| author | haftmann | 
| Sun, 28 Aug 2005 10:08:36 +0200 | |
| changeset 17157 | c5fb1fb537c0 | 
| parent 17094 | 7a3c2efecffe | 
| child 19582 | a669c98b9c24 | 
| permissions | -rw-r--r-- | 
| 13940 | 1 | (* | 
| 14706 | 2 | Title: HOL/Algebra/UnivPoly.thy | 
| 13940 | 3 | Id: $Id$ | 
| 4 | Author: Clemens Ballarin, started 9 December 1996 | |
| 5 | Copyright: Clemens Ballarin | |
| 6 | *) | |
| 7 | ||
| 14577 | 8 | header {* Univariate Polynomials *}
 | 
| 13940 | 9 | |
| 16417 | 10 | theory UnivPoly imports Module begin | 
| 13940 | 11 | |
| 14553 | 12 | text {*
 | 
| 14666 | 13 | Polynomials are formalised as modules with additional operations for | 
| 14 | extracting coefficients from polynomials and for obtaining monomials | |
| 15 |   from coefficients and exponents (record @{text "up_ring"}).  The
 | |
| 16 | carrier set is a set of bounded functions from Nat to the | |
| 17 | coefficient domain. Bounded means that these functions return zero | |
| 18 | above a certain bound (the degree). There is a chapter on the | |
| 14706 | 19 |   formalisation of polynomials in the PhD thesis \cite{Ballarin:1999},
 | 
| 20 | which was implemented with axiomatic type classes. This was later | |
| 21 | ported to Locales. | |
| 14553 | 22 | *} | 
| 23 | ||
| 14666 | 24 | |
| 13949 
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
 ballarin parents: 
13940diff
changeset | 25 | subsection {* The Constructor for Univariate Polynomials *}
 | 
| 13940 | 26 | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 27 | text {*
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 28 | Functions with finite support. | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 29 | *} | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 30 | |
| 14666 | 31 | locale bound = | 
| 32 | fixes z :: 'a | |
| 33 | and n :: nat | |
| 34 | and f :: "nat => 'a" | |
| 35 | assumes bound: "!!m. n < m \<Longrightarrow> f m = z" | |
| 13940 | 36 | |
| 14666 | 37 | declare bound.intro [intro!] | 
| 38 | and bound.bound [dest] | |
| 13940 | 39 | |
| 40 | lemma bound_below: | |
| 14666 | 41 | assumes bound: "bound z m f" and nonzero: "f n \<noteq> z" shows "n \<le> m" | 
| 13940 | 42 | proof (rule classical) | 
| 43 | assume "~ ?thesis" | |
| 44 | then have "m < n" by arith | |
| 45 | with bound have "f n = z" .. | |
| 46 | with nonzero show ?thesis by contradiction | |
| 47 | qed | |
| 48 | ||
| 49 | record ('a, 'p) up_ring = "('a, 'p) module" +
 | |
| 50 | monom :: "['a, nat] => 'p" | |
| 51 | coeff :: "['p, nat] => 'a" | |
| 52 | ||
| 14651 | 53 | constdefs (structure R) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 54 |   up :: "('a, 'm) ring_scheme => (nat => 'a) set"
 | 
| 14651 | 55 |   "up R == {f. f \<in> UNIV -> carrier R & (EX n. bound \<zero> n f)}"
 | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 56 |   UP :: "('a, 'm) ring_scheme => ('a, nat => 'a) up_ring"
 | 
| 13940 | 57 | "UP R == (| | 
| 58 | carrier = up R, | |
| 14651 | 59 |     mult = (%p:up R. %q:up R. %n. \<Oplus>i \<in> {..n}. p i \<otimes> q (n-i)),
 | 
| 60 | one = (%i. if i=0 then \<one> else \<zero>), | |
| 61 | zero = (%i. \<zero>), | |
| 62 | add = (%p:up R. %q:up R. %i. p i \<oplus> q i), | |
| 63 | smult = (%a:carrier R. %p:up R. %i. a \<otimes> p i), | |
| 64 | monom = (%a:carrier R. %n i. if i=n then a else \<zero>), | |
| 13940 | 65 | coeff = (%p:up R. %n. p n) |)" | 
| 66 | ||
| 67 | text {*
 | |
| 68 |   Properties of the set of polynomials @{term up}.
 | |
| 69 | *} | |
| 70 | ||
| 71 | lemma mem_upI [intro]: | |
| 72 | "[| !!n. f n \<in> carrier R; EX n. bound (zero R) n f |] ==> f \<in> up R" | |
| 73 | by (simp add: up_def Pi_def) | |
| 74 | ||
| 75 | lemma mem_upD [dest]: | |
| 76 | "f \<in> up R ==> f n \<in> carrier R" | |
| 77 | by (simp add: up_def Pi_def) | |
| 78 | ||
| 79 | lemma (in cring) bound_upD [dest]: | |
| 80 | "f \<in> up R ==> EX n. bound \<zero> n f" | |
| 81 | by (simp add: up_def) | |
| 82 | ||
| 83 | lemma (in cring) up_one_closed: | |
| 84 | "(%n. if n = 0 then \<one> else \<zero>) \<in> up R" | |
| 85 | using up_def by force | |
| 86 | ||
| 87 | lemma (in cring) up_smult_closed: | |
| 88 | "[| a \<in> carrier R; p \<in> up R |] ==> (%i. a \<otimes> p i) \<in> up R" | |
| 89 | by force | |
| 90 | ||
| 91 | lemma (in cring) up_add_closed: | |
| 92 | "[| p \<in> up R; q \<in> up R |] ==> (%i. p i \<oplus> q i) \<in> up R" | |
| 93 | proof | |
| 94 | fix n | |
| 95 | assume "p \<in> up R" and "q \<in> up R" | |
| 96 | then show "p n \<oplus> q n \<in> carrier R" | |
| 97 | by auto | |
| 98 | next | |
| 99 | assume UP: "p \<in> up R" "q \<in> up R" | |
| 100 | show "EX n. bound \<zero> n (%i. p i \<oplus> q i)" | |
| 101 | proof - | |
| 102 | from UP obtain n where boundn: "bound \<zero> n p" by fast | |
| 103 | from UP obtain m where boundm: "bound \<zero> m q" by fast | |
| 104 | have "bound \<zero> (max n m) (%i. p i \<oplus> q i)" | |
| 105 | proof | |
| 106 | fix i | |
| 107 | assume "max n m < i" | |
| 108 | with boundn and boundm and UP show "p i \<oplus> q i = \<zero>" by fastsimp | |
| 109 | qed | |
| 110 | then show ?thesis .. | |
| 111 | qed | |
| 112 | qed | |
| 113 | ||
| 114 | lemma (in cring) up_a_inv_closed: | |
| 115 | "p \<in> up R ==> (%i. \<ominus> (p i)) \<in> up R" | |
| 116 | proof | |
| 117 | assume R: "p \<in> up R" | |
| 118 | then obtain n where "bound \<zero> n p" by auto | |
| 119 | then have "bound \<zero> n (%i. \<ominus> p i)" by auto | |
| 120 | then show "EX n. bound \<zero> n (%i. \<ominus> p i)" by auto | |
| 121 | qed auto | |
| 122 | ||
| 123 | lemma (in cring) up_mult_closed: | |
| 124 | "[| p \<in> up R; q \<in> up R |] ==> | |
| 14666 | 125 |   (%n. \<Oplus>i \<in> {..n}. p i \<otimes> q (n-i)) \<in> up R"
 | 
| 13940 | 126 | proof | 
| 127 | fix n | |
| 128 | assume "p \<in> up R" "q \<in> up R" | |
| 14666 | 129 |   then show "(\<Oplus>i \<in> {..n}. p i \<otimes> q (n-i)) \<in> carrier R"
 | 
| 13940 | 130 | by (simp add: mem_upD funcsetI) | 
| 131 | next | |
| 132 | assume UP: "p \<in> up R" "q \<in> up R" | |
| 14666 | 133 |   show "EX n. bound \<zero> n (%n. \<Oplus>i \<in> {..n}. p i \<otimes> q (n-i))"
 | 
| 13940 | 134 | proof - | 
| 135 | from UP obtain n where boundn: "bound \<zero> n p" by fast | |
| 136 | from UP obtain m where boundm: "bound \<zero> m q" by fast | |
| 14666 | 137 |     have "bound \<zero> (n + m) (%n. \<Oplus>i \<in> {..n}. p i \<otimes> q (n - i))"
 | 
| 13940 | 138 | proof | 
| 14666 | 139 | fix k assume bound: "n + m < k" | 
| 13940 | 140 |       {
 | 
| 14666 | 141 | fix i | 
| 142 | have "p i \<otimes> q (k-i) = \<zero>" | |
| 143 | proof (cases "n < i") | |
| 144 | case True | |
| 145 | with boundn have "p i = \<zero>" by auto | |
| 13940 | 146 | moreover from UP have "q (k-i) \<in> carrier R" by auto | 
| 14666 | 147 | ultimately show ?thesis by simp | 
| 148 | next | |
| 149 | case False | |
| 150 | with bound have "m < k-i" by arith | |
| 151 | with boundm have "q (k-i) = \<zero>" by auto | |
| 152 | moreover from UP have "p i \<in> carrier R" by auto | |
| 153 | ultimately show ?thesis by simp | |
| 154 | qed | |
| 13940 | 155 | } | 
| 14666 | 156 |       then show "(\<Oplus>i \<in> {..k}. p i \<otimes> q (k-i)) = \<zero>"
 | 
| 157 | by (simp add: Pi_def) | |
| 13940 | 158 | qed | 
| 159 | then show ?thesis by fast | |
| 160 | qed | |
| 161 | qed | |
