author | blanchet |
Mon, 26 Apr 2010 21:17:41 +0200 | |
changeset 36400 | c5bae529f967 |
parent 35900 | aa5dfb03eb1e |
child 36452 | d37c6eed8117 |
permissions | -rw-r--r-- |
15600 | 1 |
(* Title: HOLCF/Sprod.thy |
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
2 |
Author: Franz Regensburger and Brian Huffman |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
3 |
*) |
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
4 |
|
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
5 |
header {* The type of strict products *} |
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
6 |
|
15577 | 7 |
theory Sprod |
31114 | 8 |
imports Bifinite |
15577 | 9 |
begin |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
10 |
|
16082 | 11 |
defaultsort pcpo |
12 |
||
15591
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
13 |
subsection {* Definition of strict product type *} |
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
14 |
|
35525 | 15 |
pcpodef (Sprod) ('a, 'b) sprod (infixr "**" 20) = |
31114 | 16 |
"{p::'a \<times> 'b. p = \<bottom> \<or> (fst p \<noteq> \<bottom> \<and> snd p \<noteq> \<bottom>)}" |
29063
7619f0561cd7
pcpodef package: state two goals, instead of encoded conjunction;
wenzelm
parents:
27310
diff
changeset
|
17 |
by simp_all |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
18 |
|
35525 | 19 |
instance sprod :: ("{finite_po,pcpo}", "{finite_po,pcpo}") finite_po |
25827
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
25757
diff
changeset
|
20 |
by (rule typedef_finite_po [OF type_definition_Sprod]) |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
25757
diff
changeset
|
21 |
|
35525 | 22 |
instance sprod :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
23 |
by (rule typedef_chfin [OF type_definition_Sprod below_Sprod_def]) |
25827
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
25757
diff
changeset
|
24 |
|
35427 | 25 |
type_notation (xsymbols) |
35547 | 26 |
sprod ("(_ \<otimes>/ _)" [21,20] 20) |
35427 | 27 |
type_notation (HTML output) |
35547 | 28 |
sprod ("(_ \<otimes>/ _)" [21,20] 20) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
29 |
|
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
30 |
lemma spair_lemma: |
31114 | 31 |
"(strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a) \<in> Sprod" |
25914 | 32 |
by (simp add: Sprod_def strictify_conv_if) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
33 |
|
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
34 |
subsection {* Definitions of constants *} |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
35 |
|
25135
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
36 |
definition |
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
37 |
sfst :: "('a ** 'b) \<rightarrow> 'a" where |
31114 | 38 |
"sfst = (\<Lambda> p. fst (Rep_Sprod p))" |
25135
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
39 |
|
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
40 |
definition |
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
41 |
ssnd :: "('a ** 'b) \<rightarrow> 'b" where |
31114 | 42 |
"ssnd = (\<Lambda> p. snd (Rep_Sprod p))" |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
43 |
|
25135
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
44 |
definition |
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
45 |
spair :: "'a \<rightarrow> 'b \<rightarrow> ('a ** 'b)" where |
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
46 |
"spair = (\<Lambda> a b. Abs_Sprod |
31114 | 47 |
(strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a))" |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
48 |
|
25135
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
49 |
definition |
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
50 |
ssplit :: "('a \<rightarrow> 'b \<rightarrow> 'c) \<rightarrow> ('a ** 'b) \<rightarrow> 'c" where |
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
51 |
"ssplit = (\<Lambda> f. strictify\<cdot>(\<Lambda> p. f\<cdot>(sfst\<cdot>p)\<cdot>(ssnd\<cdot>p)))" |
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
52 |
|
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
wenzelm
parents:
25131
diff
changeset
|
53 |
syntax |
35115 | 54 |
"_stuple" :: "['a, args] => 'a ** 'b" ("(1'(:_,/ _:'))") |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
55 |
translations |
18078
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
huffman
parents:
17837
diff
changeset
|
56 |
"(:x, y, z:)" == "(:x, (:y, z:):)" |
25131
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
wenzelm
parents:
18078
diff
changeset
|
57 |
"(:x, y:)" == "CONST spair\<cdot>x\<cdot>y" |
18078
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
huffman
parents:
17837
diff
changeset
|
58 |
|
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
huffman
parents:
17837
diff
changeset
|
59 |
translations |
25131
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
wenzelm
parents:
18078
diff
changeset
