| author | wenzelm | 
| Thu, 26 Jul 2012 14:29:54 +0200 | |
| changeset 48516 | c5d0f19ef7cb | 
| parent 47433 | 07f4bf913230 | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 32734 | 1  | 
(* Title: HOL/ex/Coherent.thy  | 
| 28323 | 2  | 
Author: Stefan Berghofer, TU Muenchen  | 
| 32734 | 3  | 
Author: Marc Bezem, Institutt for Informatikk, Universitetet i Bergen  | 
| 28323 | 4  | 
*)  | 
5  | 
||
| 32734 | 6  | 
header {* Coherent Logic Problems *}
 | 
| 28323 | 7  | 
|
| 32734 | 8  | 
theory Coherent  | 
9  | 
imports Main  | 
|
10  | 
begin  | 
|
| 28323 | 11  | 
|
| 32734 | 12  | 
subsection {* Equivalence of two versions of Pappus' Axiom *}
 | 
| 28323 | 13  | 
|
14  | 
no_notation  | 
|
15  | 
comp (infixl "o" 55) and  | 
|
| 
47433
 
07f4bf913230
renamed "rel_comp" to "relcomp" (to be consistent with, e.g., "relpow")
 
griff 
parents: 
32734 
diff
changeset
 | 
16  | 
relcomp (infixr "O" 75)  | 
| 28323 | 17  | 
|
18  | 
lemma p1p2:  | 
|
19  | 
assumes  | 
|
20  | 
"col a b c l \<and> col d e f m"  | 
|
21  | 
"col b f g n \<and> col c e g o"  | 
|
22  | 
"col b d h p \<and> col a e h q"  | 
|
23  | 
"col c d i r \<and> col a f i s"  | 
|
24  | 
"el n o \<Longrightarrow> goal"  | 
|
25  | 
"el p q \<Longrightarrow> goal"  | 
|
26  | 
"el s r \<Longrightarrow> goal"  | 
|
27  | 
"\<And>A. el A A \<Longrightarrow> pl g A \<Longrightarrow> pl h A \<Longrightarrow> pl i A \<Longrightarrow> goal"  | 
|
28  | 
"\<And>A B C D. col A B C D \<Longrightarrow> pl A D"  | 
|
29  | 
"\<And>A B C D. col A B C D \<Longrightarrow> pl B D"  | 
|
30  | 
"\<And>A B C D. col A B C D \<Longrightarrow> pl C D"  | 
|
31  | 
"\<And>A B. pl A B \<Longrightarrow> ep A A"  | 
|
32  | 
"\<And>A B. ep A B \<Longrightarrow> ep B A"  | 
|
33  | 
"\<And>A B C. ep A B \<Longrightarrow> ep B C \<Longrightarrow> ep A C"  | 
|
34  | 
"\<And>A B. pl A B \<Longrightarrow> el B B"  | 
|
35  | 
"\<And>A B. el A B \<Longrightarrow> el B A"  | 
|
36  | 
"\<And>A B C. el A B \<Longrightarrow> el B C \<Longrightarrow> el A C"  | 
|
37  | 
"\<And>A B C. ep A B \<Longrightarrow> pl B C \<Longrightarrow> pl A C"  | 
|
38  | 
"\<And>A B C. pl A B \<Longrightarrow> el B C \<Longrightarrow> pl A C"  | 
|
39  | 
"\<And>A B C D E F G H I J K L M N O P Q.  | 
|
40  | 
col A B C D \<Longrightarrow> col E F G H \<Longrightarrow> col B G I J \<Longrightarrow> col C F I K \<Longrightarrow>  | 
|
41  | 
col B E L M \<Longrightarrow> col A F L N \<Longrightarrow> col C E O P \<Longrightarrow> col A G O Q \<Longrightarrow>  | 
|
42  | 
(\<exists> R. col I L O R) \<or> pl A H \<or> pl B H \<or> pl C H \<or> pl E D \<or> pl F D \<or> pl G D"  | 
|
43  | 
"\<And>A B C D. pl A B \<Longrightarrow> pl A C \<Longrightarrow> pl D B \<Longrightarrow> pl D C \<Longrightarrow> ep A D \<or> el B C"  | 
|
44  | 
"\<And>A B. ep A A \<Longrightarrow> ep B B \<Longrightarrow> \<exists>C. pl A C \<and> pl B C"  | 
|
45  | 
shows goal using assms  | 
|
46  | 
by coherent  | 
|
47  | 
||
48  | 
lemma p2p1:  | 
|
49  | 
assumes  | 
|
50  | 
"col a b c l \<and> col d e f m"  | 