| 162 | ||
| 14666 | 163 | |
| 13940 | 164 | subsection {* Effect of operations on coefficients *}
 | 
| 165 | ||
| 166 | locale UP = struct R + struct P + | |
| 167 | defines P_def: "P == UP R" | |
| 168 | ||
| 169 | locale UP_cring = UP + cring R | |
| 170 | ||
| 171 | locale UP_domain = UP_cring + "domain" R | |
| 172 | ||
| 173 | text {*
 | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 174 |   Temporarily declare @{thm [locale=UP] P_def} as simp rule.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 175 | *} | 
| 13940 | 176 | |
| 177 | declare (in UP) P_def [simp] | |
| 178 | ||
| 179 | lemma (in UP_cring) coeff_monom [simp]: | |
| 180 | "a \<in> carrier R ==> | |
| 181 | coeff P (monom P a m) n = (if m=n then a else \<zero>)" | |
| 182 | proof - | |
| 183 | assume R: "a \<in> carrier R" | |
| 184 | then have "(%n. if n = m then a else \<zero>) \<in> up R" | |
| 185 | using up_def by force | |
| 186 | with R show ?thesis by (simp add: UP_def) | |
| 187 | qed | |
| 188 | ||
| 189 | lemma (in UP_cring) coeff_zero [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 190 | "coeff P \<zero>\<^bsub>P\<^esub> n = \<zero>" | 
| 13940 | 191 | by (auto simp add: UP_def) | 
| 192 | ||
| 193 | lemma (in UP_cring) coeff_one [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 194 | "coeff P \<one>\<^bsub>P\<^esub> n = (if n=0 then \<one> else \<zero>)" | 
| 13940 | 195 | using up_one_closed by (simp add: UP_def) | 
| 196 | ||
| 197 | lemma (in UP_cring) coeff_smult [simp]: | |
| 198 | "[| a \<in> carrier R; p \<in> carrier P |] ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 199 | coeff P (a \<odot>\<^bsub>P\<^esub> p) n = a \<otimes> coeff P p n" | 
| 13940 | 200 | by (simp add: UP_def up_smult_closed) | 
| 201 | ||
| 202 | lemma (in UP_cring) coeff_add [simp]: | |
| 203 | "[| p \<in> carrier P; q \<in> carrier P |] ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 204 | coeff P (p \<oplus>\<^bsub>P\<^esub> q) n = coeff P p n \<oplus> coeff P q n" | 
| 13940 | 205 | by (simp add: UP_def up_add_closed) | 
| 206 | ||
| 207 | lemma (in UP_cring) coeff_mult [simp]: | |
| 208 | "[| p \<in> carrier P; q \<in> carrier P |] ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 209 |   coeff P (p \<otimes>\<^bsub>P\<^esub> q) n = (\<Oplus>i \<in> {..n}. coeff P p i \<otimes> coeff P q (n-i))"
 | 
| 13940 | 210 | by (simp add: UP_def up_mult_closed) | 
| 211 | ||
| 212 | lemma (in UP) up_eqI: | |
| 213 | assumes prem: "!!n. coeff P p n = coeff P q n" | |
| 214 | and R: "p \<in> carrier P" "q \<in> carrier P" | |
| 215 | shows "p = q" | |
| 216 | proof | |
| 217 | fix x | |
| 218 | from prem and R show "p x = q x" by (simp add: UP_def) | |
| 219 | qed | |
| 14666 | 220 | |
| 13940 | 221 | subsection {* Polynomials form a commutative ring. *}
 | 
| 222 | ||
| 14666 | 223 | text {* Operations are closed over @{term P}. *}
 | 
| 13940 | 224 | |
| 225 | lemma (in UP_cring) UP_mult_closed [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 226 | "[| p \<in> carrier P; q \<in> carrier P |] ==> p \<otimes>\<^bsub>P\<^esub> q \<in> carrier P" | 
| 13940 | 227 | by (simp add: UP_def up_mult_closed) | 
| 228 | ||
| 229 | lemma (in UP_cring) UP_one_closed [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 230 | "\<one>\<^bsub>P\<^esub> \<in> carrier P" | 
| 13940 | 231 | by (simp add: UP_def up_one_closed) | 
| 232 | ||
| 233 | lemma (in UP_cring) UP_zero_closed [intro, simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 234 | "\<zero>\<^bsub>P\<^esub> \<in> carrier P" | 
| 13940 | 235 | by (auto simp add: UP_def) | 
| 236 | ||
| 237 | lemma (in UP_cring) UP_a_closed [intro, simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 238 | "[| p \<in> carrier P; q \<in> carrier P |] ==> p \<oplus>\<^bsub>P\<^esub> q \<in> carrier P" | 
| 13940 | 239 | by (simp add: UP_def up_add_closed) | 
| 240 | ||
| 241 | lemma (in UP_cring) monom_closed [simp]: | |
| 242 | "a \<in> carrier R ==> monom P a n \<in> carrier P" | |
| 243 | by (auto simp add: UP_def up_def Pi_def) | |
| 244 | ||
| 245 | lemma (in UP_cring) UP_smult_closed [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 246 | "[| a \<in> carrier R; p \<in> carrier P |] ==> a \<odot>\<^bsub>P\<^esub> p \<in> carrier P" | 
| 13940 | 247 | by (simp add: UP_def up_smult_closed) | 
| 248 | ||
| 249 | lemma (in UP) coeff_closed [simp]: | |
| 250 | "p \<in> carrier P ==> coeff P p n \<in> carrier R" | |
| 251 | by (auto simp add: UP_def) | |
| 252 | ||
| 253 | declare (in UP) P_def [simp del] | |
| 254 | ||
| 255 | text {* Algebraic ring properties *}
 | |
| 256 | ||
| 257 | lemma (in UP_cring) UP_a_assoc: | |
| 258 | assumes R: "p \<in> carrier P" "q \<in> carrier P" "r \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 259 | shows "(p \<oplus>\<^bsub>P\<^esub> q) \<oplus>\<^bsub>P\<^esub> r = p \<oplus>\<^bsub>P\<^esub> (q \<oplus>\<^bsub>P\<^esub> r)" | 
| 13940 | 260 | by (rule up_eqI, simp add: a_assoc R, simp_all add: R) | 
| 261 | ||
| 262 | lemma (in UP_cring) UP_l_zero [simp]: | |
| 263 | assumes R: "p \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 264 | shows "\<zero>\<^bsub>P\<^esub> \<oplus>\<^bsub>P\<^esub> p = p" | 
| 13940 | 265 | by (rule up_eqI, simp_all add: R) | 
| 266 | ||
| 267 | lemma (in UP_cring) UP_l_neg_ex: | |
| 268 | assumes R: "p \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 269 | shows "EX q : carrier P. q \<oplus>\<^bsub>P\<^esub> p = \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 270 | proof - | 
| 271 | let ?q = "%i. \<ominus> (p i)" | |
| 272 | from R have closed: "?q \<in> carrier P" | |
| 273 | by (simp add: UP_def P_def up_a_inv_closed) | |
| 274 | from R have coeff: "!!n. coeff P ?q n = \<ominus> (coeff P p n)" | |
| 275 | by (simp add: UP_def P_def up_a_inv_closed) | |
| 276 | show ?thesis | |
| 277 | proof | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 278 | show "?q \<oplus>\<^bsub>P\<^esub> p = \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 279 | by (auto intro!: up_eqI simp add: R closed coeff R.l_neg) | 
| 280 | qed (rule closed) | |
| 281 | qed | |
| 282 | ||
| 283 | lemma (in UP_cring) UP_a_comm: | |
| 284 | assumes R: "p \<in> carrier P" "q \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 285 | shows "p \<oplus>\<^bsub>P\<^esub> q = q \<oplus>\<^bsub>P\<^esub> p" | 
| 13940 | 286 | by (rule up_eqI, simp add: a_comm R, simp_all add: R) | 
| 287 | ||
| 288 | lemma (in UP_cring) UP_m_assoc: | |
| 289 | assumes R: "p \<in> carrier P" "q \<in> carrier P" "r \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 290 | shows "(p \<otimes>\<^bsub>P\<^esub> q) \<otimes>\<^bsub>P\<^esub> r = p \<otimes>\<^bsub>P\<^esub> (q \<otimes>\<^bsub>P\<^esub> r)" | 
| 13940 | 291 | proof (rule up_eqI) | 
| 292 | fix n | |
| 293 |   {
 | |
| 294 | fix k and a b c :: "nat=>'a" | |
| 295 | assume R: "a \<in> UNIV -> carrier R" "b \<in> UNIV -> carrier R" | |
| 296 | "c \<in> UNIV -> carrier R" | |
| 297 | then have "k <= n ==> | |
| 14666 | 298 |       (\<Oplus>j \<in> {..k}. (\<Oplus>i \<in> {..j}. a i \<otimes> b (j-i)) \<otimes> c (n-j)) =
 | 
| 299 |       (\<Oplus>j \<in> {..k}. a j \<otimes> (\<Oplus>i \<in> {..k-j}. b i \<otimes> c (n-j-i)))"
 | |
| 300 | (concl is "?eq k") | |
| 13940 | 301 | proof (induct k) | 
| 302 | case 0 then show ?case by (simp add: Pi_def m_assoc) | |