|
60 |
"\<Lambda>(CONST spair\<cdot>x\<cdot>y). t" == "CONST ssplit\<cdot>(\<Lambda> x y. t)" |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
61 |
|
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
62 |
subsection {* Case analysis *} |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
63 |
|
25914 | 64 |
lemma Rep_Sprod_spair: |
31114 | 65 |
"Rep_Sprod (:a, b:) = (strictify\<cdot>(\<Lambda> b. a)\<cdot>b, strictify\<cdot>(\<Lambda> a. b)\<cdot>a)" |
25914 | 66 |
unfolding spair_def |
67 |
by (simp add: cont_Abs_Sprod Abs_Sprod_inverse spair_lemma) |
|
68 |
||
69 |
lemmas Rep_Sprod_simps = |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
70 |
Rep_Sprod_inject [symmetric] below_Sprod_def |
25914 | 71 |
Rep_Sprod_strict Rep_Sprod_spair |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
72 |
|
27310 | 73 |
lemma Exh_Sprod: |
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
74 |
"z = \<bottom> \<or> (\<exists>a b. z = (:a, b:) \<and> a \<noteq> \<bottom> \<and> b \<noteq> \<bottom>)" |
25914 | 75 |
apply (insert Rep_Sprod [of z]) |
31114 | 76 |
apply (simp add: Rep_Sprod_simps Pair_fst_snd_eq) |
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
77 |
apply (simp add: Sprod_def) |
25914 | 78 |
apply (erule disjE, simp) |
79 |
apply (simp add: strictify_conv_if) |
|
80 |
apply fast |
|
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
81 |
done |
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
82 |
|
35783 | 83 |
lemma sprodE [case_names bottom spair, cases type: sprod]: |
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
84 |
"\<lbrakk>p = \<bottom> \<Longrightarrow> Q; \<And>x y. \<lbrakk>p = (:x, y:); x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" |
35783 | 85 |
using Exh_Sprod [of p] by auto |
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
86 |
|
35783 | 87 |
lemma sprod_induct [case_names bottom spair, induct type: sprod]: |
25757
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
huffman
parents:
25135
diff
changeset
|
88 |
"\<lbrakk>P \<bottom>; \<And>x y. \<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> P (:x, y:)\<rbrakk> \<Longrightarrow> P x" |
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
huffman
parents:
25135
diff
changeset
|
89 |
by (cases x, simp_all) |
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
huffman
parents:
25135
diff
changeset
|
90 |
|
35900
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
huffman
parents:
35783
diff
changeset
|
91 |
subsection {* Properties of \emph{spair} *} |
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
92 |
|
16317
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
93 |
lemma spair_strict1 [simp]: "(:\<bottom>, y:) = \<bottom>" |
25914 | 94 |
by (simp add: Rep_Sprod_simps strictify_conv_if) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
95 |
|
16317
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
96 |
lemma spair_strict2 [simp]: "(:x, \<bottom>:) = \<bottom>" |
25914 | 97 |
by (simp add: Rep_Sprod_simps strictify_conv_if) |
98 |
||
99 |
lemma spair_strict_iff [simp]: "((:x, y:) = \<bottom>) = (x = \<bottom> \<or> y = \<bottom>)" |
|
100 |
by (simp add: Rep_Sprod_simps strictify_conv_if) |
|
101 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
102 |
lemma spair_below_iff: |
25914 | 103 |
"((:a, b:) \<sqsubseteq> (:c, d:)) = (a = \<bottom> \<or> b = \<bottom> \<or> (a \<sqsubseteq> c \<and> b \<sqsubseteq> d))" |
104 |
by (simp add: Rep_Sprod_simps strictify_conv_if) |
|
105 |
||
106 |
lemma spair_eq_iff: |
|
107 |
"((:a, b:) = (:c, d:)) = |
|
108 |
(a = c \<and> b = d \<or> (a = \<bottom> \<or> b = \<bottom>) \<and> (c = \<bottom> \<or> d = \<bottom>))" |
|
109 |
by (simp add: Rep_Sprod_simps strictify_conv_if) |
|
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
110 |
|
16317
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
111 |
lemma spair_strict: "x = \<bottom> \<or> y = \<bottom> \<Longrightarrow> (:x, y:) = \<bottom>" |
25914 | 112 |
by simp |
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
113 |
|
16212
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
huffman
parents:
16082
diff
changeset
|
114 |
lemma spair_strict_rev: "(:x, y:) \<noteq> \<bottom> \<Longrightarrow> x \<noteq> \<bottom> \<and> y \<noteq> \<bottom>" |
25914 | 115 |
by simp |
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
116 |
|
25914 | 117 |
lemma spair_defined: "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> (:x, y:) \<noteq> \<bottom>" |
118 |
by simp |
|
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
119 |
|
16317
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
120 |
lemma spair_defined_rev: "(:x, y:) = \<bottom> \<Longrightarrow> x = \<bottom> \<or> y = \<bottom>" |
25914 | 121 |
by simp |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
122 |
|
16317
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
123 |
lemma spair_eq: |
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
