| author | wenzelm | 
| Sat, 10 Aug 2024 12:12:53 +0200 | |
| changeset 80678 | c5c9b4470d06 | 
| parent 70817 | dd675800469d | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 68933 | 1  | 
(* Title: HOL/Library/Nonpos_Ints.thy  | 
| 
62055
 
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
 
hoelzl 
parents: 
62049 
diff
changeset
 | 
2  | 
Author: Manuel Eberl, TU München  | 
| 
62049
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
3  | 
*)  | 
| 
62055
 
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
 
hoelzl 
parents: 
62049 
diff
changeset
 | 
4  | 
|
| 
62131
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
5  | 
section \<open>Non-negative, non-positive integers and reals\<close>  | 
| 
62055
 
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
 
hoelzl 
parents: 
62049 
diff
changeset
 | 
6  | 
|
| 
62049
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
7  | 
theory Nonpos_Ints  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
8  | 
imports Complex_Main  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
9  | 
begin  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
10  | 
|
| 
62131
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
11  | 
subsection\<open>Non-positive integers\<close>  | 
| 
62055
 
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
 
hoelzl 
parents: 
62049 
diff
changeset
 | 
12  | 
text \<open>  | 
| 
 
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
 
hoelzl 
parents: 
62049 
diff
changeset
 | 
13  | 
The set of non-positive integers on a ring. (in analogy to the set of non-negative  | 
| 69593 | 14  | 
integers \<^term>\<open>\<nat>\<close>) This is useful e.g. for the Gamma function.  | 
| 
62055
 
