 
76269diff
changeset | 1106 |   \<comment> \<open>TODO: Configure transfer framework to lift @{thm Fun.image_strict_mono}.\<close>
 | 
| 76269 | 1107 | proof (rule pfsubsetI) | 
| 1108 | from \<open>A |\<subset>| B\<close> have "A |\<subseteq>| B" | |
| 1109 | by (rule pfsubset_imp_fsubset) | |
| 1110 | thus "f |`| A |\<subseteq>| f |`| B" | |
| 1111 | by (rule fimage_mono) | |
| 1112 | next | |
| 1113 | from \<open>A |\<subset>| B\<close> have "A |\<subseteq>| B" and "A \<noteq> B" | |
| 1114 | by (simp_all add: pfsubset_eq) | |
| 1115 | ||
| 1116 | have "fset A \<noteq> fset B" | |
| 1117 | using \<open>A \<noteq> B\<close> | |
| 1118 | by (simp add: fset_cong) | |
| 1119 | hence "f ` fset A \<noteq> f ` fset B" | |
| 1120 | using \<open>A |\<subseteq>| B\<close> | |
| 1121 | by (simp add: inj_on_image_eq_iff[OF \<open>inj_on f (fset B)\<close>] less_eq_fset.rep_eq) | |
| 1122 | hence "fset (f |`| A) \<noteq> fset (f |`| B)" | |
| 1123 | by (simp add: fimage.rep_eq) | |
| 1124 | thus "f |`| A \<noteq> f |`| B" | |
| 1125 | by (simp add: fset_cong) | |
| 1126 | qed | |
| 1127 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1128 | |
| 60500 | 1129 | subsubsection \<open>bounded quantification\<close> | 
| 53953 | 1130 | |
| 1131 | lemma bex_simps [simp, no_atp]: | |
| 63331 | 1132 | "\<And>A P Q. fBex A (\<lambda>x. P x \<and> Q) = (fBex A P \<and> Q)" | 
| 53953 | 1133 | "\<And>A P Q. fBex A (\<lambda>x. P \<and> Q x) = (P \<and> fBex A Q)" | 
| 63331 | 1134 |   "\<And>P. fBex {||} P = False"
 | 
| 53953 | 1135 | "\<And>a B P. fBex (finsert a B) P = (P a \<or> fBex B P)" | 
| 1136 | "\<And>A P f. fBex (f |`| A) P = fBex A (\<lambda>x. P (f x))" | |
| 1137 | "\<And>A P. (\<not> fBex A P) = fBall A (\<lambda>x. \<not> P x)" | |
| 1138 | by auto | |
| 1139 | ||
| 1140 | lemma ball_simps [simp, no_atp]: | |
| 1141 | "\<And>A P Q. fBall A (\<lambda>x. P x \<or> Q) = (fBall A P \<or> Q)" | |
| 1142 | "\<And>A P Q. fBall A (\<lambda>x. P \<or> Q x) = (P \<or> fBall A Q)" | |
| 1143 | "\<And>A P Q. fBall A (\<lambda>x. P \<longrightarrow> Q x) = (P \<longrightarrow> fBall A Q)" | |
| 1144 | "\<And>A P Q. fBall A (\<lambda>x. P x \<longrightarrow> Q) = (fBex A P \<longrightarrow> Q)" | |
| 1145 |   "\<And>P. fBall {||} P = True"
 | |
| 1146 | "\<And>a B P. fBall (finsert a B) P = (P a \<and> fBall B P)" | |
| 1147 | "\<And>A P f. fBall (f |`| A) P = fBall A (\<lambda>x. P (f x))" | |
| 1148 | "\<And>A P. (\<not> fBall A P) = fBex A (\<lambda>x. \<not> P x)" | |
| 1149 | by auto | |
| 1150 | ||
| 1151 | lemma atomize_fBall: | |
| 1152 | "(\<And>x. x |\<in>| A ==> P x) == Trueprop (fBall A (\<lambda>x. P x))" | |
| 1153 | apply (simp only: atomize_all atomize_imp) | |
| 1154 | apply (rule equal_intr_rule) | |
| 63622 | 1155 | by (transfer, simp)+ | 
| 1156 | ||
| 1157 | lemma fBall_mono[mono]: "P \<le> Q \<Longrightarrow> fBall S P \<le> fBall S Q" | |
| 1158 | by auto | |
| 1159 | ||
| 68463 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 1160 | lemma fBex_mono[mono]: "P \<le> Q \<Longrightarrow> fBex S P \<le> fBex S Q" | 
| 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 1161 | by auto | 
| 53953 | 1162 | |
| 53963 | 1163 | end | 
| 1164 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1165 | |
| 61585 | 1166 | subsubsection \<open>\<open>fcard\<close>\<close> | 
| 53963 | 1167 | |
| 53964 | 1168 | (* FIXME: improve transferred to handle bounded meta quantification *) | 
| 1169 | ||
| 53963 | 1170 | lemma fcard_fempty: | 
| 1171 |   "fcard {||} = 0"
 | |
| 72302 
d7d90ed4c74e
fixed some remarkably ugly proofs
 paulson <lp15@cam.ac.uk> parents: 
69712diff
changeset | 1172 | by transfer (rule card.empty) | 
| 53963 | 1173 | |
| 1174 | lemma fcard_finsert_disjoint: | |
| 1175 | "x |\<notin>| A \<Longrightarrow> fcard (finsert x A) = Suc (fcard A)" | |
| 1176 | by transfer (rule card_insert_disjoint) | |
| 1177 | ||
| 1178 | lemma fcard_finsert_if: | |
| 1179 | "fcard (finsert x A) = (if x |\<in>| A then fcard A else Suc (fcard A))" | |
| 1180 | by transfer (rule card_insert_if) | |
| 1181 | ||
| 66265 | 1182 | lemma fcard_0_eq [simp, no_atp]: | 
| 53963 | 1183 |   "fcard A = 0 \<longleftrightarrow> A = {||}"
 | 
| 1184 | by transfer (rule card_0_eq) | |
| 1185 | ||
| 1186 | lemma fcard_Suc_fminus1: | |
| 1187 |   "x |\<in>| A \<Longrightarrow> Suc (fcard (A |-| {|x|})) = fcard A"
 | |
| 1188 | by transfer (rule card_Suc_Diff1) | |
| 1189 | ||
| 1190 | lemma fcard_fminus_fsingleton: | |
| 1191 |   "x |\<in>| A \<Longrightarrow> fcard (A |-| {|x|}) = fcard A - 1"
 | |
| 1192 | by transfer (rule card_Diff_singleton) | |
| 1193 | ||
| 1194 | lemma fcard_fminus_fsingleton_if: | |
| 1195 |   "fcard (A |-| {|x|}) = (if x |\<in>| A then fcard A - 1 else fcard A)"
 | |
| 1196 | by transfer (rule card_Diff_singleton_if) | |
| 1197 | ||
| 1198 | lemma fcard_fminus_finsert[simp]: | |
| 1199 | assumes "a |\<in>| A" and "a |\<notin>| B" | |
| 1200 | shows "fcard (A |-| finsert a B) = fcard (A |-| B) - 1" | |
| 1201 | using assms by transfer (rule card_Diff_insert) | |
| 1202 | ||
| 1203 | lemma fcard_finsert: "fcard (finsert x A) = Suc (fcard (A |-| {|x|}))"
 | |
| 72302 
d7d90ed4c74e
fixed some remarkably ugly proofs
 paulson <lp15@cam.ac.uk> parents: 
69712diff
changeset | 1204 | by transfer (rule card.insert_remove) | 
| 53963 | 1205 | |
| 1206 | lemma fcard_finsert_le: "fcard A \<le> fcard (finsert x A)" | |
| 1207 | by transfer (rule card_insert_le) | |
| 1208 | ||
| 1209 | lemma fcard_mono: | |
| 1210 | "A |\<subseteq>| B \<Longrightarrow> fcard A \<le> fcard B" | |
| 1211 | by transfer (rule card_mono) | |
| 1212 | ||
| 1213 | lemma fcard_seteq: "A |\<subseteq>| B \<Longrightarrow> fcard B \<le> fcard A \<Longrightarrow> A = B" | |
| 1214 | by transfer (rule card_seteq) | |
| 1215 | ||
| 1216 | lemma pfsubset_fcard_mono: "A |\<subset>| B \<Longrightarrow> fcard A < fcard B" | |
| 1217 | by transfer (rule psubset_card_mono) | |
| 1218 | ||
| 63331 | 1219 | lemma fcard_funion_finter: | 
