|
29993
|
1 |
(* Title: Inner_Product.thy
|
|
|
2 |
Author: Brian Huffman
|
|
|
3 |
*)
|
|
|
4 |
|
|
|
5 |
header {* Inner Product Spaces and the Gradient Derivative *}
|
|
|
6 |
|
|
|
7 |
theory Inner_Product
|
|
|
8 |
imports Complex FrechetDeriv
|
|
|
9 |
begin
|
|
|
10 |
|
|
|
11 |
subsection {* Real inner product spaces *}
|
|
|
12 |
|
|
|
13 |
class real_inner = real_vector + sgn_div_norm +
|
|
|
14 |
fixes inner :: "'a \<Rightarrow> 'a \<Rightarrow> real"
|
|
|
15 |
assumes inner_commute: "inner x y = inner y x"
|
|
|
16 |
and inner_left_distrib: "inner (x + y) z = inner x z + inner y z"
|
|
|
17 |
and inner_scaleR_left: "inner (scaleR r x) y = r * (inner x y)"
|
|
|
18 |
and inner_ge_zero [simp]: "0 \<le> inner x x"
|
|
|
19 |
and inner_eq_zero_iff [simp]: "inner x x = 0 \<longleftrightarrow> x = 0"
|
|
|
20 |
and norm_eq_sqrt_inner: "norm x = sqrt (inner x x)"
|
|
|
21 |
begin
|
|
|
22 |
|
|
|
23 |
lemma inner_zero_left [simp]: "inner 0 x = 0"
|
|
30067
|
24 |
using inner_left_distrib [of 0 0 x] by simp
|
|
29993
|
25 |
|
|
|
26 |
lemma inner_minus_left [simp]: "inner (- x) y = - inner x y"
|
|
30067
|
27 |
using inner_left_distrib [of x "- x" y] by simp
|
|
29993
|
28 |
|
|
|
29 |
lemma inner_diff_left: "inner (x - y) z = inner x z - inner y z"
|
|
|
30 |
by (simp add: diff_minus inner_left_distrib)
|
|
|
31 |
|
|
|
32 |
text {* Transfer distributivity rules to right argument. *}
|
|
|
33 |
|
|
|
34 |
lemma inner_right_distrib: "inner x (y + z) = inner x y + inner x z"
|
|
|
35 |
using inner_left_distrib [of y z x] by (simp only: inner_commute)
|
|
|
36 |
|
|
|
37 |
lemma inner_scaleR_right: "inner x (scaleR r y) = r * (inner x y)"
|
|
|
38 |
using inner_scaleR_left [of r y x] by (simp only: inner_commute)
|
|
|
39 |
|
|
|
40 |
lemma inner_zero_right [simp]: "inner x 0 = 0"
|
|
|
41 |
using inner_zero_left [of x] by (simp only: inner_commute)
|
|
|
42 |
|
|
|
43 |
lemma inner_minus_right [simp]: "inner x (- y) = - inner x y"
|
|
|
44 |
using inner_minus_left [of y x] by (simp only: inner_commute)
|
|
|
45 |
|
|
|
46 |
lemma inner_diff_right: "inner x (y - z) = inner x y - inner x z"
|
|
|
47 |
using inner_diff_left [of y z x] by (simp only: inner_commute)
|
|
|
48 |
|
|
|
49 |
lemmas inner_distrib = inner_left_distrib inner_right_distrib
|
|
|
50 |
lemmas inner_diff = inner_diff_left inner_diff_right
|
|
|
51 |
lemmas inner_scaleR = inner_scaleR_left inner_scaleR_right
|
|
|
52 |
|
|
|
53 |
lemma inner_gt_zero_iff [simp]: "0 < inner x x \<longleftrightarrow> x \<noteq> 0"
|
|
|
54 |
by (simp add: order_less_le)
|
|
|
55 |
|
|
|
56 |
lemma power2_norm_eq_inner: "(norm x)\<twosuperior> = inner x x"
|
|
|
57 |
by (simp add: norm_eq_sqrt_inner)
|
|
|
58 |
|
|
30046
|
59 |
lemma Cauchy_Schwarz_ineq:
|
|
29993
|
60 |
"(inner x y)\<twosuperior> \<le> inner x x * inner y y"
|
|
|
61 |
proof (cases)
|
|
|
62 |
assume "y = 0"
|
|
|
63 |
thus ?thesis by simp
|
|
|
64 |
next
|
|
|
65 |
assume y: "y \<noteq> 0"
|
|
|
66 |
let ?r = "inner x y / inner y y"
|
|
|
67 |
have "0 \<le> inner (x - scaleR ?r y) (x - scaleR ?r y)"
|
|
|
68 |
by (rule inner_ge_zero)
|
|
|
69 |
also have "\<dots> = inner x x - inner y x * ?r"
|
|
|
70 |
by (simp add: inner_diff inner_scaleR)
|
|
|
71 |
also have "\<dots> = inner x x - (inner x y)\<twosuperior> / inner y y"
|
|
|
72 |
by (simp add: power2_eq_square inner_commute)
|
|
|
73 |
finally have "0 \<le> inner x x - (inner x y)\<twosuperior> / inner y y" .