755fda743c49
Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
 
hoelzl 
parents: 
62049 
diff
changeset
 | 
15  | 
\<close>  | 
| 
62049
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
16  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
17  | 
definition nonpos_Ints ("\<int>\<^sub>\<le>\<^sub>0") where "\<int>\<^sub>\<le>\<^sub>0 = {of_int n |n. n \<le> 0}"
 | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
18  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
19  | 
lemma zero_in_nonpos_Ints [simp,intro]: "0 \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
20  | 
unfolding nonpos_Ints_def by (auto intro!: exI[of _ "0::int"])  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
21  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
22  | 
lemma neg_one_in_nonpos_Ints [simp,intro]: "-1 \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
23  | 
unfolding nonpos_Ints_def by (auto intro!: exI[of _ "-1::int"])  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
24  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
25  | 
lemma neg_numeral_in_nonpos_Ints [simp,intro]: "-numeral n \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
26  | 
unfolding nonpos_Ints_def by (auto intro!: exI[of _ "-numeral n::int"])  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
27  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
28  | 
lemma one_notin_nonpos_Ints [simp]: "(1 :: 'a :: ring_char_0) \<notin> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
29  | 
by (auto simp: nonpos_Ints_def)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
30  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
31  | 
lemma numeral_notin_nonpos_Ints [simp]: "(numeral n :: 'a :: ring_char_0) \<notin> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
32  | 
by (auto simp: nonpos_Ints_def)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
33  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
34  | 
lemma minus_of_nat_in_nonpos_Ints [simp, intro]: "- of_nat n \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
35  | 
proof -  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
36  | 
have "- of_nat n = of_int (-int n)" by simp  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
37  | 
also have "-int n \<le> 0" by simp  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
38  | 
hence "of_int (-int n) \<in> \<int>\<^sub>\<le>\<^sub>0" unfolding nonpos_Ints_def by blast  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
39  | 
finally show ?thesis .  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
40  | 
qed  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
41  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
42  | 
lemma of_nat_in_nonpos_Ints_iff: "(of_nat n :: 'a :: {ring_1,ring_char_0}) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n = 0"
 | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
43  | 
proof  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
44  | 
assume "(of_nat n :: 'a) \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
45  | 
then obtain m where "of_nat n = (of_int m :: 'a)" "m \<le> 0" by (auto simp: nonpos_Ints_def)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
46  | 
hence "(of_int m :: 'a) = of_nat n" by simp  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
47  | 
also have "... = of_int (int n)" by simp  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
48  | 
finally have "m = int n" by (subst (asm) of_int_eq_iff)  | 
| 62072 | 49  | 
with \<open>m \<le> 0\<close> show "n = 0" by auto  | 
| 
62049
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
50  | 
qed simp  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
51  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
52  | 
lemma nonpos_Ints_of_int: "n \<le> 0 \<Longrightarrow> of_int n \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
53  | 
unfolding nonpos_Ints_def by blast  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
54  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
55  | 
lemma nonpos_IntsI:  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
56  | 
"x \<in> \<int> \<Longrightarrow> x \<le> 0 \<Longrightarrow> (x :: 'a :: linordered_idom) \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 63092 | 57  | 
unfolding nonpos_Ints_def Ints_def by auto  | 
| 
62049
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
58  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
59  | 
lemma nonpos_Ints_subset_Ints: "\<int>\<^sub>\<le>\<^sub>0 \<subseteq> \<int>"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
60  | 
unfolding nonpos_Ints_def Ints_def by blast  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
61  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
62  | 
lemma nonpos_Ints_nonpos [dest]: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x \<le> (0 :: 'a :: linordered_idom)"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
63  | 
unfolding nonpos_Ints_def by auto  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
64  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
65  | 
lemma nonpos_Ints_Int [dest]: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x \<in> \<int>"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
66  | 
unfolding nonpos_Ints_def Ints_def by blast  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
67  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
68  | 
lemma nonpos_Ints_cases:  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
69  | 
assumes "x \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
70  | 
obtains n where "x = of_int n" "n \<le> 0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
71  | 
using assms unfolding nonpos_Ints_def by (auto elim!: Ints_cases)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
72  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
73  | 
lemma nonpos_Ints_cases':  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
74  | 
assumes "x \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
75  | 
obtains n where "x = -of_nat n"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
76  | 
proof -  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
77  | 
from assms obtain m where "x = of_int m" and m: "m \<le> 0" by (auto elim!: nonpos_Ints_cases)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