| 53963 | 1220 | "fcard A + fcard B = fcard (A |\<union>| B) + fcard (A |\<inter>| B)" | 
| 1221 | by transfer (rule card_Un_Int) | |
| 1222 | ||
| 1223 | lemma fcard_funion_disjoint: | |
| 1224 |   "A |\<inter>| B = {||} \<Longrightarrow> fcard (A |\<union>| B) = fcard A + fcard B"
 | |
| 1225 | by transfer (rule card_Un_disjoint) | |
| 1226 | ||
| 1227 | lemma fcard_funion_fsubset: | |
| 1228 | "B |\<subseteq>| A \<Longrightarrow> fcard (A |-| B) = fcard A - fcard B" | |
| 1229 | by transfer (rule card_Diff_subset) | |
| 1230 | ||
| 1231 | lemma diff_fcard_le_fcard_fminus: | |
| 1232 | "fcard A - fcard B \<le> fcard(A |-| B)" | |
| 1233 | by transfer (rule diff_card_le_card_Diff) | |
| 1234 | ||
| 1235 | lemma fcard_fminus1_less: "x |\<in>| A \<Longrightarrow> fcard (A |-| {|x|}) < fcard A"
 | |
| 1236 | by transfer (rule card_Diff1_less) | |
| 1237 | ||
| 1238 | lemma fcard_fminus2_less: | |
| 1239 |   "x |\<in>| A \<Longrightarrow> y |\<in>| A \<Longrightarrow> fcard (A |-| {|x|} |-| {|y|}) < fcard A"
 | |
| 1240 | by transfer (rule card_Diff2_less) | |
| 1241 | ||
| 1242 | lemma fcard_fminus1_le: "fcard (A |-| {|x|}) \<le> fcard A"
 | |
| 1243 | by transfer (rule card_Diff1_le) | |
| 1244 | ||
| 1245 | lemma fcard_pfsubset: "A |\<subseteq>| B \<Longrightarrow> fcard A < fcard B \<Longrightarrow> A < B" | |
| 1246 | by transfer (rule card_psubset) | |
| 1247 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1248 | |
| 68463 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 1249 | subsubsection \<open>\<open>sorted_list_of_fset\<close>\<close> | 
| 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 1250 | |
| 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 1251 | lemma sorted_list_of_fset_simps[simp]: | 
| 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 1252 | "set (sorted_list_of_fset S) = fset S" | 
| 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 1253 | "fset_of_list (sorted_list_of_fset S) = S" | 
| 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 1254 | by (transfer, simp)+ | 
| 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 1255 | |
| 
410818a69ee3
material on finite sets and maps
 Lars Hupel <lars.hupel@mytum.de> parents: 
67829diff
changeset | 1256 | |
| 61585 | 1257 | subsubsection \<open>\<open>ffold\<close>\<close> | 
| 53963 | 1258 | |
| 1259 | (* FIXME: improve transferred to handle bounded meta quantification *) | |
| 1260 | ||
| 1261 | context comp_fun_commute | |
| 1262 | begin | |
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1263 |   lemma ffold_empty[simp]: "ffold f z {||} = z"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1264 | by (rule fold_empty[Transfer.transferred]) | 
| 53963 | 1265 | |
| 1266 | lemma ffold_finsert [simp]: | |
| 1267 | assumes "x |\<notin>| A" | |
| 1268 | shows "ffold f z (finsert x A) = f x (ffold f z A)" | |
| 1269 | using assms by (transfer fixing: f) (rule fold_insert) | |
| 1270 | ||
| 1271 | lemma ffold_fun_left_comm: | |
| 1272 | "f x (ffold f z A) = ffold f (f x z) A" | |
| 1273 | by (transfer fixing: f) (rule fold_fun_left_comm) | |
| 1274 | ||
| 1275 | lemma ffold_finsert2: | |
| 56646 | 1276 | "x |\<notin>| A \<Longrightarrow> ffold f z (finsert x A) = ffold f (f x z) A" | 
| 53963 | 1277 | by (transfer fixing: f) (rule fold_insert2) | 
| 1278 | ||
| 1279 | lemma ffold_rec: | |
| 1280 | assumes "x |\<in>| A" | |
| 1281 |     shows "ffold f z A = f x (ffold f z (A |-| {|x|}))"
 | |
| 1282 | using assms by (transfer fixing: f) (rule fold_rec) | |
| 63331 | 1283 | |
| 53963 | 1284 | lemma ffold_finsert_fremove: | 
| 1285 |     "ffold f z (finsert x A) = f x (ffold f z (A |-| {|x|}))"
 | |
| 1286 | by (transfer fixing: f) (rule fold_insert_remove) | |
| 1287 | end | |
| 1288 | ||
| 1289 | lemma ffold_fimage: | |
| 1290 | assumes "inj_on g (fset A)" | |
| 1291 | shows "ffold f z (g |`| A) = ffold (f \<circ> g) z A" | |
| 1292 | using assms by transfer' (rule fold_image) | |
| 1293 | ||
| 1294 | lemma ffold_cong: | |
| 1295 | assumes "comp_fun_commute f" "comp_fun_commute g" | |
| 1296 | "\<And>x. x |\<in>| A \<Longrightarrow> f x = g x" | |
| 1297 | and "s = t" and "A = B" | |
| 1298 | shows "ffold f s A = ffold g t B" | |
| 73832 | 1299 | using assms[unfolded comp_fun_commute_def'] | 
| 1300 | by transfer (meson Finite_Set.fold_cong subset_UNIV) | |
| 53963 | 1301 | |
| 1302 | context comp_fun_idem | |
| 1303 | begin | |
| 1304 | ||
| 1305 | lemma ffold_finsert_idem: | |
| 56646 | 1306 | "ffold f z (finsert x A) = f x (ffold f z A)" | 
| 53963 | 1307 | by (transfer fixing: f) (rule fold_insert_idem) | 
| 63331 | 1308 | |
| 53963 | 1309 | declare ffold_finsert [simp del] ffold_finsert_idem [simp] | 
| 63331 | 1310 | |
| 53963 | 1311 | lemma ffold_finsert_idem2: | 
| 1312 | "ffold f z (finsert x A) = ffold f (f x z) A" | |
| 1313 | by (transfer fixing: f) (rule fold_insert_idem2) | |
| 1314 | ||
| 1315 | end | |
| 1316 | ||
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1317 | |
| 76268 | 1318 | subsubsection \<open>@{term fsubset}\<close>
 | 
| 1319 | ||
| 1320 | lemma wfP_pfsubset: "wfP (|\<subset>|)" | |
| 1321 | proof (rule wfP_if_convertible_to_nat) | |
| 1322 | show "\<And>x y. x |\<subset>| y \<Longrightarrow> fcard x < fcard y" | |
| 1323 | by (rule pfsubset_fcard_mono) | |
| 1324 | qed | |
| 1325 | ||
| 1326 | ||
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1327 | subsubsection \<open>Group operations\<close> | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1328 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1329 | locale comm_monoid_fset = comm_monoid | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1330 | begin | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1331 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1332 | sublocale set: comm_monoid_set .. | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1333 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1334 | lift_definition F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a" is set.F .
 | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1335 | |
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1336 | lemma cong[fundef_cong]: "A = B \<Longrightarrow> (\<And>x. x |\<in>| B \<Longrightarrow> g x = h x) \<Longrightarrow> F g A = F h B" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1337 | by (rule set.cong[Transfer.transferred]) | 
| 66261 | 1338 | |
| 69654 | 1339 | lemma cong_simp[cong]: | 
| 69164 | 1340 | "\<lbrakk> A = B; \<And>x. x |\<in>| B =simp=> g x = h x \<rbrakk> \<Longrightarrow> F g A = F h B" | 
| 1341 | unfolding simp_implies_def by (auto cong: cong) | |
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1342 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1343 | end | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1344 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1345 | context comm_monoid_add begin | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1346 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1347 | sublocale fsum: comm_monoid_fset plus 0 | 
| 67764 | 1348 | rewrites "comm_monoid_set.F plus 0 = sum" | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1349 | defines fsum = fsum.F | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1350 | proof - | 
| 67399 | 1351 | show "comm_monoid_fset (+) 0" by standard | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1352 | |
| 67399 | 1353 | show "comm_monoid_set.F (+) 0 = sum" unfolding sum_def .. | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1354 | qed | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1355 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1356 | end | 
| 66261 | 1357 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1358 | |
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1359 | subsubsection \<open>Semilattice operations\<close> | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1360 | |
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1361 | locale semilattice_fset = semilattice | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1362 | begin | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1363 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1364 | sublocale set: semilattice_set .. | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1365 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1366 | lift_definition F :: "'a fset \<Rightarrow> 'a" is set.F . | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1367 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1368 | lemma eq_fold: "F (finsert x A) = ffold f x A" | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1369 | by transfer (rule set.eq_fold) | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1370 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1371 | lemma singleton [simp]: "F {|x|} = x"
 | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1372 | by transfer (rule set.singleton) | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1373 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1374 | lemma insert_not_elem: "x |\<notin>| A \<Longrightarrow> A \<noteq> {||} \<Longrightarrow> F (finsert x A) = x \<^bold>* F A"
 | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1375 | by transfer (rule set.insert_not_elem) | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1376 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1377 | lemma in_idem: "x |\<in>| A \<Longrightarrow> x \<^bold>* F A = F A" | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1378 | by transfer (rule set.in_idem) | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1379 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1380 | lemma insert [simp]: "A \<noteq> {||} \<Longrightarrow> F (finsert x A) = x \<^bold>* F A"
 | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1381 | by transfer (rule set.insert) | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1382 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1383 | end | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1384 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1385 | locale semilattice_order_fset = binary?: semilattice_order + semilattice_fset | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1386 | begin | 
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1387 | |
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1388 | end | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1389 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1390 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1391 | context linorder begin | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1392 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1393 | sublocale fMin: semilattice_order_fset min less_eq less | 
| 67764 | 1394 | rewrites "semilattice_set.F min = Min" | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1395 | defines fMin = fMin.F | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1396 | proof - | 
| 67399 | 1397 | show "semilattice_order_fset min (\<le>) (<)" by standard | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1398 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1399 | show "semilattice_set.F min = Min" unfolding Min_def .. | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1400 | qed | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1401 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1402 | sublocale fMax: semilattice_order_fset max greater_eq greater | 
| 67764 | 1403 | rewrites "semilattice_set.F max = Max" | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1404 | defines fMax = fMax.F | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1405 | proof - | 
| 67399 | 1406 | show "semilattice_order_fset max (\<ge>) (>)" | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1407 | by standard | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1408 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1409 | show "semilattice_set.F max = Max" | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1410 | unfolding Max_def .. | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1411 | qed | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1412 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1413 | end | 
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1414 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1415 | lemma mono_fMax_commute: "mono f \<Longrightarrow> A \<noteq> {||} \<Longrightarrow> f (fMax A) = fMax (f |`| A)"
 | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1416 | by transfer (rule mono_Max_commute) | 
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1417 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1418 | lemma mono_fMin_commute: "mono f \<Longrightarrow> A \<noteq> {||} \<Longrightarrow> f (fMin A) = fMin (f |`| A)"
 | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 1419 | by transfer (rule mono_Min_commute) | 