|
|
|
74 |
hence "(inner x y)\<twosuperior> / inner y y \<le> inner x x"
|
|
|
75 |
by (simp add: le_diff_eq)
|
|
|
76 |
thus "(inner x y)\<twosuperior> \<le> inner x x * inner y y"
|
|
|
77 |
by (simp add: pos_divide_le_eq y)
|
|
|
78 |
qed
|
|
|
79 |
|
|
30046
|
80 |
lemma Cauchy_Schwarz_ineq2:
|
|
29993
|
81 |
"\<bar>inner x y\<bar> \<le> norm x * norm y"
|
|
|
82 |
proof (rule power2_le_imp_le)
|
|
|
83 |
have "(inner x y)\<twosuperior> \<le> inner x x * inner y y"
|
|
30046
|
84 |
using Cauchy_Schwarz_ineq .
|
|
29993
|
85 |
thus "\<bar>inner x y\<bar>\<twosuperior> \<le> (norm x * norm y)\<twosuperior>"
|
|
|
86 |
by (simp add: power_mult_distrib power2_norm_eq_inner)
|
|
|
87 |
show "0 \<le> norm x * norm y"
|
|
|
88 |
unfolding norm_eq_sqrt_inner
|
|
|
89 |
by (intro mult_nonneg_nonneg real_sqrt_ge_zero inner_ge_zero)
|
|
|
90 |
qed
|
|
|
91 |
|
|
|
92 |
subclass real_normed_vector
|
|
|
93 |
proof
|
|
|
94 |
fix a :: real and x y :: 'a
|
|
|
95 |
show "0 \<le> norm x"
|
|
|
96 |
unfolding norm_eq_sqrt_inner by simp
|
|
|
97 |
show "norm x = 0 \<longleftrightarrow> x = 0"
|
|
|
98 |
unfolding norm_eq_sqrt_inner by simp
|
|
|
99 |
show "norm (x + y) \<le> norm x + norm y"
|
|
|
100 |
proof (rule power2_le_imp_le)
|
|
|
101 |
have "inner x y \<le> norm x * norm y"
|
|
30046
|
102 |
by (rule order_trans [OF abs_ge_self Cauchy_Schwarz_ineq2])
|
|
29993
|
103 |
thus "(norm (x + y))\<twosuperior> \<le> (norm x + norm y)\<twosuperior>"
|
|
|
104 |
unfolding power2_sum power2_norm_eq_inner
|
|
|
105 |
by (simp add: inner_distrib inner_commute)
|
|
|
106 |
show "0 \<le> norm x + norm y"
|
|
|
107 |
unfolding norm_eq_sqrt_inner
|
|
|
108 |
by (simp add: add_nonneg_nonneg)
|
|
|
109 |
qed
|
|
|
110 |
have "sqrt (a\<twosuperior> * inner x x) = \<bar>a\<bar> * sqrt (inner x x)"
|
|
|
111 |
by (simp add: real_sqrt_mult_distrib)
|
|
|
112 |
then show "norm (a *\<^sub>R x) = \<bar>a\<bar> * norm x"
|
|
|
113 |
unfolding norm_eq_sqrt_inner
|
|
|
114 |
by (simp add: inner_scaleR power2_eq_square mult_assoc)
|
|
|
115 |
qed
|
|
|
116 |
|
|
|
117 |
end
|
|
|
118 |
|
|
|
119 |
interpretation inner!:
|
|
|
120 |
bounded_bilinear "inner::'a::real_inner \<Rightarrow> 'a \<Rightarrow> real"
|
|
|
121 |
proof
|
|
|
122 |
fix x y z :: 'a and r :: real
|
|
|
123 |
show "inner (x + y) z = inner x z + inner y z"
|
|
|
124 |
by (rule inner_left_distrib)
|
|
|
125 |
show "inner x (y + z) = inner x y + inner x z"
|
|
|
126 |
by (rule inner_right_distrib)
|
|
|
127 |
show "inner (scaleR r x) y = scaleR r (inner x y)"