| 303 | next | |
| 304 | case (Suc k) | |
| 305 | then have "k <= n" by arith | |
| 306 | then have "?eq k" by (rule Suc) | |
| 307 | with R show ?case | |
| 14666 | 308 | by (simp cong: finsum_cong | 
| 13940 | 309 | add: Suc_diff_le Pi_def l_distr r_distr m_assoc) | 
| 310 | (simp cong: finsum_cong add: Pi_def a_ac finsum_ldistr m_assoc) | |
| 311 | qed | |
| 312 | } | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 313 | with R show "coeff P ((p \<otimes>\<^bsub>P\<^esub> q) \<otimes>\<^bsub>P\<^esub> r) n = coeff P (p \<otimes>\<^bsub>P\<^esub> (q \<otimes>\<^bsub>P\<^esub> r)) n" | 
| 13940 | 314 | by (simp add: Pi_def) | 
| 315 | qed (simp_all add: R) | |
| 316 | ||
| 317 | lemma (in UP_cring) UP_l_one [simp]: | |
| 318 | assumes R: "p \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 319 | shows "\<one>\<^bsub>P\<^esub> \<otimes>\<^bsub>P\<^esub> p = p" | 
| 13940 | 320 | proof (rule up_eqI) | 
| 321 | fix n | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 322 | show "coeff P (\<one>\<^bsub>P\<^esub> \<otimes>\<^bsub>P\<^esub> p) n = coeff P p n" | 
| 13940 | 323 | proof (cases n) | 
| 324 | case 0 with R show ?thesis by simp | |
| 325 | next | |
| 326 | case Suc with R show ?thesis | |
| 327 | by (simp del: finsum_Suc add: finsum_Suc2 Pi_def) | |
| 328 | qed | |
| 329 | qed (simp_all add: R) | |
| 330 | ||
| 331 | lemma (in UP_cring) UP_l_distr: | |
| 332 | assumes R: "p \<in> carrier P" "q \<in> carrier P" "r \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 333 | shows "(p \<oplus>\<^bsub>P\<^esub> q) \<otimes>\<^bsub>P\<^esub> r = (p \<otimes>\<^bsub>P\<^esub> r) \<oplus>\<^bsub>P\<^esub> (q \<otimes>\<^bsub>P\<^esub> r)" | 
| 13940 | 334 | by (rule up_eqI) (simp add: l_distr R Pi_def, simp_all add: R) | 
| 335 | ||
| 336 | lemma (in UP_cring) UP_m_comm: | |
| 337 | assumes R: "p \<in> carrier P" "q \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 338 | shows "p \<otimes>\<^bsub>P\<^esub> q = q \<otimes>\<^bsub>P\<^esub> p" | 
| 13940 | 339 | proof (rule up_eqI) | 
| 14666 | 340 | fix n | 
| 13940 | 341 |   {
 | 
| 342 | fix k and a b :: "nat=>'a" | |
| 343 | assume R: "a \<in> UNIV -> carrier R" "b \<in> UNIV -> carrier R" | |
| 14666 | 344 | then have "k <= n ==> | 
| 345 |       (\<Oplus>i \<in> {..k}. a i \<otimes> b (n-i)) =
 | |
| 346 |       (\<Oplus>i \<in> {..k}. a (k-i) \<otimes> b (i+n-k))"
 | |
| 347 | (concl is "?eq k") | |
| 13940 | 348 | proof (induct k) | 
| 349 | case 0 then show ?case by (simp add: Pi_def) | |
| 350 | next | |
| 351 | case (Suc k) then show ?case | |
| 15944 | 352 | by (subst (2) finsum_Suc2) (simp add: Pi_def a_comm)+ | 
| 13940 | 353 | qed | 
| 354 | } | |
| 355 | note l = this | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 356 | from R show "coeff P (p \<otimes>\<^bsub>P\<^esub> q) n = coeff P (q \<otimes>\<^bsub>P\<^esub> p) n" | 
| 13940 | 357 | apply (simp add: Pi_def) | 
| 358 | apply (subst l) | |
| 359 | apply (auto simp add: Pi_def) | |
| 360 | apply (simp add: m_comm) | |
| 361 | done | |
| 362 | qed (simp_all add: R) | |
| 363 | ||
| 364 | theorem (in UP_cring) UP_cring: | |
| 365 | "cring P" | |
| 366 | by (auto intro!: cringI abelian_groupI comm_monoidI UP_a_assoc UP_l_zero | |
| 367 | UP_l_neg_ex UP_a_comm UP_m_assoc UP_l_one UP_m_comm UP_l_distr) | |
| 368 | ||
| 17094 | 369 | lemma (in UP_cring) UP_ring: | 
| 370 | (* preliminary, | |
| 371 | we want "UP_ring R P ==> ring P", not "UP_cring R P ==> ring P" *) | |
| 14399 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
13975diff
changeset | 372 | "ring P" | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
13975diff
changeset | 373 | by (auto intro: ring.intro cring.axioms UP_cring) | 
| 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
13975diff
changeset | 374 | |
| 13940 | 375 | lemma (in UP_cring) UP_a_inv_closed [intro, simp]: | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 376 | "p \<in> carrier P ==> \<ominus>\<^bsub>P\<^esub> p \<in> carrier P" | 
| 13940 | 377 | by (rule abelian_group.a_inv_closed | 
| 14399 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
13975diff
changeset | 378 | [OF ring.is_abelian_group [OF UP_ring]]) | 
| 13940 | 379 | |
| 380 | lemma (in UP_cring) coeff_a_inv [simp]: | |
| 381 | assumes R: "p \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 382 | shows "coeff P (\<ominus>\<^bsub>P\<^esub> p) n = \<ominus> (coeff P p n)" | 
| 13940 | 383 | proof - | 
| 384 | from R coeff_closed UP_a_inv_closed have | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 385 | "coeff P (\<ominus>\<^bsub>P\<^esub> p) n = \<ominus> coeff P p n \<oplus> (coeff P p n \<oplus> coeff P (\<ominus>\<^bsub>P\<^esub> p) n)" | 
| 13940 | 386 | by algebra | 
| 387 | also from R have "... = \<ominus> (coeff P p n)" | |
| 388 | by (simp del: coeff_add add: coeff_add [THEN sym] | |
| 14399 
dc677b35e54f
New lemmas about inversion of restricted functions.
 ballarin parents: 
13975diff
changeset | 389 | abelian_group.r_neg [OF ring.is_abelian_group [OF UP_ring]]) | 
| 13940 | 390 | finally show ?thesis . | 
| 391 | qed | |
| 392 | ||
| 393 | text {*
 | |
| 17094 | 394 |   Interpretation of lemmas from @{term cring}.  Saves lifting 43
 | 
| 395 | lemmas manually. | |
| 13940 | 396 | *} | 
| 397 | ||
| 17094 | 398 | interpretation UP_cring < cring P | 
| 399 | using UP_cring | |
| 400 | by - (erule cring.axioms)+ | |
| 13940 | 401 | |
| 14666 | 402 | |
| 13940 | 403 | subsection {* Polynomials form an Algebra *}
 | 
| 404 | ||
| 405 | lemma (in UP_cring) UP_smult_l_distr: | |
| 406 | "[| a \<in> carrier R; b \<in> carrier R; p \<in> carrier P |] ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 407 | (a \<oplus> b) \<odot>\<^bsub>P\<^esub> p = a \<odot>\<^bsub>P\<^esub> p \<oplus>\<^bsub>P\<^esub> b \<odot>\<^bsub>P\<^esub> p" | 
| 13940 | 408 | by (rule up_eqI) (simp_all add: R.l_distr) | 
| 409 | ||
| 410 | lemma (in UP_cring) UP_smult_r_distr: | |
| 411 | "[| a \<in> carrier R; p \<in> carrier P; q \<in> carrier P |] ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 412 | a \<odot>\<^bsub>P\<^esub> (p \<oplus>\<^bsub>P\<^esub> q) = a \<odot>\<^bsub>P\<^esub> p \<oplus>\<^bsub>P\<^esub> a \<odot>\<^bsub>P\<^esub> q" | 
| 13940 | 413 | by (rule up_eqI) (simp_all add: R.r_distr) | 
| 414 | ||
| 415 | lemma (in UP_cring) UP_smult_assoc1: | |
| 416 | "[| a \<in> carrier R; b \<in> carrier R; p \<in> carrier P |] ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 417 | (a \<otimes> b) \<odot>\<^bsub>P\<^esub> p = a \<odot>\<^bsub>P\<^esub> (b \<odot>\<^bsub>P\<^esub> p)" | 
| 13940 | 418 | by (rule up_eqI) (simp_all add: R.m_assoc) | 
| 419 | ||
| 420 | lemma (in UP_cring) UP_smult_one [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 421 | "p \<in> carrier P ==> \<one> \<odot>\<^bsub>P\<^esub> p = p" | 
| 13940 | 422 | by (rule up_eqI) simp_all | 
| 423 | ||
| 424 | lemma (in UP_cring) UP_smult_assoc2: | |
| 425 | "[| a \<in> carrier R; p \<in> carrier P; q \<in> carrier P |] ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 426 | (a \<odot>\<^bsub>P\<^esub> p) \<otimes>\<^bsub>P\<^esub> q = a \<odot>\<^bsub>P\<^esub> (p \<otimes>\<^bsub>P\<^esub> q)" | 
| 13940 | 427 | by (rule up_eqI) (simp_all add: R.finsum_rdistr R.m_assoc Pi_def) | 
| 428 | ||
| 429 | text {*
 | |
| 17094 | 430 |   Interpretation of lemmas from @{term algebra}.
