| author | wenzelm | 
| Fri, 03 Oct 2008 21:06:39 +0200 | |
| changeset 28491 | c5420429a5aa | 
| parent 23477 | f4b83f03cac9 | 
| child 29667 | 53103fc8ffa3 | 
| permissions | -rw-r--r-- | 
| 19453 | 1 | (* Title: HOL/Matrix/LP.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Steven Obua | |
| 4 | *) | |
| 5 | ||
| 6 | theory LP | |
| 7 | imports Main | |
| 8 | begin | |
| 9 | ||
| 10 | lemma linprog_dual_estimate: | |
| 11 | assumes | |
| 12 | "A * x \<le> (b::'a::lordered_ring)" | |
| 13 | "0 \<le> y" | |
| 14 | "abs (A - A') \<le> \<delta>A" | |
| 15 | "b \<le> b'" | |
| 16 | "abs (c - c') \<le> \<delta>c" | |
| 17 | "abs x \<le> r" | |
| 18 | shows | |
| 19 | "c * x \<le> y * b' + (y * \<delta>A + abs (y * A' - c') + \<delta>c) * r" | |
| 20 | proof - | |
| 21 | from prems have 1: "y * b <= y * b'" by (simp add: mult_left_mono) | |
| 22 | from prems have 2: "y * (A * x) <= y * b" by (simp add: mult_left_mono) | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
19453diff
changeset | 23 | have 3: "y * (A * x) = c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x" by (simp add: ring_simps) | 
| 19453 | 24 | from 1 2 3 have 4: "c * x + (y * (A - A') + (y * A' - c') + (c'-c)) * x <= y * b'" by simp | 
| 25 | have 5: "c * x <= y * b' + abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)" | |
| 26 | by (simp only: 4 estimate_by_abs) | |
| 27 | have 6: "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <= abs (y * (A - A') + (y * A' - c') + (c'-c)) * abs x" | |
| 28 | by (simp add: abs_le_mult) | |
| 29 | have 7: "(abs (y * (A - A') + (y * A' - c') + (c'-c))) * abs x <= (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x" | |
| 30 | by(rule abs_triangle_ineq [THEN mult_right_mono]) simp | |
| 31 | have 8: " (abs (y * (A-A') + (y*A'-c')) + abs(c'-c)) * abs x <= (abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x" | |
| 32 | by (simp add: abs_triangle_ineq mult_right_mono) | |
| 33 | have 9: "(abs (y * (A-A')) + abs (y*A'-c') + abs(c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x" | |
| 34 | by (simp add: abs_le_mult mult_right_mono) | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
19453diff
changeset | 35 | have 10: "c'-c = -(c-c')" by (simp add: ring_simps) | 
| 19453 | 36 | have 11: "abs (c'-c) = abs (c-c')" | 
| 37 | by (subst 10, subst abs_minus_cancel, simp) | |
| 38 | have 12: "(abs y * abs (A-A') + abs (y*A'-c') + abs (c'-c)) * abs x <= (abs y * abs (A-A') + abs (y*A'-c') + \<delta>c) * abs x" | |
| 39 | by (simp add: 11 prems mult_right_mono) | |
| 40 | have 13: "(abs y * abs (A-A') + abs (y*A'-c') + \<delta>c) * abs x <= (abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * abs x" | |
| 41 | by (simp add: prems mult_right_mono mult_left_mono) | |
| 42 | have r: "(abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * abs x <= (abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * r" | |
| 43 | apply (rule mult_left_mono) | |
| 44 | apply (simp add: prems) | |
| 45 | apply (rule_tac add_mono[of "0::'a" _ "0", simplified])+ | |
| 46 | apply (rule mult_left_mono[of "0" "\<delta>A", simplified]) | |
| 47 | apply (simp_all) | |
| 48 | apply (rule order_trans[where y="abs (A-A')"], simp_all add: prems) | |
| 49 | apply (rule order_trans[where y="abs (c-c')"], simp_all add: prems) | |
| 50 | done | |
| 51 | from 6 7 8 9 12 13 r have 14:" abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <=(abs y * \<delta>A + abs (y*A'-c') + \<delta>c) * r" | |
| 52 | by (simp) | |
| 53 | show ?thesis | |
| 54 | apply (rule_tac le_add_right_mono[of _ _ "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"]) | |
| 55 | apply (simp_all only: 5 14[simplified abs_of_nonneg[of y, simplified prems]]) | |
| 56 | done | |
| 57 | qed | |
| 58 | ||
| 59 | lemma le_ge_imp_abs_diff_1: | |
| 60 | assumes | |
| 61 | "A1 <= (A::'a::lordered_ring)" | |
| 62 | "A <= A2" | |
| 63 | shows "abs (A-A1) <= A2-A1" | |
| 64 | proof - | |
| 65 | have "0 <= A - A1" | |