124 |
"\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> ((:x, y:) = (:a, b:)) = (x = a \<and> y = b)" |
25914 | 125 |
by (simp add: spair_eq_iff) |
16317
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
126 |
|
16212
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
huffman
parents:
16082
diff
changeset
|
127 |
lemma spair_inject: |
16317
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
128 |
"\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>; (:x, y:) = (:a, b:)\<rbrakk> \<Longrightarrow> x = a \<and> y = b" |
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
129 |
by (rule spair_eq [THEN iffD1]) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
130 |
|
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
131 |
lemma inst_sprod_pcpo2: "UU = (:UU,UU:)" |
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
132 |
by simp |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
133 |
|
33504
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
134 |
lemma sprodE2: "(\<And>x y. p = (:x, y:) \<Longrightarrow> Q) \<Longrightarrow> Q" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
135 |
by (cases p, simp only: inst_sprod_pcpo2, simp) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
136 |
|
35900
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
huffman
parents:
35783
diff
changeset
|
137 |
subsection {* Properties of \emph{sfst} and \emph{ssnd} *} |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
138 |
|
16212
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
huffman
parents:
16082
diff
changeset
|
139 |
lemma sfst_strict [simp]: "sfst\<cdot>\<bottom> = \<bottom>" |
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
huffman
parents:
16082
diff
changeset
|
140 |
by (simp add: sfst_def cont_Rep_Sprod Rep_Sprod_strict) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
141 |
|
16212
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
huffman
parents:
16082
diff
changeset
|
142 |
lemma ssnd_strict [simp]: "ssnd\<cdot>\<bottom> = \<bottom>" |
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
huffman
parents:
16082
diff
changeset
|
143 |
by (simp add: ssnd_def cont_Rep_Sprod Rep_Sprod_strict) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
144 |
|
16212
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
huffman
parents:
16082
diff
changeset
|
145 |
lemma sfst_spair [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>(:x, y:) = x" |
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
146 |
by (simp add: sfst_def cont_Rep_Sprod Rep_Sprod_spair) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
147 |
|
16212
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
huffman
parents:
16082
diff
changeset
|
148 |
lemma ssnd_spair [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>(:x, y:) = y" |
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
149 |
by (simp add: ssnd_def cont_Rep_Sprod Rep_Sprod_spair) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
150 |
|
16777
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
huffman
parents:
16751
diff
changeset
|
151 |
lemma sfst_defined_iff [simp]: "(sfst\<cdot>p = \<bottom>) = (p = \<bottom>)" |
25757
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
huffman
parents:
25135
diff
changeset
|
152 |
by (cases p, simp_all) |
16777
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
huffman
parents:
16751
diff
changeset
|
153 |
|
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
huffman
parents:
16751
diff
changeset
|
154 |
lemma ssnd_defined_iff [simp]: "(ssnd\<cdot>p = \<bottom>) = (p = \<bottom>)" |
25757
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
huffman
parents:
25135
diff
changeset
|
155 |
by (cases p, simp_all) |
16317
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
156 |
|
16777
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
huffman
parents:
16751
diff
changeset
|
157 |
lemma sfst_defined: "p \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>p \<noteq> \<bottom>" |
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
huffman
parents:
16751
diff
changeset
|
158 |
by simp |
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
huffman
parents:
16751
diff
changeset
|
159 |
|
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
huffman
parents:
16751
diff
changeset
|
160 |
lemma ssnd_defined: "p \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>p \<noteq> \<bottom>" |
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
huffman
parents:
16751
diff
changeset
|
161 |
by simp |
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
huffman
parents:
16751
diff
changeset
|
162 |
|
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
163 |
lemma surjective_pairing_Sprod2: "(:sfst\<cdot>p, ssnd\<cdot>p:) = p" |
25757
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
huffman
parents:
25135
diff
changeset
|
164 |
by (cases p, simp_all) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