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1420 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1421 | lemma fMax_in[simp]: "A \<noteq> {||} \<Longrightarrow> fMax A |\<in>| A"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1422 | by transfer (rule Max_in) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1423 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1424 | lemma fMin_in[simp]: "A \<noteq> {||} \<Longrightarrow> fMin A |\<in>| A"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1425 | by transfer (rule Min_in) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1426 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1427 | lemma fMax_ge[simp]: "x |\<in>| A \<Longrightarrow> x \<le> fMax A" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1428 | by transfer (rule Max_ge) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1429 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1430 | lemma fMin_le[simp]: "x |\<in>| A \<Longrightarrow> fMin A \<le> x" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1431 | by transfer (rule Min_le) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1432 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1433 | lemma fMax_eqI: "(\<And>y. y |\<in>| A \<Longrightarrow> y \<le> x) \<Longrightarrow> x |\<in>| A \<Longrightarrow> fMax A = x" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1434 | by transfer (rule Max_eqI) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1435 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1436 | lemma fMin_eqI: "(\<And>y. y |\<in>| A \<Longrightarrow> x \<le> y) \<Longrightarrow> x |\<in>| A \<Longrightarrow> fMin A = x" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1437 | by transfer (rule Min_eqI) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1438 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1439 | lemma fMax_finsert[simp]: "fMax (finsert x A) = (if A = {||} then x else max x (fMax A))"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1440 | by transfer simp | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1441 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1442 | lemma fMin_finsert[simp]: "fMin (finsert x A) = (if A = {||} then x else min x (fMin A))"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1443 | by transfer simp | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1444 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1445 | context linorder begin | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1446 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1447 | lemma fset_linorder_max_induct[case_names fempty finsert]: | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1448 |   assumes "P {||}"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1449 | and "\<And>x S. \<lbrakk>\<forall>y. y |\<in>| S \<longrightarrow> y < x; P S\<rbrakk> \<Longrightarrow> P (finsert x S)" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1450 | shows "P S" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1451 | proof - | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1452 | (* FIXME transfer and right_total vs. bi_total *) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1453 | note Domainp_forall_transfer[transfer_rule] | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1454 | show ?thesis | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1455 | using assms by (transfer fixing: less) (auto intro: finite_linorder_max_induct) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1456 | qed | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1457 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1458 | lemma fset_linorder_min_induct[case_names fempty finsert]: | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1459 |   assumes "P {||}"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1460 | and "\<And>x S. \<lbrakk>\<forall>y. y |\<in>| S \<longrightarrow> y > x; P S\<rbrakk> \<Longrightarrow> P (finsert x S)" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1461 | shows "P S" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1462 | proof - | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1463 | (* FIXME transfer and right_total vs. bi_total *) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1464 | note Domainp_forall_transfer[transfer_rule] | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1465 | show ?thesis | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1466 | using assms by (transfer fixing: less) (auto intro: finite_linorder_min_induct) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1467 | qed | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1468 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1469 | end | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1470 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 1471 | |
| 60500 | 1472 | subsection \<open>Choice in fsets\<close> | 
| 53953 | 1473 | |
| 63331 | 1474 | lemma fset_choice: | 
| 53953 | 1475 | assumes "\<forall>x. x |\<in>| A \<longrightarrow> (\<exists>y. P x y)" | 
| 1476 | shows "\<exists>f. \<forall>x. x |\<in>| A \<longrightarrow> P x (f x)" | |
| 1477 | using assms by transfer metis | |
| 1478 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1479 | |
| 60500 | 1480 | subsection \<open>Induction and Cases rules for fsets\<close> | 
| 53953 | 1481 | |
| 1482 | lemma fset_exhaust [case_names empty insert, cases type: fset]: | |
| 63331 | 1483 |   assumes fempty_case: "S = {||} \<Longrightarrow> P"
 | 
| 53953 | 1484 | and finsert_case: "\<And>x S'. S = finsert x S' \<Longrightarrow> P" | 
| 1485 | shows "P" | |
| 1486 | using assms by transfer blast | |
| 1487 | ||
| 1488 | lemma fset_induct [case_names empty insert]: | |
| 1489 |   assumes fempty_case: "P {||}"
 | |
| 1490 | and finsert_case: "\<And>x S. P S \<Longrightarrow> P (finsert x S)" | |
| 1491 | shows "P S" | |
| 1492 | proof - | |
| 1493 | (* FIXME transfer and right_total vs. bi_total *) | |
| 1494 | note Domainp_forall_transfer[transfer_rule] | |
| 1495 | show ?thesis | |
| 1496 | using assms by transfer (auto intro: finite_induct) | |
| 1497 | qed | |
| 1498 | ||
| 1499 | lemma fset_induct_stronger [case_names empty insert, induct type: fset]: | |
| 1500 |   assumes empty_fset_case: "P {||}"
 | |
| 1501 | and insert_fset_case: "\<And>x S. \<lbrakk>x |\<notin>| S; P S\<rbrakk> \<Longrightarrow> P (finsert x S)" | |
| 1502 | shows "P S" | |
| 1503 | proof - | |
| 1504 | (* FIXME transfer and right_total vs. bi_total *) | |
| 1505 | note Domainp_forall_transfer[transfer_rule] | |
| 1506 | show ?thesis | |
| 1507 | using assms by transfer (auto intro: finite_induct) | |
| 1508 | qed | |
| 1509 | ||
| 1510 | lemma fset_card_induct: | |
| 1511 |   assumes empty_fset_case: "P {||}"
 | |
| 1512 | and card_fset_Suc_case: "\<And>S T. Suc (fcard S) = (fcard T) \<Longrightarrow> P S \<Longrightarrow> P T" | |
| 1513 | shows "P S" | |
| 1514 | proof (induct S) | |
| 1515 | case empty | |
| 1516 |   show "P {||}" by (rule empty_fset_case)
 | |
| 1517 | next | |
| 1518 | case (insert x S) | |
| 1519 | have h: "P S" by fact | |
| 1520 | have "x |\<notin>| S" by fact | |
| 63331 | 1521 | then have "Suc (fcard S) = fcard (finsert x S)" | 
| 53953 | 1522 | by transfer auto | 
| 63331 | 1523 | then show "P (finsert x S)" | 
| 53953 | 1524 | using h card_fset_Suc_case by simp | 
| 1525 | qed | |
| 1526 | ||
| 1527 | lemma fset_strong_cases: | |
| 1528 |   obtains "xs = {||}"
 | |
| 1529 | | ys x where "x |\<notin>| ys" and "xs = finsert x ys" | |
| 1530 | by transfer blast | |
| 1531 | ||
| 1532 | lemma fset_induct2: | |
| 1533 |   "P {||} {||} \<Longrightarrow>
 | |
| 1534 |   (\<And>x xs. x |\<notin>| xs \<Longrightarrow> P (finsert x xs) {||}) \<Longrightarrow>
 | |
| 1535 |   (\<And>y ys. y |\<notin>| ys \<Longrightarrow> P {||} (finsert y ys)) \<Longrightarrow>
 | |
| 1536 | (\<And>x xs y ys. \<lbrakk>P xs ys; x |\<notin>| xs; y |\<notin>| ys\<rbrakk> \<Longrightarrow> P (finsert x xs) (finsert y ys)) \<Longrightarrow> | |
| 1537 | P xsa ysa" | |