|
51  | 
"col b f g n \<and> col c e g o"  | 
|
52  | 
"col b d h p \<and> col a e h q"  | 
|
53  | 
"col c d i r \<and> col a f i s"  | 
|
54  | 
"pl a m \<Longrightarrow> goal"  | 
|
55  | 
"pl b m \<Longrightarrow> goal"  | 
|
56  | 
"pl c m \<Longrightarrow> goal"  | 
|
57  | 
"pl d l \<Longrightarrow> goal"  | 
|
58  | 
"pl e l \<Longrightarrow> goal"  | 
|
59  | 
"pl f l \<Longrightarrow> goal"  | 
|
60  | 
"\<And>A. pl g A \<Longrightarrow> pl h A \<Longrightarrow> pl i A \<Longrightarrow> goal"  | 
|
61  | 
"\<And>A B C D. col A B C D \<Longrightarrow> pl A D"  | 
|
62  | 
"\<And>A B C D. col A B C D \<Longrightarrow> pl B D"  | 
|
63  | 
"\<And>A B C D. col A B C D \<Longrightarrow> pl C D"  | 
|
64  | 
"\<And>A B. pl A B \<Longrightarrow> ep A A"  | 
|
65  | 
"\<And>A B. ep A B \<Longrightarrow> ep B A"  | 
|
66  | 
"\<And>A B C. ep A B \<Longrightarrow> ep B C \<Longrightarrow> ep A C"  | 
|
67  | 
"\<And>A B. pl A B \<Longrightarrow> el B B"  | 
|
68  | 
"\<And>A B. el A B \<Longrightarrow> el B A"  | 
|
69  | 
"\<And>A B C. el A B \<Longrightarrow> el B C \<Longrightarrow> el A C"  | 
|
70  | 
"\<And>A B C. ep A B \<Longrightarrow> pl B C \<Longrightarrow> pl A C"  | 
|
71  | 
"\<And>A B C. pl A B \<Longrightarrow> el B C \<Longrightarrow> pl A C"  | 
|
72  | 
"\<And>A B C D E F G H I J K L M N O P Q.  | 
|
73  | 
col A B C J \<Longrightarrow> col D E F K \<Longrightarrow> col B F G L \<Longrightarrow> col C E G M \<Longrightarrow>  | 
|
74  | 
col B D H N \<Longrightarrow> col A E H O \<Longrightarrow> col C D I P \<Longrightarrow> col A F I Q \<Longrightarrow>  | 
|
75  | 
(\<exists> R. col G H I R) \<or> el L M \<or> el N O \<or> el P Q"  | 
|
76  | 
"\<And>A B C D. pl C A \<Longrightarrow> pl C B \<Longrightarrow> pl D A \<Longrightarrow> pl D B \<Longrightarrow> ep C D \<or> el A B"  | 
|
77  | 
"\<And>A B C. ep A A \<Longrightarrow> ep B B \<Longrightarrow> \<exists>C. pl A C \<and> pl B C"  | 
|
78  | 
shows goal using assms  | 
|
79  | 
by coherent  | 
|
80  | 
||
81  | 
||
82  | 
subsection {* Preservation of the Diamond Property under reflexive closure *}
 | 
|
83  | 
||
84  | 
lemma diamond:  | 
|
85  | 
assumes  | 
|
86  | 
"reflexive_rewrite a b" "reflexive_rewrite a c"  | 
|
87  | 
"\<And>A. reflexive_rewrite b A \<Longrightarrow> reflexive_rewrite c A \<Longrightarrow> goal"  | 
|
88  | 
"\<And>A. equalish A A"  | 
|
89  | 
"\<And>A B. equalish A B \<Longrightarrow> equalish B A"  | 
|
90  | 
"\<And>A B C. equalish A B \<Longrightarrow> reflexive_rewrite B C \<Longrightarrow> reflexive_rewrite A C"  | 
|
91  | 
"\<And>A B. equalish A B \<Longrightarrow> reflexive_rewrite A B"  | 
|
92  | 
"\<And>A B. rewrite A B \<Longrightarrow> reflexive_rewrite A B"  | 
|
93  | 
"\<And>A B. reflexive_rewrite A B \<Longrightarrow> equalish A B \<or> rewrite A B"  | 
|
94  | 
"\<And>A B C. rewrite A B \<Longrightarrow> rewrite A C \<Longrightarrow> \<exists>D. rewrite B D \<and> rewrite C D"  | 
|
95  | 
shows goal using assms  | 
|
96  | 
by coherent  | 
|
97  | 
||
98  | 
end  |