 | 
| 13940 | 431 | *} | 
| 432 | ||
| 433 | lemma (in cring) cring: | |
| 434 | "cring R" | |
| 435 | by (fast intro: cring.intro prems) | |
| 436 | ||
| 437 | lemma (in UP_cring) UP_algebra: | |
| 438 | "algebra R P" | |
| 17094 | 439 | by (auto intro: algebraI R.cring UP_cring UP_smult_l_distr UP_smult_r_distr | 
| 13940 | 440 | UP_smult_assoc1 UP_smult_assoc2) | 
| 441 | ||
| 17094 | 442 | interpretation UP_cring < algebra R P | 
| 443 | using UP_algebra | |
| 444 | by - (erule algebra.axioms)+ | |
| 13940 | 445 | |
| 446 | ||
| 13949 
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
 ballarin parents: 
13940diff
changeset | 447 | subsection {* Further lemmas involving monomials *}
 | 
| 13940 | 448 | |
| 449 | lemma (in UP_cring) monom_zero [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 450 | "monom P \<zero> n = \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 451 | by (simp add: UP_def P_def) | 
| 452 | ||
| 453 | lemma (in UP_cring) monom_mult_is_smult: | |
| 454 | assumes R: "a \<in> carrier R" "p \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 455 | shows "monom P a 0 \<otimes>\<^bsub>P\<^esub> p = a \<odot>\<^bsub>P\<^esub> p" | 
| 13940 | 456 | proof (rule up_eqI) | 
| 457 | fix n | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 458 | have "coeff P (p \<otimes>\<^bsub>P\<^esub> monom P a 0) n = coeff P (a \<odot>\<^bsub>P\<^esub> p) n" | 
| 13940 | 459 | proof (cases n) | 
| 460 | case 0 with R show ?thesis by (simp add: R.m_comm) | |
| 461 | next | |
| 462 | case Suc with R show ?thesis | |
| 17094 | 463 | by (simp cong: R.finsum_cong add: R.r_null Pi_def) | 
| 464 | (simp add: R.m_comm) | |
| 13940 | 465 | qed | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 466 | with R show "coeff P (monom P a 0 \<otimes>\<^bsub>P\<^esub> p) n = coeff P (a \<odot>\<^bsub>P\<^esub> p) n" | 
| 13940 | 467 | by (simp add: UP_m_comm) | 
| 468 | qed (simp_all add: R) | |
| 469 | ||
| 470 | lemma (in UP_cring) monom_add [simp]: | |
| 471 | "[| a \<in> carrier R; b \<in> carrier R |] ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 472 | monom P (a \<oplus> b) n = monom P a n \<oplus>\<^bsub>P\<^esub> monom P b n" | 
| 13940 | 473 | by (rule up_eqI) simp_all | 
| 474 | ||
| 475 | lemma (in UP_cring) monom_one_Suc: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 476 | "monom P \<one> (Suc n) = monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> 1" | 
| 13940 | 477 | proof (rule up_eqI) | 
| 478 | fix k | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 479 | show "coeff P (monom P \<one> (Suc n)) k = coeff P (monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> 1) k" | 
| 13940 | 480 | proof (cases "k = Suc n") | 
| 481 | case True show ?thesis | |
| 482 | proof - | |
| 14666 | 483 | from True have less_add_diff: | 
| 484 | "!!i. [| n < i; i <= n + m |] ==> n + m - i < m" by arith | |
| 13940 | 485 | from True have "coeff P (monom P \<one> (Suc n)) k = \<one>" by simp | 
| 486 | also from True | |
| 15045 | 487 |       have "... = (\<Oplus>i \<in> {..<n} \<union> {n}. coeff P (monom P \<one> n) i \<otimes>
 | 
| 14666 | 488 | coeff P (monom P \<one> 1) (k - i))" | 
| 17094 | 489 | by (simp cong: R.finsum_cong add: Pi_def) | 
| 14666 | 490 |       also have "... = (\<Oplus>i \<in>  {..n}. coeff P (monom P \<one> n) i \<otimes>
 | 
| 491 | coeff P (monom P \<one> 1) (k - i))" | |
| 492 | by (simp only: ivl_disj_un_singleton) | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 493 | also from True | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 494 |       have "... = (\<Oplus>i \<in> {..n} \<union> {n<..k}. coeff P (monom P \<one> n) i \<otimes>
 | 
| 14666 | 495 | coeff P (monom P \<one> 1) (k - i))" | 
| 17094 | 496 | by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one | 
| 14666 | 497 | order_less_imp_not_eq Pi_def) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 498 | also from True have "... = coeff P (monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> 1) k" | 
| 14666 | 499 | by (simp add: ivl_disj_un_one) | 
| 13940 | 500 | finally show ?thesis . | 
| 501 | qed | |
| 502 | next | |
| 503 | case False | |
| 504 | note neq = False | |
| 505 | let ?s = | |
| 14666 | 506 | "\<lambda>i. (if n = i then \<one> else \<zero>) \<otimes> (if Suc 0 = k - i then \<one> else \<zero>)" | 
| 13940 | 507 | from neq have "coeff P (monom P \<one> (Suc n)) k = \<zero>" by simp | 
| 14666 | 508 |     also have "... = (\<Oplus>i \<in> {..k}. ?s i)"
 | 
| 13940 | 509 | proof - | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 510 |       have f1: "(\<Oplus>i \<in> {..<n}. ?s i) = \<zero>"
 | 
| 17094 | 511 | by (simp cong: R.finsum_cong add: Pi_def) | 
| 14666 | 512 |       from neq have f2: "(\<Oplus>i \<in> {n}. ?s i) = \<zero>"
 | 
| 17094 | 513 | by (simp cong: R.finsum_cong add: Pi_def) arith | 
| 15045 | 514 |       have f3: "n < k ==> (\<Oplus>i \<in> {n<..k}. ?s i) = \<zero>"
 | 
| 17094 | 515 | by (simp cong: R.finsum_cong add: order_less_imp_not_eq Pi_def) | 
| 13940 | 516 | show ?thesis | 
| 517 | proof (cases "k < n") | |
| 17094 | 518 | case True then show ?thesis by (simp cong: R.finsum_cong add: Pi_def) | 
| 13940 | 519 | next | 
| 14666 | 520 | case False then have n_le_k: "n <= k" by arith | 
| 521 | show ?thesis | |
| 522 | proof (cases "n = k") | |
| 523 | case True | |
| 15045 | 524 |           then have "\<zero> = (\<Oplus>i \<in> {..<n} \<union> {n}. ?s i)"
 | 
| 17094 | 525 | by (simp cong: R.finsum_cong add: ivl_disj_int_singleton Pi_def) | 
| 14666 | 526 |           also from True have "... = (\<Oplus>i \<in> {..k}. ?s i)"
 | 
| 527 | by (simp only: ivl_disj_un_singleton) | |
| 528 | finally show ?thesis . | |
| 529 | next | |
| 530 | case False with n_le_k have n_less_k: "n < k" by arith | |
| 15045 | 531 |           with neq have "\<zero> = (\<Oplus>i \<in> {..<n} \<union> {n}. ?s i)"
 | 
| 17094 | 532 | by (simp add: R.finsum_Un_disjoint f1 f2 | 
| 14666 | 533 | ivl_disj_int_singleton Pi_def del: Un_insert_right) | 
| 534 |           also have "... = (\<Oplus>i \<in> {..n}. ?s i)"
 | |
| 535 | by (simp only: ivl_disj_un_singleton) | |
| 15045 | 536 |           also from n_less_k neq have "... = (\<Oplus>i \<in> {..n} \<union> {n<..k}. ?s i)"
 | 
| 17094 | 537 | by (simp add: R.finsum_Un_disjoint f3 ivl_disj_int_one Pi_def) | 
| 14666 | 538 |           also from n_less_k have "... = (\<Oplus>i \<in> {..k}. ?s i)"
 | 
| 539 | by (simp only: ivl_disj_un_one) | |
| 540 | finally show ?thesis . | |
| 541 | qed | |
| 13940 | 542 | qed | 
| 543 | qed | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 544 | also have "... = coeff P (monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> 1) k" by simp | 
| 13940 | 545 | finally show ?thesis . | 
| 546 | qed | |
| 547 | qed (simp_all) | |
| 548 | ||
| 549 | lemma (in UP_cring) monom_mult_smult: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 550 | "[| a \<in> carrier R; b \<in> carrier R |] ==> monom P (a \<otimes> b) n = a \<odot>\<^bsub>P\<^esub> monom P b n" | 
| 13940 | 551 | by (rule up_eqI) simp_all | 
| 552 | ||
| 553 | lemma (in UP_cring) monom_one [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 554 | "monom P \<one> 0 = \<one>\<^bsub>P\<^esub>" | 
| 13940 | 555 | by (rule up_eqI) simp_all | 
| 556 | ||
| 557 | lemma (in UP_cring) monom_one_mult: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 558 | "monom P \<one> (n + m) = monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> m" | 
| 13940 | 559 | proof (induct n) | 
| 560 | case 0 show ?case by simp | |
| 561 | next | |
| 562 | case Suc then show ?case | |
| 17094 | 563 | by (simp only: add_Suc monom_one_Suc) (simp add: P.m_ac) | 
| 13940 | 564 | qed | 
| 565 | ||
| 566 | lemma (in UP_cring) monom_mult [simp]: | |
| 567 | assumes R: "a \<in> carrier R" "b \<in> carrier R" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 568 | shows "monom P (a \<otimes> b) (n + m) = monom P a n \<otimes>\<^bsub>P\<^esub> monom P b m" | 
| 13940 | 569 | proof - | 
| 570 | from R have "monom P (a \<otimes> b) (n + m) = monom P (a \<otimes> b \<otimes> \<one>) (n + m)" by simp | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 571 | also from R have "... = a \<otimes> b \<odot>\<^bsub>P\<^esub> monom P \<one> (n + m)" | 
| 17094 | 572 | by (simp add: monom_mult_smult del: R.r_one) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 573 | also have "... = a \<otimes> b \<odot>\<^bsub>P\<^esub> (monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> m)" | 
| 13940 | 574 | by (simp only: monom_one_mult) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 575 | also from R have "... = a \<odot>\<^bsub>P\<^esub> (b \<odot>\<^bsub>P\<^esub> (monom P \<one> n \<otimes>\<^bsub>P\<^esub> monom P \<one> m))" | 
| 13940 | 576 | by (simp add: UP_smult_assoc1) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 577 | also from R have "... = a \<odot>\<^bsub>P\<^esub> (b \<odot>\<^bsub>P\<^esub> (monom P \<one> m \<otimes>\<^bsub>P\<^esub> monom P \<one> n))" | 