| 1538 | apply (induct xsa arbitrary: ysa) | |
| 1539 | apply (induct_tac x rule: fset_induct_stronger) | |
| 1540 | apply simp_all | |
| 1541 | apply (induct_tac xa rule: fset_induct_stronger) | |
| 1542 | apply simp_all | |
| 1543 | done | |
| 1544 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1545 | |
| 78132 | 1546 | subsection \<open>Lemmas depending on induction\<close> | 
| 1547 | ||
| 1548 | lemma ffUnion_fsubset_iff: "ffUnion A |\<subseteq>| B \<longleftrightarrow> fBall A (\<lambda>x. x |\<subseteq>| B)" | |
| 1549 | by (induction A) simp_all | |
| 1550 | ||
| 1551 | ||
| 60500 | 1552 | subsection \<open>Setup for Lifting/Transfer\<close> | 
| 53953 | 1553 | |
| 60500 | 1554 | subsubsection \<open>Relator and predicator properties\<close> | 
| 53953 | 1555 | |
| 55938 | 1556 | lift_definition rel_fset :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'b fset \<Rightarrow> bool" is rel_set
 | 
| 1557 | parametric rel_set_transfer . | |
| 53953 | 1558 | |
| 63331 | 1559 | lemma rel_fset_alt_def: "rel_fset R = (\<lambda>A B. (\<forall>x.\<exists>y. x|\<in>|A \<longrightarrow> y|\<in>|B \<and> R x y) | 
| 53953 | 1560 | \<and> (\<forall>y. \<exists>x. y|\<in>|B \<longrightarrow> x|\<in>|A \<and> R x y))" | 
| 1561 | apply (rule ext)+ | |
| 1562 | apply transfer' | |
| 63331 | 1563 | apply (subst rel_set_def[unfolded fun_eq_iff]) | 
| 53953 | 1564 | by blast | 
| 1565 | ||
| 55938 | 1566 | lemma finite_rel_set: | 
| 53953 | 1567 | assumes fin: "finite X" "finite Z" | 
| 55938 | 1568 | assumes R_S: "rel_set (R OO S) X Z" | 
| 1569 | shows "\<exists>Y. finite Y \<and> rel_set R X Y \<and> rel_set S Y Z" | |
| 53953 | 1570 | proof - | 
| 1571 | obtain f where f: "\<forall>x\<in>X. R x (f x) \<and> (\<exists>z\<in>Z. S (f x) z)" | |
| 1572 | apply atomize_elim | |
| 1573 | apply (subst bchoice_iff[symmetric]) | |
| 55938 | 1574 | using R_S[unfolded rel_set_def OO_def] by blast | 
| 63331 | 1575 | |
| 56646 | 1576 | obtain g where g: "\<forall>z\<in>Z. S (g z) z \<and> (\<exists>x\<in>X. R x (g z))" | 
| 53953 | 1577 | apply atomize_elim | 
| 1578 | apply (subst bchoice_iff[symmetric]) | |
| 55938 | 1579 | using R_S[unfolded rel_set_def OO_def] by blast | 
| 63331 | 1580 | |
| 53953 | 1581 | let ?Y = "f ` X \<union> g ` Z" | 
| 1582 | have "finite ?Y" by (simp add: fin) | |
| 55938 | 1583 | moreover have "rel_set R X ?Y" | 
| 1584 | unfolding rel_set_def | |
| 53953 | 1585 | using f g by clarsimp blast | 
| 55938 | 1586 | moreover have "rel_set S ?Y Z" | 
| 1587 | unfolding rel_set_def | |
| 53953 | 1588 | using f g by clarsimp blast | 
| 1589 | ultimately show ?thesis by metis | |
| 1590 | qed | |
| 1591 | ||
| 60500 | 1592 | subsubsection \<open>Transfer rules for the Transfer package\<close> | 
| 53953 | 1593 | |
| 60500 | 1594 | text \<open>Unconditional transfer rules\<close> | 
| 53953 | 1595 | |
| 63343 | 1596 | context includes lifting_syntax | 
| 53963 | 1597 | begin | 
| 1598 | ||
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1599 | lemma fempty_transfer [transfer_rule]: | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1600 |   "rel_fset A {||} {||}"
 | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1601 | by (rule empty_transfer[Transfer.transferred]) | 
| 53953 | 1602 | |
| 1603 | lemma finsert_transfer [transfer_rule]: | |
| 55933 | 1604 | "(A ===> rel_fset A ===> rel_fset A) finsert finsert" | 
| 55945 | 1605 | unfolding rel_fun_def rel_fset_alt_def by blast | 
| 53953 | 1606 | |
| 1607 | lemma funion_transfer [transfer_rule]: | |
| 55933 | 1608 | "(rel_fset A ===> rel_fset A ===> rel_fset A) funion funion" | 
| 55945 | 1609 | unfolding rel_fun_def rel_fset_alt_def by blast | 
| 53953 | 1610 | |
| 1611 | lemma ffUnion_transfer [transfer_rule]: | |
| 55933 | 1612 | "(rel_fset (rel_fset A) ===> rel_fset A) ffUnion ffUnion" | 
| 55945 | 1613 | unfolding rel_fun_def rel_fset_alt_def by transfer (simp, fast) | 
| 53953 | 1614 | |
| 1615 | lemma fimage_transfer [transfer_rule]: | |
| 55933 | 1616 | "((A ===> B) ===> rel_fset A ===> rel_fset B) fimage fimage" | 
| 55945 | 1617 | unfolding rel_fun_def rel_fset_alt_def by simp blast | 
| 53953 | 1618 | |
| 1619 | lemma fBall_transfer [transfer_rule]: | |
| 67399 | 1620 | "(rel_fset A ===> (A ===> (=)) ===> (=)) fBall fBall" | 
| 55945 | 1621 | unfolding rel_fset_alt_def rel_fun_def by blast | 
| 53953 | 1622 | |
| 1623 | lemma fBex_transfer [transfer_rule]: | |
| 67399 | 1624 | "(rel_fset A ===> (A ===> (=)) ===> (=)) fBex fBex" | 
| 55945 | 1625 | unfolding rel_fset_alt_def rel_fun_def by blast | 
| 53953 | 1626 | |
| 1627 | (* FIXME transfer doesn't work here *) | |
| 1628 | lemma fPow_transfer [transfer_rule]: | |
| 55933 | 1629 | "(rel_fset A ===> rel_fset (rel_fset A)) fPow fPow" | 
| 55945 | 1630 | unfolding rel_fun_def | 
| 1631 | using Pow_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] | |
| 53953 | 1632 | by blast | 
| 1633 | ||
| 55933 | 1634 | lemma rel_fset_transfer [transfer_rule]: | 
| 67399 | 1635 | "((A ===> B ===> (=)) ===> rel_fset A ===> rel_fset B ===> (=)) | 
| 55933 | 1636 | rel_fset rel_fset" | 
| 55945 | 1637 | unfolding rel_fun_def | 
| 1638 | using rel_set_transfer[unfolded rel_fun_def,rule_format, Transfer.transferred, where A = A and B = B] | |
| 53953 | 1639 | by simp | 
| 1640 | ||
| 1641 | lemma bind_transfer [transfer_rule]: | |
| 55933 | 1642 | "(rel_fset A ===> (A ===> rel_fset B) ===> rel_fset B) fbind fbind" | 
| 63092 | 1643 | unfolding rel_fun_def | 
| 55945 | 1644 | using bind_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | 
| 53953 | 1645 | |
| 60500 | 1646 | text \<open>Rules requiring bi-unique, bi-total or right-total relations\<close> | 
| 53953 | 1647 | |
| 1648 | lemma fmember_transfer [transfer_rule]: | |
| 1649 | assumes "bi_unique A" | |
| 67399 | 1650 | shows "(A ===> rel_fset A ===> (=)) (|\<in>|) (|\<in>|)" | 
| 55945 | 1651 | using assms unfolding rel_fun_def rel_fset_alt_def bi_unique_def by metis | 
| 53953 | 1652 | |
| 1653 | lemma finter_transfer [transfer_rule]: | |
| 1654 | assumes "bi_unique A" | |
| 55933 | 1655 | shows "(rel_fset A ===> rel_fset A ===> rel_fset A) finter finter" | 
| 55945 | 1656 | using assms unfolding rel_fun_def | 
| 1657 | using inter_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | |
| 53953 | 1658 | |
| 53963 | 1659 | lemma fminus_transfer [transfer_rule]: | 
| 53953 | 1660 | assumes "bi_unique A" | 
| 67399 | 1661 | shows "(rel_fset A ===> rel_fset A ===> rel_fset A) (|-|) (|-|)" | 
| 55945 | 1662 | using assms unfolding rel_fun_def | 
| 1663 | using Diff_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | |
| 53953 | 1664 | |
| 1665 | lemma fsubset_transfer [transfer_rule]: | |
| 1666 | assumes "bi_unique A" | |
| 67399 | 1667 | shows "(rel_fset A ===> rel_fset A ===> (=)) (|\<subseteq>|) (|\<subseteq>|)" | 
| 55945 | 1668 | using assms unfolding rel_fun_def | 
| 1669 | using subset_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | |
| 53953 | 1670 | |
| 1671 | lemma fSup_transfer [transfer_rule]: | |
| 55938 | 1672 | "bi_unique A \<Longrightarrow> (rel_set (rel_fset A) ===> rel_fset A) Sup Sup" | 
| 63092 | 1673 | unfolding rel_fun_def | 
| 53953 | 1674 | apply clarify | 
| 1675 | apply transfer' | |
| 55945 | 1676 | using Sup_fset_transfer[unfolded rel_fun_def] by blast | 
| 53953 | 1677 | |
| 1678 | (* FIXME: add right_total_fInf_transfer *) | |
| 1679 | ||
| 1680 | lemma fInf_transfer [transfer_rule]: | |