78  | 
hence "x = - of_int (-m)" by auto  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
79  | 
also from m have "(of_int (-m) :: 'a) = of_nat (nat (-m))" by simp_all  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
80  | 
finally show ?thesis by (rule that)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
81  | 
qed  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
82  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
83  | 
lemma of_real_in_nonpos_Ints_iff: "(of_real x :: 'a :: real_algebra_1) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
84  | 
proof  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
85  | 
assume "of_real x \<in> (\<int>\<^sub>\<le>\<^sub>0 :: 'a set)"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
86  | 
then obtain n where "(of_real x :: 'a) = of_int n" "n \<le> 0" by (erule nonpos_Ints_cases)  | 
| 62072 | 87  | 
note \<open>of_real x = of_int n\<close>  | 
| 
62049
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
88  | 
also have "of_int n = of_real (of_int n)" by (rule of_real_of_int_eq [symmetric])  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
89  | 
finally have "x = of_int n" by (subst (asm) of_real_eq_iff)  | 
| 62072 | 90  | 
with \<open>n \<le> 0\<close> show "x \<in> \<int>\<^sub>\<le>\<^sub>0" by (simp add: nonpos_Ints_of_int)  | 
| 
62049
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
91  | 
qed (auto elim!: nonpos_Ints_cases intro!: nonpos_Ints_of_int)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
92  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
93  | 
lemma nonpos_Ints_altdef: "\<int>\<^sub>\<le>\<^sub>0 = {n \<in> \<int>. (n :: 'a :: linordered_idom) \<le> 0}"
 | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
94  | 
by (auto intro!: nonpos_IntsI elim!: nonpos_Ints_cases)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
95  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
96  | 
lemma uminus_in_Nats_iff: "-x \<in> \<nat> \<longleftrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
97  | 
proof  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
98  | 
assume "-x \<in> \<nat>"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
99  | 
then obtain n where "n \<ge> 0" "-x = of_int n" by (auto simp: Nats_altdef1)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
100  | 
hence "-n \<le> 0" "x = of_int (-n)" by (simp_all add: eq_commute minus_equation_iff[of x])  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
101  | 
thus "x \<in> \<int>\<^sub>\<le>\<^sub>0" unfolding nonpos_Ints_def by blast  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
102  | 
next  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
103  | 
assume "x \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
104  | 
then obtain n where "n \<le> 0" "x = of_int n" by (auto simp: nonpos_Ints_def)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
105  | 
hence "-n \<ge> 0" "-x = of_int (-n)" by (simp_all add: eq_commute minus_equation_iff[of x])  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
106  | 
thus "-x \<in> \<nat>" unfolding Nats_altdef1 by blast  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
107  | 
qed  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
108  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
109  | 
lemma uminus_in_nonpos_Ints_iff: "-x \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> x \<in> \<nat>"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
110  | 
using uminus_in_Nats_iff[of "-x"] by simp  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
111  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
112  | 
lemma nonpos_Ints_mult: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x * y \<in> \<nat>"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
113  | 
using Nats_mult[of "-x" "-y"] by (simp add: uminus_in_Nats_iff)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
114  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
115  | 
lemma Nats_mult_nonpos_Ints: "x \<in> \<nat> \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x * y \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
116  | 
using Nats_mult[of x "-y"] by (simp add: uminus_in_Nats_iff)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
117  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
118  | 
lemma nonpos_Ints_mult_Nats:  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
119  | 
"x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<nat> \<Longrightarrow> x * y \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
120  | 
using Nats_mult[of "-x" y] by (simp add: uminus_in_Nats_iff)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
121  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
122  | 
lemma nonpos_Ints_add:  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
123  | 
"x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x + y \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
124  | 
using Nats_add[of "-x" "-y"] uminus_in_Nats_iff[of "y+x", simplified minus_add]  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
125  | 
by (simp add: uminus_in_Nats_iff add.commute)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
126  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
127  | 
lemma nonpos_Ints_diff_Nats:  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
128  | 
"x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<nat> \<Longrightarrow> x - y \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
129  | 
using Nats_add[of "-x" "y"] uminus_in_Nats_iff[of "x-y", simplified minus_add]  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
130  | 
by (simp add: uminus_in_Nats_iff add.commute)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
131  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
132  | 
lemma Nats_diff_nonpos_Ints:  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
133  | 
"x \<in> \<nat> \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x - y \<in> \<nat>"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
134  | 
using Nats_add[of "x" "-y"] by (simp add: uminus_in_Nats_iff add.commute)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
135  | 
|
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
136  | 