|
|
|
128 |
unfolding real_scaleR_def by (rule inner_scaleR_left)
|
|
|
129 |
show "inner x (scaleR r y) = scaleR r (inner x y)"
|
|
|
130 |
unfolding real_scaleR_def by (rule inner_scaleR_right)
|
|
|
131 |
show "\<exists>K. \<forall>x y::'a. norm (inner x y) \<le> norm x * norm y * K"
|
|
|
132 |
proof
|
|
|
133 |
show "\<forall>x y::'a. norm (inner x y) \<le> norm x * norm y * 1"
|
|
30046
|
134 |
by (simp add: Cauchy_Schwarz_ineq2)
|
|
29993
|
135 |
qed
|
|
|
136 |
qed
|
|
|
137 |
|
|
|
138 |
interpretation inner_left!:
|
|
|
139 |
bounded_linear "\<lambda>x::'a::real_inner. inner x y"
|
|
|
140 |
by (rule inner.bounded_linear_left)
|
|
|
141 |
|
|
|
142 |
interpretation inner_right!:
|
|
|
143 |
bounded_linear "\<lambda>y::'a::real_inner. inner x y"
|
|
|
144 |
by (rule inner.bounded_linear_right)
|
|
|
145 |
|
|
|
146 |
|
|
|
147 |
subsection {* Class instances *}
|
|
|
148 |
|
|
|
149 |
instantiation real :: real_inner
|
|
|
150 |
begin
|
|
|
151 |
|
|
|
152 |
definition inner_real_def [simp]: "inner = op *"
|
|
|
153 |
|
|
|
154 |
instance proof
|
|
|
155 |
fix x y z r :: real
|
|
|
156 |
show "inner x y = inner y x"
|
|
|
157 |
unfolding inner_real_def by (rule mult_commute)
|
|
|
158 |
show "inner (x + y) z = inner x z + inner y z"
|
|
|
159 |
unfolding inner_real_def by (rule left_distrib)
|
|
|
160 |
show "inner (scaleR r x) y = r * inner x y"
|
|
|
161 |
unfolding inner_real_def real_scaleR_def by (rule mult_assoc)
|
|
|
162 |
show "0 \<le> inner x x"
|
|
|
163 |
unfolding inner_real_def by simp
|
|
|
164 |
show "inner x x = 0 \<longleftrightarrow> x = 0"
|
|
|
165 |
unfolding inner_real_def by simp
|
|
|
166 |
show "norm x = sqrt (inner x x)"
|
|
|
167 |
unfolding inner_real_def by simp
|
|
|
168 |
qed
|
|
|
169 |
|
|
|
170 |
end
|
|
|
171 |
|
|
|
172 |
instantiation complex :: real_inner
|
|
|
173 |
begin
|
|
|
174 |
|
|
|
175 |
definition inner_complex_def:
|
|
|
176 |
"inner x y = Re x * Re y + Im x * Im y"
|
|
|
177 |
|
|
|
178 |
instance proof
|
|
|
179 |
fix x y z :: complex and r :: real
|
|
|
180 |
show "inner x y = inner y x"
|
|
|
181 |
unfolding inner_complex_def by (simp add: mult_commute)
|
|
|
182 |
show "inner (x + y) z = inner x z + inner y z"
|
|
|
183 |
unfolding inner_complex_def by (simp add: left_distrib)
|
|
|
184 |
show "inner (scaleR r x) y = r * inner x y"
|
|
|
185 |
unfolding inner_complex_def by (simp add: right_distrib)
|
|
|
186 |
show "0 \<le> inner x x"
|
|
|
187 |
unfolding inner_complex_def by (simp add: add_nonneg_nonneg)
|
|
|
188 |