165 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
166 |
lemma below_sprod: "x \<sqsubseteq> y = (sfst\<cdot>x \<sqsubseteq> sfst\<cdot>y \<and> ssnd\<cdot>x \<sqsubseteq> ssnd\<cdot>y)" |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
167 |
apply (simp add: below_Sprod_def sfst_def ssnd_def cont_Rep_Sprod) |
31114 | 168 |
apply (simp only: below_prod_def) |
16317
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
169 |
done |
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
170 |
|
16751 | 171 |
lemma eq_sprod: "(x = y) = (sfst\<cdot>x = sfst\<cdot>y \<and> ssnd\<cdot>x = ssnd\<cdot>y)" |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
172 |
by (auto simp add: po_eq_conv below_sprod) |
16751 | 173 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
174 |
lemma spair_below: |
16317
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
175 |
"\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> (:x, y:) \<sqsubseteq> (:a, b:) = (x \<sqsubseteq> a \<and> y \<sqsubseteq> b)" |
25757
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
huffman
parents:
25135
diff
changeset
|
176 |
apply (cases "a = \<bottom>", simp) |
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
huffman
parents:
25135
diff
changeset
|
177 |
apply (cases "b = \<bottom>", simp) |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
178 |
apply (simp add: below_sprod) |
16317
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
179 |
done |
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
huffman
parents:
16212
diff
changeset
|
180 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
181 |
lemma sfst_below_iff: "sfst\<cdot>x \<sqsubseteq> y = x \<sqsubseteq> (:y, ssnd\<cdot>x:)" |
25881 | 182 |
apply (cases "x = \<bottom>", simp, cases "y = \<bottom>", simp) |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
183 |
apply (simp add: below_sprod) |
25881 | 184 |
done |
185 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
186 |
lemma ssnd_below_iff: "ssnd\<cdot>x \<sqsubseteq> y = x \<sqsubseteq> (:sfst\<cdot>x, y:)" |
25881 | 187 |
apply (cases "x = \<bottom>", simp, cases "y = \<bottom>", simp) |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
188 |
apply (simp add: below_sprod) |
25881 | 189 |
done |
190 |
||
191 |
subsection {* Compactness *} |
|
192 |
||
193 |
lemma compact_sfst: "compact x \<Longrightarrow> compact (sfst\<cdot>x)" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
194 |
by (rule compactI, simp add: sfst_below_iff) |
25881 | 195 |
|
196 |
lemma compact_ssnd: "compact x \<Longrightarrow> compact (ssnd\<cdot>x)" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
197 |
by (rule compactI, simp add: ssnd_below_iff) |
25881 | 198 |
|
199 |
lemma compact_spair: "\<lbrakk>compact x; compact y\<rbrakk> \<Longrightarrow> compact (:x, y:)" |
|
200 |
by (rule compact_Sprod, simp add: Rep_Sprod_spair strictify_conv_if) |
|
201 |
||
202 |
lemma compact_spair_iff: |
|
203 |
"compact (:x, y:) = (x = \<bottom> \<or> y = \<bottom> \<or> (compact x \<and> compact y))" |
|
204 |
apply (safe elim!: compact_spair) |
|
205 |
apply (drule compact_sfst, simp) |
|
206 |
apply (drule compact_ssnd, simp) |
|
207 |
apply simp |
|
208 |
apply simp |
|
209 |
done |
|
210 |
||
35900
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
huffman
parents:
35783
diff
changeset
|
211 |
subsection {* Properties of \emph{ssplit} *} |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
212 |
|
16059
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
huffman
parents:
15930
diff
changeset
|
213 |
lemma ssplit1 [simp]: "ssplit\<cdot>f\<cdot>\<bottom> = \<bottom>" |
15591
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
214 |
by (simp add: ssplit_def) |
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
215 |
|
16920 | 216 |
lemma ssplit2 [simp]: "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> ssplit\<cdot>f\<cdot>(:x, y:) = f\<cdot>x\<cdot>y" |
15591
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
217 |
by (simp add: ssplit_def) |
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
218 |
|
16553 | 219 |
lemma ssplit3 [simp]: "ssplit\<cdot>spair\<cdot>z = z" |
25757
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
huffman
parents:
25135
diff
changeset
|
220 |
by (cases z, simp_all) |
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
221 |
|
25827
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
25757
diff
changeset
|
222 |
subsection {* Strict product preserves flatness *} |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
25757
diff
changeset
|
223 |
|
35525 | 224 |
instance sprod :: (flat, flat) flat |
27310 | 225 |
proof |
226 |
fix x y :: "'a \<otimes> 'b" |
|
227 |
assume "x \<sqsubseteq> y" thus "x = \<bottom> \<or> x = y" |
|
228 |
apply (induct x, simp) |
|
229 |
apply (induct y, simp) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
29138
diff
changeset
|
230 |
apply (simp add: spair_below_iff flat_below_iff) |
27310 | 231 |
done |