lemma plus_of_nat_eq_0_imp: "z + of_nat n = 0 \<Longrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
137  | 
proof -  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
138  | 
assume "z + of_nat n = 0"  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
139  | 
hence A: "z = - of_nat n" by (simp add: eq_neg_iff_add_eq_0)  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
140  | 
show "z \<in> \<int>\<^sub>\<le>\<^sub>0" by (subst A) simp  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
141  | 
qed  | 
| 
 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 
eberlm 
parents:  
diff
changeset
 | 
142  | 
|
| 
62131
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
143  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
144  | 
subsection\<open>Non-negative reals\<close>  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
145  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
146  | 
definition nonneg_Reals :: "'a::real_algebra_1 set"  ("\<real>\<^sub>\<ge>\<^sub>0")
 | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
147  | 
  where "\<real>\<^sub>\<ge>\<^sub>0 = {of_real r | r. r \<ge> 0}"
 | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
148  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
149  | 
lemma nonneg_Reals_of_real_iff [simp]: "of_real r \<in> \<real>\<^sub>\<ge>\<^sub>0 \<longleftrightarrow> r \<ge> 0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
150  | 
by (force simp add: nonneg_Reals_def)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
151  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
152  | 
lemma nonneg_Reals_subset_Reals: "\<real>\<^sub>\<ge>\<^sub>0 \<subseteq> \<real>"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
153  | 
unfolding nonneg_Reals_def Reals_def by blast  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
154  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
155  | 
lemma nonneg_Reals_Real [dest]: "x \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> x \<in> \<real>"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
156  | 
unfolding nonneg_Reals_def Reals_def by blast  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
157  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
158  | 
lemma nonneg_Reals_of_nat_I [simp]: "of_nat n \<in> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
159  | 
by (metis nonneg_Reals_of_real_iff of_nat_0_le_iff of_real_of_nat_eq)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
160  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
161  | 
lemma nonneg_Reals_cases:  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
162  | 
assumes "x \<in> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
163  | 
obtains r where "x = of_real r" "r \<ge> 0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
164  | 
using assms unfolding nonneg_Reals_def by (auto elim!: Reals_cases)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
165  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
166  | 
lemma nonneg_Reals_zero_I [simp]: "0 \<in> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
167  | 
unfolding nonneg_Reals_def by auto  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
168  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
169  | 
lemma nonneg_Reals_one_I [simp]: "1 \<in> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
170  | 
by (metis (mono_tags, lifting) nonneg_Reals_of_nat_I of_nat_1)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
171  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
172  | 
lemma nonneg_Reals_minus_one_I [simp]: "-1 \<notin> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
173  | 
by (metis nonneg_Reals_of_real_iff le_minus_one_simps(3) of_real_1 of_real_def real_vector.scale_minus_left)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
174  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
175  | 
lemma nonneg_Reals_numeral_I [simp]: "numeral w \<in> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
176  | 
by (metis (no_types) nonneg_Reals_of_nat_I of_nat_numeral)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
177  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
178  | 
lemma nonneg_Reals_minus_numeral_I [simp]: "- numeral w \<notin> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
179  | 
using nonneg_Reals_of_real_iff not_zero_le_neg_numeral by fastforce  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
180  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
181  | 
lemma nonneg_Reals_add_I [simp]: "\<lbrakk>a \<in> \<real>\<^sub>\<ge>\<^sub>0; b \<in> \<real>\<^sub>\<ge>\<^sub>0\<rbrakk> \<Longrightarrow> a + b \<in> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
182  | 
apply (simp add: nonneg_Reals_def)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
183  | 
apply clarify  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
184  | 
apply (rename_tac r s)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
185  | 
apply (rule_tac x="r+s" in exI, auto)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
186  | 
done  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
187  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
188  | 
lemma nonneg_Reals_mult_I [simp]: "\<lbrakk>a \<in> \<real>\<^sub>\<ge>\<^sub>0; b \<in> \<real>\<^sub>\<ge>\<^sub>0\<rbrakk> \<Longrightarrow> a * b \<in> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
189  | 
unfolding nonneg_Reals_def by (auto simp: of_real_def)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
190  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
191  | 
lemma nonneg_Reals_inverse_I [simp]:  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
192  | 
fixes a :: "'a::real_div_algebra"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
193  | 
shows "a \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> inverse a \<in> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
194  | 
by (simp add: nonneg_Reals_def image_iff) (metis inverse_nonnegative_iff_nonnegative of_real_inverse)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
195  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
196  | 
lemma nonneg_Reals_divide_I [simp]:  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
197  | 
fixes a :: "'a::real_div_algebra"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