show "inner x x = 0 \<longleftrightarrow> x = 0"
|
|
|
189 |
unfolding inner_complex_def
|
|
|
190 |
by (simp add: add_nonneg_eq_0_iff complex_Re_Im_cancel_iff)
|
|
|
191 |
show "norm x = sqrt (inner x x)"
|
|
|
192 |
unfolding inner_complex_def complex_norm_def
|
|
|
193 |
by (simp add: power2_eq_square)
|
|
|
194 |
qed
|
|
|
195 |
|
|
|
196 |
end
|
|
|
197 |
|
|
|
198 |
|
|
|
199 |
subsection {* Gradient derivative *}
|
|
|
200 |
|
|
|
201 |
definition
|
|
|
202 |
gderiv ::
|
|
|
203 |
"['a::real_inner \<Rightarrow> real, 'a, 'a] \<Rightarrow> bool"
|
|
|
204 |
("(GDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
|
|
|
205 |
where
|
|
|
206 |
"GDERIV f x :> D \<longleftrightarrow> FDERIV f x :> (\<lambda>h. inner h D)"
|
|
|
207 |
|
|
|
208 |
lemma deriv_fderiv: "DERIV f x :> D \<longleftrightarrow> FDERIV f x :> (\<lambda>h. h * D)"
|
|
|
209 |
by (simp only: deriv_def field_fderiv_def)
|
|
|
210 |
|
|
|
211 |
lemma gderiv_deriv [simp]: "GDERIV f x :> D \<longleftrightarrow> DERIV f x :> D"
|
|
|
212 |
by (simp only: gderiv_def deriv_fderiv inner_real_def)
|
|
|
213 |
|
|
|
214 |
lemma GDERIV_DERIV_compose:
|
|
|
215 |
"\<lbrakk>GDERIV f x :> df; DERIV g (f x) :> dg\<rbrakk>
|
|
|
216 |
\<Longrightarrow> GDERIV (\<lambda>x. g (f x)) x :> scaleR dg df"
|
|
|
217 |
unfolding gderiv_def deriv_fderiv
|
|
|
218 |
apply (drule (1) FDERIV_compose)
|
|
|
219 |
apply (simp add: inner_scaleR_right mult_ac)
|
|
|
220 |
done
|
|
|
221 |
|
|
|
222 |
lemma FDERIV_subst: "\<lbrakk>FDERIV f x :> df; df = d\<rbrakk> \<Longrightarrow> FDERIV f x :> d"
|
|
|
223 |
by simp
|
|
|
224 |
|
|
|
225 |
lemma GDERIV_subst: "\<lbrakk>GDERIV f x :> df; df = d\<rbrakk> \<Longrightarrow> GDERIV f x :> d"
|
|
|
226 |
by simp
|
|
|
227 |
|
|
|
228 |
lemma GDERIV_const: "GDERIV (\<lambda>x. k) x :> 0"
|
|
|
229 |
unfolding gderiv_def inner_right.zero by (rule FDERIV_const)
|
|
|
230 |
|
|
|
231 |
lemma GDERIV_add:
|
|
|
232 |
"\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk>
|
|
|
233 |
\<Longrightarrow> GDERIV (\<lambda>x. f x + g x) x :> df + dg"
|
|
|
234 |
unfolding gderiv_def inner_right.add by (rule FDERIV_add)
|
|
|
235 |
|
|
|
236 |
lemma GDERIV_minus:
|
|
|
237 |
"GDERIV f x :> df \<Longrightarrow> GDERIV (\<lambda>x. - f x) x :> - df"
|
|
|
238 |
unfolding gderiv_def inner_right.minus by (rule FDERIV_minus)
|
|
|
239 |
|
|
|
240 |
lemma GDERIV_diff:
|
|
|
241 |
"\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk>
|
|
|
242 |
\<Longrightarrow> GDERIV (\<lambda>x. f x - g x) x :> df - dg"
|
|
|