| 66 | proof - | |
| 67 | have 1: "A - A1 = A + (- A1)" by simp | |
| 68 | show ?thesis by (simp only: 1 add_right_mono[of A1 A "-A1", simplified, simplified prems]) | |
| 69 | qed | |
| 70 | then have "abs (A-A1) = A-A1" by (rule abs_of_nonneg) | |
| 71 | with prems show "abs (A-A1) <= (A2-A1)" by simp | |
| 72 | qed | |
| 73 | ||
| 74 | lemma mult_le_prts: | |
| 75 | assumes | |
| 76 | "a1 <= (a::'a::lordered_ring)" | |
| 77 | "a <= a2" | |
| 78 | "b1 <= b" | |
| 79 | "b <= b2" | |
| 80 | shows | |
| 81 | "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1" | |
| 82 | proof - | |
| 83 | have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" | |
| 84 | apply (subst prts[symmetric])+ | |
| 85 | apply simp | |
| 86 | done | |
| 87 | then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b" | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
19453diff
changeset | 88 | by (simp add: ring_simps) | 
| 19453 | 89 | moreover have "pprt a * pprt b <= pprt a2 * pprt b2" | 
| 90 | by (simp_all add: prems mult_mono) | |
| 91 | moreover have "pprt a * nprt b <= pprt a1 * nprt b2" | |
| 92 | proof - | |
| 93 | have "pprt a * nprt b <= pprt a * nprt b2" | |
| 94 | by (simp add: mult_left_mono prems) | |
| 95 | moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2" | |
| 96 | by (simp add: mult_right_mono_neg prems) | |
| 97 | ultimately show ?thesis | |
| 98 | by simp | |
| 99 | qed | |
| 100 | moreover have "nprt a * pprt b <= nprt a2 * pprt b1" | |
| 101 | proof - | |
| 102 | have "nprt a * pprt b <= nprt a2 * pprt b" | |
| 103 | by (simp add: mult_right_mono prems) | |
| 104 | moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1" | |
| 105 | by (simp add: mult_left_mono_neg prems) | |
| 106 | ultimately show ?thesis | |
| 107 | by simp | |
| 108 | qed | |
| 109 | moreover have "nprt a * nprt b <= nprt a1 * nprt b1" | |
| 110 | proof - | |
| 111 | have "nprt a * nprt b <= nprt a * nprt b1" | |
| 112 | by (simp add: mult_left_mono_neg prems) | |
| 113 | moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1" | |
| 114 | by (simp add: mult_right_mono_neg prems) | |
| 115 | ultimately show ?thesis | |
| 116 | by simp | |
| 117 | qed | |
| 118 | ultimately show ?thesis | |
| 119 | by - (rule add_mono | simp)+ | |
| 120 | qed | |
| 121 | ||
| 122 | lemma mult_le_dual_prts: | |
| 123 | assumes | |
| 124 | "A * x \<le> (b::'a::lordered_ring)" | |
| 125 | "0 \<le> y" | |
| 126 | "A1 \<le> A" | |
| 127 | "A \<le> A2" | |
| 128 | "c1 \<le> c" | |
| 129 | "c \<le> c2" | |
| 130 | "r1 \<le> x" | |
| 131 | "x \<le> r2" | |
| 132 | shows | |
| 133 | "c * x \<le> y * b + (let s1 = c1 - y * A2; s2 = c2 - y * A1 in pprt s2 * pprt r2 + pprt s1 * nprt r2 + nprt s2 * pprt r1 + nprt s1 * nprt r1)" | |
| 134 | (is "_ <= _ + ?C") | |
| 135 | proof - | |
| 136 | from prems have "y * (A * x) <= y * b" by (simp add: mult_left_mono) | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
19453diff
changeset | 137 | moreover have "y * (A * x) = c * x + (y * A - c) * x" by (simp add: ring_simps) | 
| 19453 | 138 | ultimately have "c * x + (y * A - c) * x <= y * b" by simp | 
| 139 | then have "c * x <= y * b - (y * A - c) * x" by (simp add: le_diff_eq) | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
19453diff
changeset | 140 | then have cx: "c * x <= y * b + (c - y * A) * x" by (simp add: ring_simps) | 
| 19453 | 141 | have s2: "c - y * A <= c2 - y * A1" | 
| 142 | by (simp add: diff_def prems add_mono mult_left_mono) | |
| 143 | have s1: "c1 - y * A2 <= c - y * A" | |
| 144 | by (simp add: diff_def prems add_mono mult_left_mono) | |
| 145 | have prts: "(c - y * A) * x <= ?C" | |
| 146 | apply (simp add: Let_def) | |
| 147 | apply (rule mult_le_prts) | |
| 148 | apply (simp_all add: prems s1 s2) | |
| 149 | done | |
| 150 | then have "y * b + (c - y * A) * x <= y * b + ?C" | |
| 151 | by simp | |
| 152 | with cx show ?thesis | |
| 153 | by(simp only:) | |
| 154 | qed | |
| 155 | ||
| 156 | end |