198  | 
shows "\<lbrakk>a \<in> \<real>\<^sub>\<ge>\<^sub>0; b \<in> \<real>\<^sub>\<ge>\<^sub>0\<rbrakk> \<Longrightarrow> a / b \<in> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
199  | 
by (simp add: divide_inverse)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
200  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
201  | 
lemma nonneg_Reals_pow_I [simp]: "a \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> a^n \<in> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
202  | 
by (induction n) auto  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
203  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
204  | 
lemma complex_nonneg_Reals_iff: "z \<in> \<real>\<^sub>\<ge>\<^sub>0 \<longleftrightarrow> Re z \<ge> 0 \<and> Im z = 0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
205  | 
by (auto simp: nonneg_Reals_def) (metis complex_of_real_def complex_surj)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
206  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
207  | 
lemma ii_not_nonneg_Reals [iff]: "\<i> \<notin> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
208  | 
by (simp add: complex_nonneg_Reals_iff)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
209  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
210  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
211  | 
subsection\<open>Non-positive reals\<close>  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
212  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
213  | 
definition nonpos_Reals :: "'a::real_algebra_1 set"  ("\<real>\<^sub>\<le>\<^sub>0")
 | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
214  | 
  where "\<real>\<^sub>\<le>\<^sub>0 = {of_real r | r. r \<le> 0}"
 | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
215  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
216  | 
lemma nonpos_Reals_of_real_iff [simp]: "of_real r \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> r \<le> 0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
217  | 
by (force simp add: nonpos_Reals_def)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
218  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
219  | 
lemma nonpos_Reals_subset_Reals: "\<real>\<^sub>\<le>\<^sub>0 \<subseteq> \<real>"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
220  | 
unfolding nonpos_Reals_def Reals_def by blast  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
221  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
222  | 
lemma nonpos_Ints_subset_nonpos_Reals: "\<int>\<^sub>\<le>\<^sub>0 \<subseteq> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
223  | 
by (metis nonpos_Ints_cases nonpos_Ints_nonpos nonpos_Ints_of_int  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
224  | 
nonpos_Reals_of_real_iff of_real_of_int_eq subsetI)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
225  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
226  | 
lemma nonpos_Reals_of_nat_iff [simp]: "of_nat n \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n=0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
227  | 
by (metis nonpos_Reals_of_real_iff of_nat_le_0_iff of_real_of_nat_eq)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
228  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
229  | 
lemma nonpos_Reals_Real [dest]: "x \<in> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x \<in> \<real>"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
230  | 
unfolding nonpos_Reals_def Reals_def by blast  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
231  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
232  | 
lemma nonpos_Reals_cases:  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
233  | 
assumes "x \<in> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
234  | 
obtains r where "x = of_real r" "r \<le> 0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
235  | 
using assms unfolding nonpos_Reals_def by (auto elim!: Reals_cases)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
236  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
237  | 
lemma uminus_nonneg_Reals_iff [simp]: "-x \<in> \<real>\<^sub>\<ge>\<^sub>0 \<longleftrightarrow> x \<in> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
238  | 
apply (auto simp: nonpos_Reals_def nonneg_Reals_def)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
239  | 
apply (metis nonpos_Reals_of_real_iff minus_minus neg_le_0_iff_le of_real_minus)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
240  | 
done  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
241  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
242  | 
lemma uminus_nonpos_Reals_iff [simp]: "-x \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> x \<in> \<real>\<^sub>\<ge>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
243  | 
by (metis (no_types) minus_minus uminus_nonneg_Reals_iff)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
244  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
245  | 
lemma nonpos_Reals_zero_I [simp]: "0 \<in> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
246  | 
unfolding nonpos_Reals_def by force  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
247  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
248  | 
lemma nonpos_Reals_one_I [simp]: "1 \<notin> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
249  | 
using nonneg_Reals_minus_one_I uminus_nonneg_Reals_iff by blast  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
250  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
251  | 
lemma nonpos_Reals_numeral_I [simp]: "numeral w \<notin> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
252  | 
using nonneg_Reals_minus_numeral_I uminus_nonneg_Reals_iff by blast  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
253  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
254  | 
lemma nonpos_Reals_add_I [simp]: "\<lbrakk>a \<in> \<real>\<^sub>\<le>\<^sub>0; b \<in> \<real>\<^sub>\<le>\<^sub>0\<rbrakk> \<Longrightarrow> a + b \<in> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
255  | 
by (metis nonneg_Reals_add_I add_uminus_conv_diff minus_diff_eq minus_minus uminus_nonpos_Reals_iff)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