| 17094 | 578 | by (simp add: P.m_comm) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 579 | also from R have "... = a \<odot>\<^bsub>P\<^esub> ((b \<odot>\<^bsub>P\<^esub> monom P \<one> m) \<otimes>\<^bsub>P\<^esub> monom P \<one> n)" | 
| 13940 | 580 | by (simp add: UP_smult_assoc2) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 581 | also from R have "... = a \<odot>\<^bsub>P\<^esub> (monom P \<one> n \<otimes>\<^bsub>P\<^esub> (b \<odot>\<^bsub>P\<^esub> monom P \<one> m))" | 
| 17094 | 582 | by (simp add: P.m_comm) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 583 | also from R have "... = (a \<odot>\<^bsub>P\<^esub> monom P \<one> n) \<otimes>\<^bsub>P\<^esub> (b \<odot>\<^bsub>P\<^esub> monom P \<one> m)" | 
| 13940 | 584 | by (simp add: UP_smult_assoc2) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 585 | also from R have "... = monom P (a \<otimes> \<one>) n \<otimes>\<^bsub>P\<^esub> monom P (b \<otimes> \<one>) m" | 
| 17094 | 586 | by (simp add: monom_mult_smult del: R.r_one) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 587 | also from R have "... = monom P a n \<otimes>\<^bsub>P\<^esub> monom P b m" by simp | 
| 13940 | 588 | finally show ?thesis . | 
| 589 | qed | |
| 590 | ||
| 591 | lemma (in UP_cring) monom_a_inv [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 592 | "a \<in> carrier R ==> monom P (\<ominus> a) n = \<ominus>\<^bsub>P\<^esub> monom P a n" | 
| 13940 | 593 | by (rule up_eqI) simp_all | 
| 594 | ||
| 595 | lemma (in UP_cring) monom_inj: | |
| 596 | "inj_on (%a. monom P a n) (carrier R)" | |
| 597 | proof (rule inj_onI) | |
| 598 | fix x y | |
| 599 | assume R: "x \<in> carrier R" "y \<in> carrier R" and eq: "monom P x n = monom P y n" | |
| 600 | then have "coeff P (monom P x n) n = coeff P (monom P y n) n" by simp | |
| 601 | with R show "x = y" by simp | |
| 602 | qed | |
| 603 | ||
| 17094 | 604 | |
| 13949 
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
 ballarin parents: 
13940diff
changeset | 605 | subsection {* The degree function *}
 | 
| 13940 | 606 | |
| 14651 | 607 | constdefs (structure R) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 608 |   deg :: "[('a, 'm) ring_scheme, nat => 'a] => nat"
 | 
| 14651 | 609 | "deg R p == LEAST n. bound \<zero> n (coeff (UP R) p)" | 
| 13940 | 610 | |
| 611 | lemma (in UP_cring) deg_aboveI: | |
| 14666 | 612 | "[| (!!m. n < m ==> coeff P p m = \<zero>); p \<in> carrier P |] ==> deg R p <= n" | 
| 13940 | 613 | by (unfold deg_def P_def) (fast intro: Least_le) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 614 | |
| 13940 | 615 | (* | 
| 616 | lemma coeff_bound_ex: "EX n. bound n (coeff p)" | |
| 617 | proof - | |
| 618 | have "(%n. coeff p n) : UP" by (simp add: coeff_def Rep_UP) | |
| 619 | then obtain n where "bound n (coeff p)" by (unfold UP_def) fast | |
| 620 | then show ?thesis .. | |
| 621 | qed | |
| 14666 | 622 | |
| 13940 | 623 | lemma bound_coeff_obtain: | 
| 624 | assumes prem: "(!!n. bound n (coeff p) ==> P)" shows "P" | |
| 625 | proof - | |
| 626 | have "(%n. coeff p n) : UP" by (simp add: coeff_def Rep_UP) | |
| 627 | then obtain n where "bound n (coeff p)" by (unfold UP_def) fast | |
| 628 | with prem show P . | |
| 629 | qed | |
| 630 | *) | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 631 | |
| 13940 | 632 | lemma (in UP_cring) deg_aboveD: | 
| 633 | "[| deg R p < m; p \<in> carrier P |] ==> coeff P p m = \<zero>" | |
| 634 | proof - | |
| 635 | assume R: "p \<in> carrier P" and "deg R p < m" | |
| 14666 | 636 | from R obtain n where "bound \<zero> n (coeff P p)" | 
| 13940 | 637 | by (auto simp add: UP_def P_def) | 
| 638 | then have "bound \<zero> (deg R p) (coeff P p)" | |
| 639 | by (auto simp: deg_def P_def dest: LeastI) | |
| 14666 | 640 | then show ?thesis .. | 
| 13940 | 641 | qed | 
| 642 | ||
| 643 | lemma (in UP_cring) deg_belowI: | |
| 644 | assumes non_zero: "n ~= 0 ==> coeff P p n ~= \<zero>" | |
| 645 | and R: "p \<in> carrier P" | |
| 646 | shows "n <= deg R p" | |
| 14666 | 647 | -- {* Logically, this is a slightly stronger version of
 | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 648 |    @{thm [source] deg_aboveD} *}
 | 
| 13940 | 649 | proof (cases "n=0") | 
| 650 | case True then show ?thesis by simp | |
| 651 | next | |
| 652 | case False then have "coeff P p n ~= \<zero>" by (rule non_zero) | |
| 653 | then have "~ deg R p < n" by (fast dest: deg_aboveD intro: R) | |
| 654 | then show ?thesis by arith | |
| 655 | qed | |
| 656 | ||
| 657 | lemma (in UP_cring) lcoeff_nonzero_deg: | |
| 658 | assumes deg: "deg R p ~= 0" and R: "p \<in> carrier P" | |
| 659 | shows "coeff P p (deg R p) ~= \<zero>" | |
| 660 | proof - | |
| 661 | from R obtain m where "deg R p <= m" and m_coeff: "coeff P p m ~= \<zero>" | |
| 662 | proof - | |
| 663 | have minus: "!!(n::nat) m. n ~= 0 ==> (n - Suc 0 < m) = (n <= m)" | |
| 664 | by arith | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 665 | (* TODO: why does simplification below not work with "1" *) | 
| 13940 | 666 | from deg have "deg R p - 1 < (LEAST n. bound \<zero> n (coeff P p))" | 
| 667 | by (unfold deg_def P_def) arith | |
| 668 | then have "~ bound \<zero> (deg R p - 1) (coeff P p)" by (rule not_less_Least) | |
| 669 | then have "EX m. deg R p - 1 < m & coeff P p m ~= \<zero>" | |
| 670 | by (unfold bound_def) fast | |
| 671 | then have "EX m. deg R p <= m & coeff P p m ~= \<zero>" by (simp add: deg minus) | |
| 14666 | 672 | then show ?thesis by auto | 
| 13940 | 673 | qed | 
| 674 | with deg_belowI R have "deg R p = m" by fastsimp | |
| 675 | with m_coeff show ?thesis by simp | |
| 676 | qed | |
| 677 | ||
| 678 | lemma (in UP_cring) lcoeff_nonzero_nonzero: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 679 | assumes deg: "deg R p = 0" and nonzero: "p ~= \<zero>\<^bsub>P\<^esub>" and R: "p \<in> carrier P" | 
| 13940 | 680 | shows "coeff P p 0 ~= \<zero>" | 
| 681 | proof - | |
| 682 | have "EX m. coeff P p m ~= \<zero>" | |
| 683 | proof (rule classical) | |
| 684 | assume "~ ?thesis" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 685 | with R have "p = \<zero>\<^bsub>P\<^esub>" by (auto intro: up_eqI) | 
| 13940 | 686 | with nonzero show ?thesis by contradiction | 
| 687 | qed | |
| 688 | then obtain m where coeff: "coeff P p m ~= \<zero>" .. | |
| 689 | then have "m <= deg R p" by (rule deg_belowI) | |
| 690 | then have "m = 0" by (simp add: deg) | |
| 691 | with coeff show ?thesis by simp | |
| 692 | qed | |
| 693 | ||
| 694 | lemma (in UP_cring) lcoeff_nonzero: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 695 | assumes neq: "p ~= \<zero>\<^bsub>P\<^esub>" and R: "p \<in> carrier P" | 
| 13940 | 696 | shows "coeff P p (deg R p) ~= \<zero>" | 
| 697 | proof (cases "deg R p = 0") | |
| 698 | case True with neq R show ?thesis by (simp add: lcoeff_nonzero_nonzero) | |
| 699 | next | |
| 700 | case False with neq R show ?thesis by (simp add: lcoeff_nonzero_deg) | |
| 701 | qed | |
| 702 | ||
| 703 | lemma (in UP_cring) deg_eqI: | |
| 704 | "[| !!m. n < m ==> coeff P p m = \<zero>; | |
| 705 | !!n. n ~= 0 ==> coeff P p n ~= \<zero>; p \<in> carrier P |] ==> deg R p = n" | |
| 706 | by (fast intro: le_anti_sym deg_aboveI deg_belowI) | |
| 707 | ||
| 17094 | 708 | text {* Degree and polynomial operations *}
 | 
| 13940 | 709 | |
| 710 | lemma (in UP_cring) deg_add [simp]: | |
| 711 | assumes R: "p \<in> carrier P" "q \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 712 | shows "deg R (p \<oplus>\<^bsub>P\<^esub> q) <= max (deg R p) (deg R q)" | 
| 13940 | 713 | proof (cases "deg R p <= deg R q") | 
| 714 | case True show ?thesis | |
| 14666 | 715 | by (rule deg_aboveI) (simp_all add: True R deg_aboveD) | 
| 13940 | 716 | next | 
| 717 | case False show ?thesis | |
| 718 | by (rule deg_aboveI) (simp_all add: False R deg_aboveD) | |
| 719 | qed | |
| 720 | ||
| 721 | lemma (in UP_cring) deg_monom_le: | |
| 722 | "a \<in> carrier R ==> deg R (monom P a n) <= n" | |
| 723 | by (intro deg_aboveI) simp_all | |
| 724 | ||
| 725 | lemma (in UP_cring) deg_monom [simp]: | |
| 726 | "[| a ~= \<zero>; a \<in> carrier R |] ==> deg R (monom P a n) = n" | |
| 727 | by (fastsimp intro: le_anti_sym deg_aboveI deg_belowI) | |
| 728 | ||
| 729 | lemma (in UP_cring) deg_const [simp]: | |
| 730 | assumes R: "a \<in> carrier R" shows "deg R (monom P a 0) = 0" | |
| 731 | proof (rule le_anti_sym) | |
| 732 | show "deg R (monom P a 0) <= 0" by (rule deg_aboveI) (simp_all add: R) | |
| 733 | next | |
| 734 | show "0 <= deg R (monom P a 0)" by (rule deg_belowI) (simp_all add: R) | |
| 735 | qed | |
| 736 | ||
| 737 | lemma (in UP_cring) deg_zero [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 738 | "deg R \<zero>\<^bsub>P\<^esub> = 0" | 
| 13940 | 739 | proof (rule le_anti_sym) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 740 | show "deg R \<zero>\<^bsub>P\<^esub> <= 0" by (rule deg_aboveI) simp_all | 
| 13940 | 741 | next | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 742 | show "0 <= deg R \<zero>\<^bsub>P\<^esub>" by (rule deg_belowI) simp_all | 
| 13940 | 743 | qed | 
| 744 | ||
| 745 | lemma (in UP_cring) deg_one [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 746 | "deg R \<one>\<^bsub>P\<^esub> = 0" | 