232 |
qed |
|
25827
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
25757
diff
changeset
|
233 |
|
33504
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
234 |
subsection {* Map function for strict products *} |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
235 |
|
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
236 |
definition |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
237 |
sprod_map :: "('a \<rightarrow> 'b) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> 'a \<otimes> 'c \<rightarrow> 'b \<otimes> 'd" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
238 |
where |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
239 |
"sprod_map = (\<Lambda> f g. ssplit\<cdot>(\<Lambda> x y. (:f\<cdot>x, g\<cdot>y:)))" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
240 |
|
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
241 |
lemma sprod_map_strict [simp]: "sprod_map\<cdot>a\<cdot>b\<cdot>\<bottom> = \<bottom>" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
242 |
unfolding sprod_map_def by simp |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
243 |
|
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
244 |
lemma sprod_map_spair [simp]: |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
245 |
"x \<noteq> \<bottom> \<Longrightarrow> y \<noteq> \<bottom> \<Longrightarrow> sprod_map\<cdot>f\<cdot>g\<cdot>(:x, y:) = (:f\<cdot>x, g\<cdot>y:)" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
246 |
by (simp add: sprod_map_def) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
247 |
|
35491 | 248 |
lemma sprod_map_spair': |
249 |
"f\<cdot>\<bottom> = \<bottom> \<Longrightarrow> g\<cdot>\<bottom> = \<bottom> \<Longrightarrow> sprod_map\<cdot>f\<cdot>g\<cdot>(:x, y:) = (:f\<cdot>x, g\<cdot>y:)" |
|
250 |
by (cases "x = \<bottom> \<or> y = \<bottom>") auto |
|
251 |
||
33808 | 252 |
lemma sprod_map_ID: "sprod_map\<cdot>ID\<cdot>ID = ID" |
253 |
unfolding sprod_map_def by (simp add: expand_cfun_eq eta_cfun) |
|
254 |
||
33587 | 255 |
lemma sprod_map_map: |
256 |
"\<lbrakk>f1\<cdot>\<bottom> = \<bottom>; g1\<cdot>\<bottom> = \<bottom>\<rbrakk> \<Longrightarrow> |
|
257 |
sprod_map\<cdot>f1\<cdot>g1\<cdot>(sprod_map\<cdot>f2\<cdot>g2\<cdot>p) = |
|
258 |
sprod_map\<cdot>(\<Lambda> x. f1\<cdot>(f2\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p" |
|
259 |
apply (induct p, simp) |
|
260 |
apply (case_tac "f2\<cdot>x = \<bottom>", simp) |
|
261 |
apply (case_tac "g2\<cdot>y = \<bottom>", simp) |
|
262 |
apply simp |
|
263 |
done |
|
264 |
||
33504
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
265 |
lemma ep_pair_sprod_map: |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
266 |
assumes "ep_pair e1 p1" and "ep_pair e2 p2" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
267 |
shows "ep_pair (sprod_map\<cdot>e1\<cdot>e2) (sprod_map\<cdot>p1\<cdot>p2)" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
268 |
proof |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
269 |
interpret e1p1: pcpo_ep_pair e1 p1 unfolding pcpo_ep_pair_def by fact |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
270 |
interpret e2p2: pcpo_ep_pair e2 p2 unfolding pcpo_ep_pair_def by fact |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
271 |
fix x show "sprod_map\<cdot>p1\<cdot>p2\<cdot>(sprod_map\<cdot>e1\<cdot>e2\<cdot>x) = x" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
272 |
by (induct x) simp_all |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
273 |
fix y show "sprod_map\<cdot>e1\<cdot>e2\<cdot>(sprod_map\<cdot>p1\<cdot>p2\<cdot>y) \<sqsubseteq> y" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
274 |
apply (induct y, simp) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
275 |
apply (case_tac "p1\<cdot>x = \<bottom>", simp, case_tac "p2\<cdot>y = \<bottom>", simp) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
276 |
apply (simp add: monofun_cfun e1p1.e_p_below e2p2.e_p_below) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
277 |
done |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
278 |
qed |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
279 |
|
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
280 |
lemma deflation_sprod_map: |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
281 |
assumes "deflation d1" and "deflation d2" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
282 |
shows "deflation (sprod_map\<cdot>d1\<cdot>d2)" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
283 |
proof |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
284 |
interpret d1: deflation d1 by fact |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
285 |
interpret d2: deflation d2 by fact |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
286 |
fix x |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
287 |
show "sprod_map\<cdot>d1\<cdot>d2\<cdot>(sprod_map\<cdot>d1\<cdot>d2\<cdot>x) = sprod_map\<cdot>d1\<cdot>d2\<cdot>x" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