| 1681 | assumes "bi_unique A" and "bi_total A" | |
| 55938 | 1682 | shows "(rel_set (rel_fset A) ===> rel_fset A) Inf Inf" | 
| 55945 | 1683 | using assms unfolding rel_fun_def | 
| 53953 | 1684 | apply clarify | 
| 1685 | apply transfer' | |
| 55945 | 1686 | using Inf_fset_transfer[unfolded rel_fun_def] by blast | 
| 53953 | 1687 | |
| 1688 | lemma ffilter_transfer [transfer_rule]: | |
| 1689 | assumes "bi_unique A" | |
| 67399 | 1690 | shows "((A ===> (=)) ===> rel_fset A ===> rel_fset A) ffilter ffilter" | 
| 55945 | 1691 | using assms unfolding rel_fun_def | 
| 1692 | using Lifting_Set.filter_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | |
| 53953 | 1693 | |
| 1694 | lemma card_transfer [transfer_rule]: | |
| 67399 | 1695 | "bi_unique A \<Longrightarrow> (rel_fset A ===> (=)) fcard fcard" | 
| 63092 | 1696 | unfolding rel_fun_def | 
| 55945 | 1697 | using card_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | 
| 53953 | 1698 | |
| 1699 | end | |
| 1700 | ||
| 1701 | lifting_update fset.lifting | |
| 1702 | lifting_forget fset.lifting | |
| 1703 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1704 | |
| 60500 | 1705 | subsection \<open>BNF setup\<close> | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1706 | |
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1707 | context | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1708 | includes fset.lifting | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1709 | begin | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1710 | |
| 55933 | 1711 | lemma rel_fset_alt: | 
| 1712 | "rel_fset R a b \<longleftrightarrow> (\<forall>t \<in> fset a. \<exists>u \<in> fset b. R t u) \<and> (\<forall>t \<in> fset b. \<exists>u \<in> fset a. R u t)" | |
| 55938 | 1713 | by transfer (simp add: rel_set_def) | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1714 | |
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1715 | lemma fset_to_fset: "finite A \<Longrightarrow> fset (the_inv fset A) = A" | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1716 | apply (rule f_the_inv_into_f[unfolded inj_on_def]) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1717 | apply (simp add: fset_inject) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1718 | apply (rule range_eqI Abs_fset_inverse[symmetric] CollectI)+ | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1719 | . | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1720 | |
| 55933 | 1721 | lemma rel_fset_aux: | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1722 | "(\<forall>t \<in> fset a. \<exists>u \<in> fset b. R t u) \<and> (\<forall>u \<in> fset b. \<exists>t \<in> fset a. R t u) \<longleftrightarrow> | 
| 57398 | 1723 |  ((BNF_Def.Grp {a. fset a \<subseteq> {(a, b). R a b}} (fimage fst))\<inverse>\<inverse> OO
 | 
| 1724 |   BNF_Def.Grp {a. fset a \<subseteq> {(a, b). R a b}} (fimage snd)) a b" (is "?L = ?R")
 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1725 | proof | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1726 | assume ?L | 
| 63040 | 1727 | define R' where "R' = | 
| 1728 | the_inv fset (Collect (case_prod R) \<inter> (fset a \<times> fset b))" (is "_ = the_inv fset ?L'") | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1729 | have "finite ?L'" by (intro finite_Int[OF disjI2] finite_cartesian_product) (transfer, simp)+ | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1730 | hence *: "fset R' = ?L'" unfolding R'_def by (intro fset_to_fset) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1731 | show ?R unfolding Grp_def relcompp.simps conversep.simps | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
55129diff
changeset | 1732 | proof (intro CollectI case_prodI exI[of _ a] exI[of _ b] exI[of _ R'] conjI refl) | 
| 60500 | 1733 | from * show "a = fimage fst R'" using conjunct1[OF \<open>?L\<close>] | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1734 | by (transfer, auto simp add: image_def Int_def split: prod.splits) | 
| 60500 | 1735 | from * show "b = fimage snd R'" using conjunct2[OF \<open>?L\<close>] | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1736 | by (transfer, auto simp add: image_def Int_def split: prod.splits) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1737 | qed (auto simp add: *) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1738 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1739 | assume ?R thus ?L unfolding Grp_def relcompp.simps conversep.simps | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1740 | apply (simp add: subset_eq Ball_def) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1741 | apply (rule conjI) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1742 | apply (transfer, clarsimp, metis snd_conv) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1743 | by (transfer, clarsimp, metis fst_conv) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1744 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1745 | |
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1746 | bnf "'a fset" | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1747 | map: fimage | 
| 63331 | 1748 | sets: fset | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1749 | bd: natLeq | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1750 |   wits: "{||}"
 | 
| 55933 | 1751 | rel: rel_fset | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1752 | apply - | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1753 | apply transfer' apply simp | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1754 | apply transfer' apply force | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1755 | apply transfer apply force | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1756 | apply transfer' apply force | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1757 | apply (rule natLeq_card_order) | 
| 75624 | 1758 | apply (rule natLeq_cinfinite) | 
| 1759 | apply (rule regularCard_natLeq) | |
| 1760 | apply transfer apply (metis finite_iff_ordLess_natLeq) | |
| 55933 | 1761 | apply (fastforce simp: rel_fset_alt) | 
| 62324 | 1762 | apply (simp add: Grp_def relcompp.simps conversep.simps fun_eq_iff rel_fset_alt | 
| 63331 | 1763 | rel_fset_aux[unfolded OO_Grp_alt]) | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1764 | apply transfer apply simp | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1765 | done | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1766 | |
| 55938 | 1767 | lemma rel_fset_fset: "rel_set \<chi> (fset A1) (fset A2) = rel_fset \<chi> A1 A2" | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1768 | by transfer (rule refl) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1769 | |
| 53953 | 1770 | end | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1771 | |
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1772 | declare | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1773 | fset.map_comp[simp] | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1774 | fset.map_id[simp] | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1775 | fset.set_map[simp] | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1776 | |
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1777 | |
| 60500 | 1778 | subsection \<open>Size setup\<close> | 
| 56646 | 1779 | |
| 1780 | context includes fset.lifting begin | |
| 64267 | 1781 | lift_definition size_fset :: "('a \<Rightarrow> nat) \<Rightarrow> 'a fset \<Rightarrow> nat" is "\<lambda>f. sum (Suc \<circ> f)" .