| 13940 | 747 | proof (rule le_anti_sym) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 748 | show "deg R \<one>\<^bsub>P\<^esub> <= 0" by (rule deg_aboveI) simp_all | 
| 13940 | 749 | next | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 750 | show "0 <= deg R \<one>\<^bsub>P\<^esub>" by (rule deg_belowI) simp_all | 
| 13940 | 751 | qed | 
| 752 | ||
| 753 | lemma (in UP_cring) deg_uminus [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 754 | assumes R: "p \<in> carrier P" shows "deg R (\<ominus>\<^bsub>P\<^esub> p) = deg R p" | 
| 13940 | 755 | proof (rule le_anti_sym) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 756 | show "deg R (\<ominus>\<^bsub>P\<^esub> p) <= deg R p" by (simp add: deg_aboveI deg_aboveD R) | 
| 13940 | 757 | next | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 758 | show "deg R p <= deg R (\<ominus>\<^bsub>P\<^esub> p)" | 
| 13940 | 759 | by (simp add: deg_belowI lcoeff_nonzero_deg | 
| 17094 | 760 | inj_on_iff [OF R.a_inv_inj, of _ "\<zero>", simplified] R) | 
| 13940 | 761 | qed | 
| 762 | ||
| 763 | lemma (in UP_domain) deg_smult_ring: | |
| 764 | "[| a \<in> carrier R; p \<in> carrier P |] ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 765 | deg R (a \<odot>\<^bsub>P\<^esub> p) <= (if a = \<zero> then 0 else deg R p)" | 
| 13940 | 766 | by (cases "a = \<zero>") (simp add: deg_aboveI deg_aboveD)+ | 
| 767 | ||
| 768 | lemma (in UP_domain) deg_smult [simp]: | |
| 769 | assumes R: "a \<in> carrier R" "p \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 770 | shows "deg R (a \<odot>\<^bsub>P\<^esub> p) = (if a = \<zero> then 0 else deg R p)" | 
| 13940 | 771 | proof (rule le_anti_sym) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 772 | show "deg R (a \<odot>\<^bsub>P\<^esub> p) <= (if a = \<zero> then 0 else deg R p)" | 
| 13940 | 773 | by (rule deg_smult_ring) | 
| 774 | next | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 775 | show "(if a = \<zero> then 0 else deg R p) <= deg R (a \<odot>\<^bsub>P\<^esub> p)" | 
| 13940 | 776 | proof (cases "a = \<zero>") | 
| 777 | qed (simp, simp add: deg_belowI lcoeff_nonzero_deg integral_iff R) | |
| 778 | qed | |
| 779 | ||
| 780 | lemma (in UP_cring) deg_mult_cring: | |
| 781 | assumes R: "p \<in> carrier P" "q \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 782 | shows "deg R (p \<otimes>\<^bsub>P\<^esub> q) <= deg R p + deg R q" | 
| 13940 | 783 | proof (rule deg_aboveI) | 
| 784 | fix m | |
| 785 | assume boundm: "deg R p + deg R q < m" | |
| 786 |   {
 | |
| 787 | fix k i | |
| 788 | assume boundk: "deg R p + deg R q < k" | |
| 789 | then have "coeff P p i \<otimes> coeff P q (k - i) = \<zero>" | |
| 790 | proof (cases "deg R p < i") | |
| 791 | case True then show ?thesis by (simp add: deg_aboveD R) | |
| 792 | next | |
| 793 | case False with boundk have "deg R q < k - i" by arith | |
| 794 | then show ?thesis by (simp add: deg_aboveD R) | |
| 795 | qed | |
| 796 | } | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 797 | with boundm R show "coeff P (p \<otimes>\<^bsub>P\<^esub> q) m = \<zero>" by simp | 
| 13940 | 798 | qed (simp add: R) | 
| 799 | ||
| 800 | lemma (in UP_domain) deg_mult [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 801 | "[| p ~= \<zero>\<^bsub>P\<^esub>; q ~= \<zero>\<^bsub>P\<^esub>; p \<in> carrier P; q \<in> carrier P |] ==> | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 802 | deg R (p \<otimes>\<^bsub>P\<^esub> q) = deg R p + deg R q" | 
| 13940 | 803 | proof (rule le_anti_sym) | 
| 804 | assume "p \<in> carrier P" " q \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 805 | show "deg R (p \<otimes>\<^bsub>P\<^esub> q) <= deg R p + deg R q" by (rule deg_mult_cring) | 
| 13940 | 806 | next | 
| 807 | let ?s = "(%i. coeff P p i \<otimes> coeff P q (deg R p + deg R q - i))" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 808 | assume R: "p \<in> carrier P" "q \<in> carrier P" and nz: "p ~= \<zero>\<^bsub>P\<^esub>" "q ~= \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 809 | have less_add_diff: "!!(k::nat) n m. k < n ==> m < n + m - k" by arith | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 810 | show "deg R p + deg R q <= deg R (p \<otimes>\<^bsub>P\<^esub> q)" | 
| 13940 | 811 | proof (rule deg_belowI, simp add: R) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 812 |     have "(\<Oplus>i \<in> {.. deg R p + deg R q}. ?s i)
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 813 |       = (\<Oplus>i \<in> {..< deg R p} \<union> {deg R p .. deg R p + deg R q}. ?s i)"
 | 
| 13940 | 814 | by (simp only: ivl_disj_un_one) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 815 |     also have "... = (\<Oplus>i \<in> {deg R p .. deg R p + deg R q}. ?s i)"
 | 
| 17094 | 816 | by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one | 
| 13940 | 817 | deg_aboveD less_add_diff R Pi_def) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 818 |     also have "...= (\<Oplus>i \<in> {deg R p} \<union> {deg R p <.. deg R p + deg R q}. ?s i)"
 | 
| 13940 | 819 | by (simp only: ivl_disj_un_singleton) | 
| 14666 | 820 | also have "... = coeff P p (deg R p) \<otimes> coeff P q (deg R q)" | 
| 17094 | 821 | by (simp cong: R.finsum_cong | 
| 822 | add: ivl_disj_int_singleton deg_aboveD R Pi_def) | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 823 |     finally have "(\<Oplus>i \<in> {.. deg R p + deg R q}. ?s i)
 | 
| 13940 | 824 | = coeff P p (deg R p) \<otimes> coeff P q (deg R q)" . | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 825 |     with nz show "(\<Oplus>i \<in> {.. deg R p + deg R q}. ?s i) ~= \<zero>"
 | 
| 13940 | 826 | by (simp add: integral_iff lcoeff_nonzero R) | 
| 827 | qed (simp add: R) | |
| 828 | qed | |
| 829 | ||
| 830 | lemma (in UP_cring) coeff_finsum: | |
| 831 | assumes fin: "finite A" | |
| 832 | shows "p \<in> A -> carrier P ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 833 | coeff P (finsum P p A) k = (\<Oplus>i \<in> A. coeff P (p i) k)" | 
| 13940 | 834 | using fin by induct (auto simp: Pi_def) | 
| 835 | ||
| 836 | lemma (in UP_cring) up_repr: | |
| 837 | assumes R: "p \<in> carrier P" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 838 |   shows "(\<Oplus>\<^bsub>P\<^esub> i \<in> {..deg R p}. monom P (coeff P p i) i) = p"
 | 
| 13940 | 839 | proof (rule up_eqI) | 
| 840 | let ?s = "(%i. monom P (coeff P p i) i)" | |
| 841 | fix k | |
| 842 | from R have RR: "!!i. (if i = k then coeff P p i else \<zero>) \<in> carrier R" | |
| 843 | by simp | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 844 |   show "coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..deg R p}. ?s i) k = coeff P p k"
 | 
| 13940 | 845 | proof (cases "k <= deg R p") | 
| 846 | case True | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 847 |     hence "coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..deg R p}. ?s i) k =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 848 |           coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..k} \<union> {k<..deg R p}. ?s i) k"
 | 
| 13940 | 849 | by (simp only: ivl_disj_un_one) | 
| 850 | also from True | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 851 |     have "... = coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..k}. ?s i) k"
 | 
| 17094 | 852 | by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint | 
| 14666 | 853 | ivl_disj_int_one order_less_imp_not_eq2 coeff_finsum R RR Pi_def) | 
| 13940 | 854 | also | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 855 |     have "... = coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..<k} \<union> {k}. ?s i) k"
 | 
| 13940 | 856 | by (simp only: ivl_disj_un_singleton) | 
| 857 | also have "... = coeff P p k" | |
| 17094 | 858 | by (simp cong: R.finsum_cong | 
| 859 | add: ivl_disj_int_singleton coeff_finsum deg_aboveD R RR Pi_def) | |
| 13940 | 860 | finally show ?thesis . | 
| 861 | next | |
| 862 | case False | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 863 |     hence "coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..deg R p}. ?s i) k =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 864 |           coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..<deg R p} \<union> {deg R p}. ?s i) k"
 | 
| 13940 | 865 | by (simp only: ivl_disj_un_singleton) | 
| 866 | also from False have "... = coeff P p k" | |
| 17094 | 867 | by (simp cong: R.finsum_cong | 
| 868 | add: ivl_disj_int_singleton coeff_finsum deg_aboveD R Pi_def) | |
| 13940 | 869 | finally show ?thesis . | 
| 870 | qed | |
| 871 | qed (simp_all add: R Pi_def) | |
| 872 | ||
| 873 | lemma (in UP_cring) up_repr_le: | |
| 874 | "[| deg R p <= n; p \<in> carrier P |] ==> | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 875 |   (\<Oplus>\<^bsub>P\<^esub> i \<in> {..n}. monom P (coeff P p i) i) = p"
 | 
| 13940 | 876 | proof - | 
| 877 | let ?s = "(%i. monom P (coeff P p i) i)" | |
| 878 | assume R: "p \<in> carrier P" and "deg R p <= n" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 879 |   then have "finsum P ?s {..n} = finsum P ?s ({..deg R p} \<union> {deg R p<..n})"