288 |
apply (induct x, simp) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
289 |
apply (case_tac "d1\<cdot>x = \<bottom>", simp, case_tac "d2\<cdot>y = \<bottom>", simp) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
290 |
apply (simp add: d1.idem d2.idem) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
291 |
done |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
292 |
show "sprod_map\<cdot>d1\<cdot>d2\<cdot>x \<sqsubseteq> x" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
293 |
apply (induct x, simp) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
294 |
apply (simp add: monofun_cfun d1.below d2.below) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
295 |
done |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
296 |
qed |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
297 |
|
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
298 |
lemma finite_deflation_sprod_map: |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
299 |
assumes "finite_deflation d1" and "finite_deflation d2" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
300 |
shows "finite_deflation (sprod_map\<cdot>d1\<cdot>d2)" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
301 |
proof (intro finite_deflation.intro finite_deflation_axioms.intro) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
302 |
interpret d1: finite_deflation d1 by fact |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
303 |
interpret d2: finite_deflation d2 by fact |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
304 |
have "deflation d1" and "deflation d2" by fact+ |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
305 |
thus "deflation (sprod_map\<cdot>d1\<cdot>d2)" by (rule deflation_sprod_map) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
306 |
have "{x. sprod_map\<cdot>d1\<cdot>d2\<cdot>x = x} \<subseteq> insert \<bottom> |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
307 |
((\<lambda>(x, y). (:x, y:)) ` ({x. d1\<cdot>x = x} \<times> {y. d2\<cdot>y = y}))" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
308 |
by (rule subsetI, case_tac x, auto simp add: spair_eq_iff) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
309 |
thus "finite {x. sprod_map\<cdot>d1\<cdot>d2\<cdot>x = x}" |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
310 |
by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes) |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
311 |
qed |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
312 |
|
25914 | 313 |
subsection {* Strict product is a bifinite domain *} |
314 |
||
35525 | 315 |
instantiation sprod :: (bifinite, bifinite) bifinite |
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
25914
diff
changeset
|
316 |
begin |
25914 | 317 |
|
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
25914
diff
changeset
|
318 |
definition |
25914 | 319 |
approx_sprod_def: |
33504
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
320 |
"approx = (\<lambda>n. sprod_map\<cdot>(approx n)\<cdot>(approx n))" |
25914 | 321 |
|
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
25914
diff
changeset
|
322 |
instance proof |
25914 | 323 |
fix i :: nat and x :: "'a \<otimes> 'b" |
27310 | 324 |
show "chain (approx :: nat \<Rightarrow> 'a \<otimes> 'b \<rightarrow> 'a \<otimes> 'b)" |
25914 | 325 |
unfolding approx_sprod_def by simp |
326 |
show "(\<Squnion>i. approx i\<cdot>x) = x" |
|
33504
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
327 |
unfolding approx_sprod_def sprod_map_def |
25914 | 328 |
by (simp add: lub_distribs eta_cfun) |
329 |
show "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x" |
|
33504
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
330 |
unfolding approx_sprod_def sprod_map_def |
25914 | 331 |
by (simp add: ssplit_def strictify_conv_if) |
33504
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
332 |
show "finite {x::'a \<otimes> 'b. approx i\<cdot>x = x}" |
25914 | 333 |
unfolding approx_sprod_def |
33504
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
334 |
by (intro finite_deflation.finite_fixes |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
335 |
finite_deflation_sprod_map |
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
336 |
finite_deflation_approx) |
25914 | 337 |
qed |
338 |
||
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
25914
diff
changeset
|
339 |
end |
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
25914
diff
changeset
|
340 |
|
25914 | 341 |
lemma approx_spair [simp]: |
342 |
"approx i\<cdot>(:x, y:) = (:approx i\<cdot>x, approx i\<cdot>y:)" |
|
33504
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
huffman
parents:
32960
diff
changeset
|
343 |
unfolding approx_sprod_def sprod_map_def |
25914 | 344 |
by (simp add: ssplit_def strictify_conv_if) |
345 |
||
15576
efb95d0d01f7
converted to new-style theories, and combined numbered files
huffman
parents:
diff
changeset
|
346 |
end |