 | 
| 56646 | 1782 | end | 
| 1783 | ||
| 1784 | instantiation fset :: (type) size begin | |
| 1785 | definition size_fset where | |
| 1786 | size_fset_overloaded_def: "size_fset = FSet.size_fset (\<lambda>_. 0)" | |
| 1787 | instance .. | |
| 1788 | end | |
| 1789 | ||
| 78102 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1790 | lemma size_fset_simps[simp]: "size_fset f X = (\<Sum>x \<in> fset X. Suc (f x))" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1791 | by (rule size_fset_def[THEN meta_eq_to_obj_eq, THEN fun_cong, THEN fun_cong, | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1792 | unfolded map_fun_def comp_def id_apply]) | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1793 | |
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1794 | lemma size_fset_overloaded_simps[simp]: "size X = (\<Sum>x \<in> fset X. Suc 0)" | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1795 | by (rule size_fset_simps[of "\<lambda>_. 0", unfolded add_0_left add_0_right, | 
| 
f40bc75b2a3f
replaced some lemmas' implicit formulas by explicit ones to avoid silent changes
 desharna parents: 
76305diff
changeset | 1796 | folded size_fset_overloaded_def]) | 
| 56646 | 1797 | |
| 1798 | lemma fset_size_o_map: "inj f \<Longrightarrow> size_fset g \<circ> fimage f = size_fset (g \<circ> f)" | |
| 60228 
32dd7adba5a4
tuned proof; forget the transfer rule for size_fset
 kuncar parents: 
58881diff
changeset | 1799 | apply (subst fun_eq_iff) | 
| 64267 | 1800 | including fset.lifting by transfer (auto intro: sum.reindex_cong subset_inj_on) | 
| 63331 | 1801 | |
| 60500 | 1802 | setup \<open> | 
| 69593 | 1803 | BNF_LFP_Size.register_size_global \<^type_name>\<open>fset\<close> \<^const_name>\<open>size_fset\<close> | 
| 62082 | 1804 |   @{thm size_fset_overloaded_def} @{thms size_fset_simps size_fset_overloaded_simps}
 | 
| 1805 |   @{thms fset_size_o_map}
 | |
| 60500 | 1806 | \<close> | 
| 56646 | 1807 | |
| 60228 
32dd7adba5a4
tuned proof; forget the transfer rule for size_fset
 kuncar parents: 
58881diff
changeset | 1808 | lifting_update fset.lifting | 
| 
32dd7adba5a4
tuned proof; forget the transfer rule for size_fset
 kuncar parents: 
58881diff
changeset | 1809 | lifting_forget fset.lifting | 
| 56646 | 1810 | |
| 60500 | 1811 | subsection \<open>Advanced relator customization\<close> | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1812 | |
| 67408 | 1813 | text \<open>Set vs. sum relators:\<close> | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1814 | |
| 63331 | 1815 | lemma rel_set_rel_sum[simp]: | 
| 1816 | "rel_set (rel_sum \<chi> \<phi>) A1 A2 \<longleftrightarrow> | |
| 55938 | 1817 | rel_set \<chi> (Inl -` A1) (Inl -` A2) \<and> rel_set \<phi> (Inr -` A1) (Inr -` A2)" | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1818 | (is "?L \<longleftrightarrow> ?Rl \<and> ?Rr") | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1819 | proof safe | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1820 | assume L: "?L" | 
| 55938 | 1821 | show ?Rl unfolding rel_set_def Bex_def vimage_eq proof safe | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1822 | fix l1 assume "Inl l1 \<in> A1" | 
| 55943 | 1823 | then obtain a2 where a2: "a2 \<in> A2" and "rel_sum \<chi> \<phi> (Inl l1) a2" | 
| 55938 | 1824 | using L unfolding rel_set_def by auto | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1825 | then obtain l2 where "a2 = Inl l2 \<and> \<chi> l1 l2" by (cases a2, auto) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1826 | thus "\<exists> l2. Inl l2 \<in> A2 \<and> \<chi> l1 l2" using a2 by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1827 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1828 | fix l2 assume "Inl l2 \<in> A2" | 
| 55943 | 1829 | then obtain a1 where a1: "a1 \<in> A1" and "rel_sum \<chi> \<phi> a1 (Inl l2)" | 
| 55938 | 1830 | using L unfolding rel_set_def by auto | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1831 | then obtain l1 where "a1 = Inl l1 \<and> \<chi> l1 l2" by (cases a1, auto) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1832 | thus "\<exists> l1. Inl l1 \<in> A1 \<and> \<chi> l1 l2" using a1 by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1833 | qed | 
| 55938 | 1834 | show ?Rr unfolding rel_set_def Bex_def vimage_eq proof safe | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1835 | fix r1 assume "Inr r1 \<in> A1" | 
| 55943 | 1836 | then obtain a2 where a2: "a2 \<in> A2" and "rel_sum \<chi> \<phi> (Inr r1) a2" | 
| 55938 | 1837 | using L unfolding rel_set_def by auto | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1838 | then obtain r2 where "a2 = Inr r2 \<and> \<phi> r1 r2" by (cases a2, auto) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1839 | thus "\<exists> r2. Inr r2 \<in> A2 \<and> \<phi> r1 r2" using a2 by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1840 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1841 | fix r2 assume "Inr r2 \<in> A2" | 
| 55943 | 1842 | then obtain a1 where a1: "a1 \<in> A1" and "rel_sum \<chi> \<phi> a1 (Inr r2)" | 
| 55938 | 1843 | using L unfolding rel_set_def by auto | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1844 | then obtain r1 where "a1 = Inr r1 \<and> \<phi> r1 r2" by (cases a1, auto) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1845 | thus "\<exists> r1. Inr r1 \<in> A1 \<and> \<phi> r1 r2" using a1 by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1846 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1847 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1848 | assume Rl: "?Rl" and Rr: "?Rr" | 
| 55938 | 1849 | show ?L unfolding rel_set_def Bex_def vimage_eq proof safe | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1850 | fix a1 assume a1: "a1 \<in> A1" | 
| 55943 | 1851 | show "\<exists> a2. a2 \<in> A2 \<and> rel_sum \<chi> \<phi> a1 a2" | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1852 | proof(cases a1) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1853 | case (Inl l1) then obtain l2 where "Inl l2 \<in> A2 \<and> \<chi> l1 l2" | 
| 55938 | 1854 | using Rl a1 unfolding rel_set_def by blast | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1855 | thus ?thesis unfolding Inl by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1856 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1857 | case (Inr r1) then obtain r2 where "Inr r2 \<in> A2 \<and> \<phi> r1 r2" | 
| 55938 | 1858 | using Rr a1 unfolding rel_set_def by blast | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1859 | thus ?thesis unfolding Inr by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1860 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1861 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1862 | fix a2 assume a2: "a2 \<in> A2" | 
| 55943 | 1863 | show "\<exists> a1. a1 \<in> A1 \<and> rel_sum \<chi> \<phi> a1 a2" | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1864 | proof(cases a2) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1865 | case (Inl l2) then obtain l1 where "Inl l1 \<in> A1 \<and> \<chi> l1 l2" | 
| 55938 | 1866 | using Rl a2 unfolding rel_set_def by blast | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1867 | thus ?thesis unfolding Inl by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1868 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1869 | case (Inr r2) then obtain r1 where "Inr r1 \<in> A1 \<and> \<phi> r1 r2" | 
| 55938 | 1870 | using Rr a2 unfolding rel_set_def by blast | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1871 | thus ?thesis unfolding Inr by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1872 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1873 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1874 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1875 | |
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1876 | |
| 66262 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1877 | subsubsection \<open>Countability\<close> | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1878 | |
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1879 | lemma exists_fset_of_list: "\<exists>xs. fset_of_list xs = S" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1880 | including fset.lifting | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1881 | by transfer (rule finite_list) | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1882 | |
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1883 | lemma fset_of_list_surj[simp, intro]: "surj fset_of_list" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1884 | proof - | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1885 | have "x \<in> range fset_of_list" for x :: "'a fset" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1886 | unfolding image_iff | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1887 | using exists_fset_of_list by fastforce | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1888 | thus ?thesis by auto | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1889 | qed | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1890 | |