256  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
257  | 
lemma nonpos_Reals_mult_I1: "\<lbrakk>a \<in> \<real>\<^sub>\<ge>\<^sub>0; b \<in> \<real>\<^sub>\<le>\<^sub>0\<rbrakk> \<Longrightarrow> a * b \<in> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
258  | 
by (metis nonneg_Reals_mult_I mult_minus_right uminus_nonneg_Reals_iff)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
259  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
260  | 
lemma nonpos_Reals_mult_I2: "\<lbrakk>a \<in> \<real>\<^sub>\<le>\<^sub>0; b \<in> \<real>\<^sub>\<ge>\<^sub>0\<rbrakk> \<Longrightarrow> a * b \<in> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
261  | 
by (metis nonneg_Reals_mult_I mult_minus_left uminus_nonneg_Reals_iff)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
262  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
263  | 
lemma nonpos_Reals_mult_of_nat_iff:  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
264  | 
fixes a:: "'a :: real_div_algebra" shows "a * of_nat n \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> a \<in> \<real>\<^sub>\<le>\<^sub>0 \<or> n=0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
265  | 
apply (auto intro: nonpos_Reals_mult_I2)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
266  | 
apply (auto simp: nonpos_Reals_def)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
267  | 
apply (rule_tac x="r/n" in exI)  | 
| 
70817
 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 
haftmann 
parents: 
69593 
diff
changeset
 | 
268  | 
apply (auto simp: field_split_simps)  | 
| 
62131
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
269  | 
done  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
270  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
271  | 
lemma nonpos_Reals_inverse_I:  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
272  | 
fixes a :: "'a::real_div_algebra"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
273  | 
shows "a \<in> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> inverse a \<in> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
274  | 
using nonneg_Reals_inverse_I uminus_nonneg_Reals_iff by fastforce  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
275  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
276  | 
lemma nonpos_Reals_divide_I1:  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
277  | 
fixes a :: "'a::real_div_algebra"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
278  | 
shows "\<lbrakk>a \<in> \<real>\<^sub>\<ge>\<^sub>0; b \<in> \<real>\<^sub>\<le>\<^sub>0\<rbrakk> \<Longrightarrow> a / b \<in> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
279  | 
by (simp add: nonpos_Reals_inverse_I nonpos_Reals_mult_I1 divide_inverse)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
280  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
281  | 
lemma nonpos_Reals_divide_I2:  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
282  | 
fixes a :: "'a::real_div_algebra"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
283  | 
shows "\<lbrakk>a \<in> \<real>\<^sub>\<le>\<^sub>0; b \<in> \<real>\<^sub>\<ge>\<^sub>0\<rbrakk> \<Longrightarrow> a / b \<in> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
284  | 
by (metis nonneg_Reals_divide_I minus_divide_left uminus_nonneg_Reals_iff)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
285  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
286  | 
lemma nonpos_Reals_divide_of_nat_iff:  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
287  | 
fixes a:: "'a :: real_div_algebra" shows "a / of_nat n \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> a \<in> \<real>\<^sub>\<le>\<^sub>0 \<or> n=0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
288  | 
apply (auto intro: nonpos_Reals_divide_I2)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
289  | 
apply (auto simp: nonpos_Reals_def)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
290  | 
apply (rule_tac x="r*n" in exI)  | 
| 
70817
 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 
haftmann 
parents: 
69593 
diff
changeset
 | 
291  | 
apply (auto simp: field_split_simps mult_le_0_iff)  | 
| 
62131
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
292  | 
done  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
293  | 
|
| 
68499
 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 
paulson <lp15@cam.ac.uk> 
parents: 
67135 
diff
changeset
 | 
294  | 
lemma nonpos_Reals_inverse_iff [simp]:  | 
| 
 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 
paulson <lp15@cam.ac.uk> 
parents: 
67135 
diff
changeset
 | 
295  | 
fixes a :: "'a::real_div_algebra"  | 
| 
 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 
paulson <lp15@cam.ac.uk> 
parents: 
67135 
diff
changeset
 | 
296  | 
shows "inverse a \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> a \<in> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 
paulson <lp15@cam.ac.uk> 
parents: 
67135 
diff
changeset
 | 
297  | 
using nonpos_Reals_inverse_I by fastforce  | 
| 
 
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
 
paulson <lp15@cam.ac.uk> 
parents: 
67135 
diff
changeset
 | 
298  | 
|
| 
62131
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
299  | 
lemma nonpos_Reals_pow_I: "\<lbrakk>a \<in> \<real>\<^sub>\<le>\<^sub>0; odd n\<rbrakk> \<Longrightarrow> a^n \<in> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
300  | 
by (metis nonneg_Reals_pow_I power_minus_odd uminus_nonneg_Reals_iff)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
301  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
302  | 
lemma complex_nonpos_Reals_iff: "z \<in> \<real>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> Re z \<le> 0 \<and> Im z = 0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
303  | 
using complex_is_Real_iff by (force simp add: nonpos_Reals_def)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
304  | 
|
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
305  | 
lemma ii_not_nonpos_Reals [iff]: "\<i> \<notin> \<real>\<^sub>\<le>\<^sub>0"  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
306  | 
by (simp add: complex_nonpos_Reals_iff)  | 
| 
 
1baed43f453e
nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
 
paulson 
parents: 
62072 
diff
changeset
 | 
307  | 
|
| 62390 | 308  | 
end  |