 | 
| 13940 | 880 | by (simp only: ivl_disj_un_one) | 
| 881 |   also have "... = finsum P ?s {..deg R p}"
 | |
| 17094 | 882 | by (simp cong: P.finsum_cong add: P.finsum_Un_disjoint ivl_disj_int_one | 
| 13940 | 883 | deg_aboveD R Pi_def) | 
| 884 | also have "... = p" by (rule up_repr) | |
| 885 | finally show ?thesis . | |
| 886 | qed | |
| 887 | ||
| 17094 | 888 | |
| 13949 
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
 ballarin parents: 
13940diff
changeset | 889 | subsection {* Polynomials over an integral domain form an integral domain *}
 | 
| 13940 | 890 | |
| 891 | lemma domainI: | |
| 892 | assumes cring: "cring R" | |
| 893 | and one_not_zero: "one R ~= zero R" | |
| 894 | and integral: "!!a b. [| mult R a b = zero R; a \<in> carrier R; | |
| 895 | b \<in> carrier R |] ==> a = zero R | b = zero R" | |
| 896 | shows "domain R" | |
| 897 | by (auto intro!: domain.intro domain_axioms.intro cring.axioms prems | |
| 898 | del: disjCI) | |
| 899 | ||
| 900 | lemma (in UP_domain) UP_one_not_zero: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 901 | "\<one>\<^bsub>P\<^esub> ~= \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 902 | proof | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 903 | assume "\<one>\<^bsub>P\<^esub> = \<zero>\<^bsub>P\<^esub>" | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 904 | hence "coeff P \<one>\<^bsub>P\<^esub> 0 = (coeff P \<zero>\<^bsub>P\<^esub> 0)" by simp | 
| 13940 | 905 | hence "\<one> = \<zero>" by simp | 
| 906 | with one_not_zero show "False" by contradiction | |
| 907 | qed | |
| 908 | ||
| 909 | lemma (in UP_domain) UP_integral: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 910 | "[| p \<otimes>\<^bsub>P\<^esub> q = \<zero>\<^bsub>P\<^esub>; p \<in> carrier P; q \<in> carrier P |] ==> p = \<zero>\<^bsub>P\<^esub> | q = \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 911 | proof - | 
| 912 | fix p q | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 913 | assume pq: "p \<otimes>\<^bsub>P\<^esub> q = \<zero>\<^bsub>P\<^esub>" and R: "p \<in> carrier P" "q \<in> carrier P" | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 914 | show "p = \<zero>\<^bsub>P\<^esub> | q = \<zero>\<^bsub>P\<^esub>" | 
| 13940 | 915 | proof (rule classical) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 916 | assume c: "~ (p = \<zero>\<^bsub>P\<^esub> | q = \<zero>\<^bsub>P\<^esub>)" | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 917 | with R have "deg R p + deg R q = deg R (p \<otimes>\<^bsub>P\<^esub> q)" by simp | 
| 13940 | 918 | also from pq have "... = 0" by simp | 
| 919 | finally have "deg R p + deg R q = 0" . | |
| 920 | then have f1: "deg R p = 0 & deg R q = 0" by simp | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 921 |     from f1 R have "p = (\<Oplus>\<^bsub>P\<^esub> i \<in> {..0}. monom P (coeff P p i) i)"
 | 
| 13940 | 922 | by (simp only: up_repr_le) | 
| 923 | also from R have "... = monom P (coeff P p 0) 0" by simp | |
| 924 | finally have p: "p = monom P (coeff P p 0) 0" . | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 925 |     from f1 R have "q = (\<Oplus>\<^bsub>P\<^esub> i \<in> {..0}. monom P (coeff P q i) i)"
 | 
| 13940 | 926 | by (simp only: up_repr_le) | 
| 927 | also from R have "... = monom P (coeff P q 0) 0" by simp | |
| 928 | finally have q: "q = monom P (coeff P q 0) 0" . | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 929 | from R have "coeff P p 0 \<otimes> coeff P q 0 = coeff P (p \<otimes>\<^bsub>P\<^esub> q) 0" by simp | 
| 13940 | 930 | also from pq have "... = \<zero>" by simp | 
| 931 | finally have "coeff P p 0 \<otimes> coeff P q 0 = \<zero>" . | |
| 932 | with R have "coeff P p 0 = \<zero> | coeff P q 0 = \<zero>" | |
| 933 | by (simp add: R.integral_iff) | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 934 | with p q show "p = \<zero>\<^bsub>P\<^esub> | q = \<zero>\<^bsub>P\<^esub>" by fastsimp | 
| 13940 | 935 | qed | 
| 936 | qed | |
| 937 | ||
| 938 | theorem (in UP_domain) UP_domain: | |
| 939 | "domain P" | |
| 940 | by (auto intro!: domainI UP_cring UP_one_not_zero UP_integral del: disjCI) | |
| 941 | ||
| 942 | text {*
 | |
| 17094 | 943 |   Interpretation of theorems from @{term domain}.
 | 
| 13940 | 944 | *} | 
| 945 | ||
| 17094 | 946 | interpretation UP_domain < "domain" P | 
| 947 | using UP_domain | |
| 948 | by (rule domain.axioms) | |
| 13940 | 949 | |
| 14666 | 950 | |
| 13949 
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
 ballarin parents: 
13940diff
changeset | 951 | subsection {* Evaluation Homomorphism and Universal Property*}
 | 
| 13940 | 952 | |
| 14666 | 953 | (* alternative congruence rule (possibly more efficient) | 
| 954 | lemma (in abelian_monoid) finsum_cong2: | |
| 955 | "[| !!i. i \<in> A ==> f i \<in> carrier G = True; A = B; | |
| 956 | !!i. i \<in> B ==> f i = g i |] ==> finsum G f A = finsum G g B" | |
| 957 | sorry*) | |
| 958 | ||
| 13940 | 959 | theorem (in cring) diagonal_sum: | 
| 960 |   "[| f \<in> {..n + m::nat} -> carrier R; g \<in> {..n + m} -> carrier R |] ==>
 | |
| 14666 | 961 |   (\<Oplus>k \<in> {..n + m}. \<Oplus>i \<in> {..k}. f i \<otimes> g (k - i)) =
 | 
| 962 |   (\<Oplus>k \<in> {..n + m}. \<Oplus>i \<in> {..n + m - k}. f k \<otimes> g i)"
 | |
| 13940 | 963 | proof - | 
| 964 |   assume Rf: "f \<in> {..n + m} -> carrier R" and Rg: "g \<in> {..n + m} -> carrier R"
 | |
| 965 |   {
 | |
| 966 | fix j | |
| 967 | have "j <= n + m ==> | |
| 14666 | 968 |       (\<Oplus>k \<in> {..j}. \<Oplus>i \<in> {..k}. f i \<otimes> g (k - i)) =
 | 
| 969 |       (\<Oplus>k \<in> {..j}. \<Oplus>i \<in> {..j - k}. f k \<otimes> g i)"
 | |
| 13940 | 970 | proof (induct j) | 
| 971 | case 0 from Rf Rg show ?case by (simp add: Pi_def) | |
| 972 | next | |
| 14666 | 973 | case (Suc j) | 
| 13940 | 974 | have R6: "!!i k. [| k <= j; i <= Suc j - k |] ==> g i \<in> carrier R" | 
| 14666 | 975 | using Suc by (auto intro!: funcset_mem [OF Rg]) arith | 
| 13940 | 976 | have R8: "!!i k. [| k <= Suc j; i <= k |] ==> g (k - i) \<in> carrier R" | 
| 14666 | 977 | using Suc by (auto intro!: funcset_mem [OF Rg]) arith | 
| 13940 | 978 | have R9: "!!i k. [| k <= Suc j |] ==> f k \<in> carrier R" | 
| 14666 | 979 | using Suc by (auto intro!: funcset_mem [OF Rf]) | 
| 13940 | 980 | have R10: "!!i k. [| k <= Suc j; i <= Suc j - k |] ==> g i \<in> carrier R" | 
| 14666 | 981 | using Suc by (auto intro!: funcset_mem [OF Rg]) arith | 
| 13940 | 982 | have R11: "g 0 \<in> carrier R" | 
| 14666 | 983 | using Suc by (auto intro!: funcset_mem [OF Rg]) | 
| 13940 | 984 | from Suc show ?case | 
| 14666 | 985 | by (simp cong: finsum_cong add: Suc_diff_le a_ac | 
| 986 | Pi_def R6 R8 R9 R10 R11) | |
| 13940 | 987 | qed | 
| 988 | } | |
| 989 | then show ?thesis by fast | |
| 990 | qed | |
| 991 | ||
| 992 | lemma (in abelian_monoid) boundD_carrier: | |
| 993 | "[| bound \<zero> n f; n < m |] ==> f m \<in> carrier G" | |
| 994 | by auto | |
| 995 | ||
| 996 | theorem (in cring) cauchy_product: | |
| 997 | assumes bf: "bound \<zero> n f" and bg: "bound \<zero> m g" | |
| 998 |     and Rf: "f \<in> {..n} -> carrier R" and Rg: "g \<in> {..m} -> carrier R"
 | |
| 14666 | 999 |   shows "(\<Oplus>k \<in> {..n + m}. \<Oplus>i \<in> {..k}. f i \<otimes> g (k - i)) =
 | 
| 17094 | 1000 |     (\<Oplus>i \<in> {..n}. f i) \<otimes> (\<Oplus>i \<in> {..m}. g i)"      (* State reverse direction? *)
 | 
| 13940 | 1001 | proof - | 
| 1002 | have f: "!!x. f x \<in> carrier R" | |
| 1003 | proof - | |
| 1004 | fix x | |
| 1005 | show "f x \<in> carrier R" | |
| 1006 | using Rf bf boundD_carrier by (cases "x <= n") (auto simp: Pi_def) | |
| 1007 | qed | |
| 1008 | have g: "!!x. g x \<in> carrier R" | |
| 1009 | proof - | |
| 1010 | fix x | |
| 1011 | show "g x \<in> carrier R" | |
| 1012 | using Rg bg boundD_carrier by (cases "x <= m") (auto simp: Pi_def) | |
| 1013 | qed | |
| 14666 | 1014 |   from f g have "(\<Oplus>k \<in> {..n + m}. \<Oplus>i \<in> {..k}. f i \<otimes> g (k - i)) =
 | 
| 1015 |       (\<Oplus>k \<in> {..n + m}. \<Oplus>i \<in> {..n + m - k}. f k \<otimes> g i)"
 | |
| 13940 | 1016 | by (simp add: diagonal_sum Pi_def) | 
| 15045 | 1017 |   also have "... = (\<Oplus>k \<in> {..n} \<union> {n<..n + m}. \<Oplus>i \<in> {..n + m - k}. f k \<otimes> g i)"
 | 
| 13940 | 1018 | by (simp only: ivl_disj_un_one) | 
| 14666 | 1019 |   also from f g have "... = (\<Oplus>k \<in> {..n}. \<Oplus>i \<in> {..n + m - k}. f k \<otimes> g i)"
 | 
| 13940 | 1020 | by (simp cong: finsum_cong | 
| 14666 | 1021 | add: bound.bound [OF bf] finsum_Un_disjoint ivl_disj_int_one Pi_def) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1022 | also from f g | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1023 |   have "... = (\<Oplus>k \<in> {..n}. \<Oplus>i \<in> {..m} \<union> {m<..n + m - k}. f k \<otimes> g i)"
 | 
| 13940 | 1024 | by (simp cong: finsum_cong add: ivl_disj_un_one le_add_diff Pi_def) | 
| 14666 | 1025 |   also from f g have "... = (\<Oplus>k \<in> {..n}. \<Oplus>i \<in> {..m}. f k \<otimes> g i)"
 | 
| 13940 | 1026 | by (simp cong: finsum_cong | 