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1891 | instance fset :: (countable) countable | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1892 | proof | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1893 | obtain to_nat :: "'a list \<Rightarrow> nat" where "inj to_nat" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1894 | by (metis ex_inj) | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1895 | moreover have "inj (inv fset_of_list)" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1896 | using fset_of_list_surj by (rule surj_imp_inj_inv) | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1897 | ultimately have "inj (to_nat \<circ> inv fset_of_list)" | 
| 69700 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69654diff
changeset | 1898 | by (rule inj_compose) | 
| 66262 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1899 | thus "\<exists>to_nat::'a fset \<Rightarrow> nat. inj to_nat" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1900 | by auto | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1901 | qed | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1902 | |
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1903 | |
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1904 | subsection \<open>Quickcheck setup\<close> | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1905 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1906 | text \<open>Setup adapted from sets.\<close> | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1907 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1908 | notation Quickcheck_Exhaustive.orelse (infixr "orelse" 55) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1909 | |
| 72607 | 1910 | context | 
| 1911 | includes term_syntax | |
| 1912 | begin | |
| 1913 | ||
| 1914 | definition [code_unfold]: | |
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1915 | "valterm_femptyset = Code_Evaluation.valtermify ({||} :: ('a :: typerep) fset)"
 | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1916 | |
| 72607 | 1917 | definition [code_unfold]: | 
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1918 | "valtermify_finsert x s = Code_Evaluation.valtermify finsert {\<cdot>} (x :: ('a :: typerep * _)) {\<cdot>} s"
 | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1919 | |
| 72607 | 1920 | end | 
| 1921 | ||
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1922 | instantiation fset :: (exhaustive) exhaustive | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1923 | begin | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1924 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1925 | fun exhaustive_fset where | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1926 | "exhaustive_fset f i = (if i = 0 then None else (f {||} orelse exhaustive_fset (\<lambda>A. f A orelse Quickcheck_Exhaustive.exhaustive (\<lambda>x. if x |\<in>| A then None else f (finsert x A)) (i - 1)) (i - 1)))"
 | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1927 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1928 | instance .. | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1929 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1930 | end | 
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1931 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1932 | instantiation fset :: (full_exhaustive) full_exhaustive | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1933 | begin | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1934 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1935 | fun full_exhaustive_fset where | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1936 | "full_exhaustive_fset f i = (if i = 0 then None else (f valterm_femptyset orelse full_exhaustive_fset (\<lambda>A. f A orelse Quickcheck_Exhaustive.full_exhaustive (\<lambda>x. if fst x |\<in>| fst A then None else f (valtermify_finsert x A)) (i - 1)) (i - 1)))" | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1937 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1938 | instance .. | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1939 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1940 | end | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1941 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1942 | no_notation Quickcheck_Exhaustive.orelse (infixr "orelse" 55) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1943 | |
| 72581 | 1944 | instantiation fset :: (random) random | 
| 1945 | begin | |
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1946 | |
| 72581 | 1947 | context | 
| 1948 | includes state_combinator_syntax | |
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1949 | begin | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1950 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1951 | fun random_aux_fset :: "natural \<Rightarrow> natural \<Rightarrow> natural \<times> natural \<Rightarrow> ('a fset \<times> (unit \<Rightarrow> term)) \<times> natural \<times> natural" where
 | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1952 | "random_aux_fset 0 j = Quickcheck_Random.collapse (Random.select_weight [(1, Pair valterm_femptyset)])" | | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1953 | "random_aux_fset (Code_Numeral.Suc i) j = | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1954 | Quickcheck_Random.collapse (Random.select_weight | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1955 | [(1, Pair valterm_femptyset), | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1956 | (Code_Numeral.Suc i, | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1957 | Quickcheck_Random.random j \<circ>\<rightarrow> (\<lambda>x. random_aux_fset i j \<circ>\<rightarrow> (\<lambda>s. Pair (valtermify_finsert x s))))])" | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1958 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1959 | lemma [code]: | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1960 | "random_aux_fset i j = | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1961 | Quickcheck_Random.collapse (Random.select_weight [(1, Pair valterm_femptyset), | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1962 | (i, Quickcheck_Random.random j \<circ>\<rightarrow> (\<lambda>x. random_aux_fset (i - 1) j \<circ>\<rightarrow> (\<lambda>s. Pair (valtermify_finsert x s))))])" | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1963 | proof (induct i rule: natural.induct) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1964 | case zero | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1965 | show ?case by (subst select_weight_drop_zero[symmetric]) (simp add: less_natural_def) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1966 | next | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1967 | case (Suc i) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1968 | show ?case by (simp only: random_aux_fset.simps Suc_natural_minus_one) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1969 | qed | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1970 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1971 | definition "random_fset i = random_aux_fset i i" | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1972 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1973 | instance .. | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1974 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1975 | end | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1976 | |
| 72581 | 1977 | end | 
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1978 | |
| 78118 | 1979 | |
| 1980 | subsection \<open>Code Generation Setup\<close> | |
| 1981 | ||
| 1982 | text \<open>The following @{attribute code_unfold} lemmas are so the pre-processor of the code generator
 | |
| 1983 | will perform conversions like, e.g., | |
| 1984 | @{lemma "x |\<in>| fimage f (fset_of_list xs) \<longleftrightarrow> x \<in> f ` set xs"
 | |
| 1985 | by (simp only: fimage.rep_eq fset_of_list.rep_eq)}.\<close> | |
| 1986 | ||
| 1987 | declare | |
| 1988 | ffilter.rep_eq[code_unfold] | |
| 1989 | fimage.rep_eq[code_unfold] | |
| 1990 | finsert.rep_eq[code_unfold] | |
| 1991 | fset_of_list.rep_eq[code_unfold] | |
| 1992 | inf_fset.rep_eq[code_unfold] | |
| 1993 | minus_fset.rep_eq[code_unfold] | |
| 1994 | sup_fset.rep_eq[code_unfold] | |
| 1995 | uminus_fset.rep_eq[code_unfold] | |
| 1996 | ||
| 67399 | 1997 | end |