243 |
unfolding gderiv_def inner_right.diff by (rule FDERIV_diff)
|
|
|
244 |
|
|
|
245 |
lemma GDERIV_scaleR:
|
|
|
246 |
"\<lbrakk>DERIV f x :> df; GDERIV g x :> dg\<rbrakk>
|
|
|
247 |
\<Longrightarrow> GDERIV (\<lambda>x. scaleR (f x) (g x)) x
|
|
|
248 |
:> (scaleR (f x) dg + scaleR df (g x))"
|
|
|
249 |
unfolding gderiv_def deriv_fderiv inner_right.add inner_right.scaleR
|
|
|
250 |
apply (rule FDERIV_subst)
|
|
|
251 |
apply (erule (1) scaleR.FDERIV)
|
|
|
252 |
apply (simp add: mult_ac)
|
|
|
253 |
done
|
|
|
254 |
|
|
|
255 |
lemma GDERIV_mult:
|
|
|
256 |
"\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk>
|
|
|
257 |
\<Longrightarrow> GDERIV (\<lambda>x. f x * g x) x :> scaleR (f x) dg + scaleR (g x) df"
|
|
|
258 |
unfolding gderiv_def
|
|
|
259 |
apply (rule FDERIV_subst)
|
|
|
260 |
apply (erule (1) FDERIV_mult)
|
|
|
261 |
apply (simp add: inner_distrib inner_scaleR mult_ac)
|
|
|
262 |
done
|
|
|
263 |
|
|
|
264 |
lemma GDERIV_inverse:
|
|
|
265 |
"\<lbrakk>GDERIV f x :> df; f x \<noteq> 0\<rbrakk>
|
|
|
266 |
\<Longrightarrow> GDERIV (\<lambda>x. inverse (f x)) x :> - (inverse (f x))\<twosuperior> *\<^sub>R df"
|
|
|
267 |
apply (erule GDERIV_DERIV_compose)
|
|
|
268 |
apply (erule DERIV_inverse [folded numeral_2_eq_2])
|
|
|
269 |
done
|
|
|
270 |
|
|
|
271 |
lemma GDERIV_norm:
|
|
|
272 |
assumes "x \<noteq> 0" shows "GDERIV (\<lambda>x. norm x) x :> sgn x"
|
|
|
273 |
proof -
|
|
|
274 |
have 1: "FDERIV (\<lambda>x. inner x x) x :> (\<lambda>h. inner x h + inner h x)"
|
|
|
275 |
by (intro inner.FDERIV FDERIV_ident)
|
|
|
276 |
have 2: "(\<lambda>h. inner x h + inner h x) = (\<lambda>h. inner h (scaleR 2 x))"
|
|
|
277 |
by (simp add: expand_fun_eq inner_scaleR inner_commute)
|
|
|
278 |
have "0 < inner x x" using `x \<noteq> 0` by simp
|
|
|
279 |
then have 3: "DERIV sqrt (inner x x) :> (inverse (sqrt (inner x x)) / 2)"
|
|
|
280 |
by (rule DERIV_real_sqrt)
|
|
|
281 |
have 4: "(inverse (sqrt (inner x x)) / 2) *\<^sub>R 2 *\<^sub>R x = sgn x"
|
|
|
282 |
by (simp add: sgn_div_norm norm_eq_sqrt_inner)
|
|
|
283 |
show ?thesis
|
|
|
284 |
unfolding norm_eq_sqrt_inner
|
|
|
285 |
apply (rule GDERIV_subst [OF _ 4])
|
|
|
286 |
apply (rule GDERIV_DERIV_compose [where g=sqrt and df="scaleR 2 x"])
|
|
|
287 |
apply (subst gderiv_def)
|
|
|
288 |
apply (rule FDERIV_subst [OF _ 2])
|
|
|
289 |
apply (rule 1)
|
|
|
290 |
apply (rule 3)
|
|
|
291 |
done
|
|
|
292 |
qed
|
|
|
293 |
|
|
|
294 |
lemmas FDERIV_norm = GDERIV_norm [unfolded gderiv_def]
|
|
|
295 |
|
|
|
296 |
end
|