| 14666 | 1027 | add: bound.bound [OF bg] finsum_Un_disjoint ivl_disj_int_one Pi_def) | 
| 1028 |   also from f g have "... = (\<Oplus>i \<in> {..n}. f i) \<otimes> (\<Oplus>i \<in> {..m}. g i)"
 | |
| 13940 | 1029 | by (simp add: finsum_ldistr diagonal_sum Pi_def, | 
| 1030 | simp cong: finsum_cong add: finsum_rdistr Pi_def) | |
| 1031 | finally show ?thesis . | |
| 1032 | qed | |
| 1033 | ||
| 1034 | lemma (in UP_cring) const_ring_hom: | |
| 1035 | "(%a. monom P a 0) \<in> ring_hom R P" | |
| 1036 | by (auto intro!: ring_hom_memI intro: up_eqI simp: monom_mult_is_smult) | |
| 1037 | ||
| 14651 | 1038 | constdefs (structure S) | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1039 |   eval :: "[('a, 'm) ring_scheme, ('b, 'n) ring_scheme,
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1040 | 'a => 'b, 'b, nat => 'a] => 'b" | 
| 14651 | 1041 | "eval R S phi s == \<lambda>p \<in> carrier (UP R). | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1042 |     \<Oplus>i \<in> {..deg R p}. phi (coeff (UP R) p i) \<otimes> s (^) i"
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1043 | |
| 14666 | 1044 | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1045 | lemma (in UP) eval_on_carrier: | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1046 | includes struct S | 
| 17094 | 1047 | shows "p \<in> carrier P ==> | 
| 1048 |   eval R S phi s p = (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p}. phi (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | |
| 13940 | 1049 | by (unfold eval_def, fold P_def) simp | 
| 1050 | ||
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1051 | lemma (in UP) eval_extensional: | 
| 17094 | 1052 | "eval R S phi p \<in> extensional (carrier P)" | 
| 13940 | 1053 | by (unfold eval_def, fold P_def) simp | 
| 1054 | ||
| 17094 | 1055 | |
| 1056 | text {* The universal property of the polynomial ring *}
 | |
| 1057 | ||
| 1058 | locale UP_pre_univ_prop = ring_hom_cring R S h + UP_cring R P | |
| 1059 | ||
| 1060 | locale UP_univ_prop = UP_pre_univ_prop + var s + var Eval + | |
| 1061 | assumes indet_img_carrier [simp, intro]: "s \<in> carrier S" | |
| 1062 | defines Eval_def: "Eval == eval R S h s" | |
| 1063 | ||
| 1064 | theorem (in UP_pre_univ_prop) eval_ring_hom: | |
| 1065 | assumes S: "s \<in> carrier S" | |
| 1066 | shows "eval R S h s \<in> ring_hom P S" | |
| 13940 | 1067 | proof (rule ring_hom_memI) | 
| 1068 | fix p | |
| 17094 | 1069 | assume R: "p \<in> carrier P" | 
| 13940 | 1070 | then show "eval R S h s p \<in> carrier S" | 
| 17094 | 1071 | by (simp only: eval_on_carrier) (simp add: S Pi_def) | 
| 13940 | 1072 | next | 
| 1073 | fix p q | |
| 17094 | 1074 | assume R: "p \<in> carrier P" "q \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1075 | then show "eval R S h s (p \<otimes>\<^bsub>P\<^esub> q) = eval R S h s p \<otimes>\<^bsub>S\<^esub> eval R S h s q" | 
| 13940 | 1076 | proof (simp only: eval_on_carrier UP_mult_closed) | 
| 17094 | 1077 | from R S have | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1078 |       "(\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R (p \<otimes>\<^bsub>P\<^esub> q)}. h (coeff P (p \<otimes>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1079 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R (p \<otimes>\<^bsub>P\<^esub> q)} \<union> {deg R (p \<otimes>\<^bsub>P\<^esub> q)<..deg R p + deg R q}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1080 | h (coeff P (p \<otimes>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" | 
| 17094 | 1081 | by (simp cong: S.finsum_cong | 
| 1082 | add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def | |
| 14666 | 1083 | del: coeff_mult) | 
| 17094 | 1084 | also from R have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1085 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p + deg R q}. h (coeff P (p \<otimes>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | 
| 13940 | 1086 | by (simp only: ivl_disj_un_one deg_mult_cring) | 
| 17094 | 1087 | also from R S have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1088 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p + deg R q}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1089 |          \<Oplus>\<^bsub>S\<^esub> k \<in> {..i}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1090 | h (coeff P p k) \<otimes>\<^bsub>S\<^esub> h (coeff P q (i - k)) \<otimes>\<^bsub>S\<^esub> | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1091 | (s (^)\<^bsub>S\<^esub> k \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> (i - k)))" | 
| 17094 | 1092 | by (simp cong: S.finsum_cong add: S.nat_pow_mult Pi_def | 
| 14666 | 1093 | S.m_ac S.finsum_rdistr) | 
| 17094 | 1094 | also from R S have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1095 |       (\<Oplus>\<^bsub>S\<^esub> i\<in>{..deg R p}. h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<otimes>\<^bsub>S\<^esub>
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1096 |       (\<Oplus>\<^bsub>S\<^esub> i\<in>{..deg R q}. h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | 
| 14666 | 1097 | by (simp add: S.cauchy_product [THEN sym] bound.intro deg_aboveD S.m_ac | 
| 1098 | Pi_def) | |
| 13940 | 1099 | finally show | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1100 |       "(\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R (p \<otimes>\<^bsub>P\<^esub> q)}. h (coeff P (p \<otimes>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1101 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p}. h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<otimes>\<^bsub>S\<^esub>
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1102 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R q}. h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" .
 | 
| 13940 | 1103 | qed | 
| 1104 | next | |
| 1105 | fix p q | |
| 17094 | 1106 | assume R: "p \<in> carrier P" "q \<in> carrier P" | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1107 | then show "eval R S h s (p \<oplus>\<^bsub>P\<^esub> q) = eval R S h s p \<oplus>\<^bsub>S\<^esub> eval R S h s q" | 
| 17094 | 1108 | proof (simp only: eval_on_carrier P.a_closed) | 
| 1109 | from S R have | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1110 |       "(\<Oplus>\<^bsub>S \<^esub>i\<in>{..deg R (p \<oplus>\<^bsub>P\<^esub> q)}. h (coeff P (p \<oplus>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1111 |       (\<Oplus>\<^bsub>S \<^esub>i\<in>{..deg R (p \<oplus>\<^bsub>P\<^esub> q)} \<union> {deg R (p \<oplus>\<^bsub>P\<^esub> q)<..max (deg R p) (deg R q)}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1112 | h (coeff P (p \<oplus>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" | 
| 17094 | 1113 | by (simp cong: S.finsum_cong | 
| 1114 | add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def | |
| 14666 | 1115 | del: coeff_add) | 
| 17094 | 1116 | also from R have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1117 |         (\<Oplus>\<^bsub>S\<^esub> i \<in> {..max (deg R p) (deg R q)}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1118 | h (coeff P (p \<oplus>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" | 
| 13940 | 1119 | by (simp add: ivl_disj_un_one) | 
| 17094 | 1120 | also from R S have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1121 |       (\<Oplus>\<^bsub>S\<^esub>i\<in>{..max (deg R p) (deg R q)}. h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<oplus>\<^bsub>S\<^esub>
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1122 |       (\<Oplus>\<^bsub>S\<^esub>i\<in>{..max (deg R p) (deg R q)}. h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | 
| 17094 | 1123 | by (simp cong: S.finsum_cong | 
| 1124 | add: S.l_distr deg_aboveD ivl_disj_int_one Pi_def) | |
| 13940 | 1125 | also have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1126 |         (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p} \<union> {deg R p<..max (deg R p) (deg R q)}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1127 | h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<oplus>\<^bsub>S\<^esub> | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1128 |         (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R q} \<union> {deg R q<..max (deg R p) (deg R q)}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1129 | h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" | 
| 13940 | 1130 | by (simp only: ivl_disj_un_one le_maxI1 le_maxI2) | 
| 17094 | 1131 | also from R S have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1132 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R p}. h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<oplus>\<^bsub>S\<^esub>
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1133 |       (\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R q}. h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | 
| 17094 | 1134 | by (simp cong: S.finsum_cong | 
| 1135 | add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def) | |
| 13940 | 1136 | finally show | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1137 |       "(\<Oplus>\<^bsub>S\<^esub>i \<in> {..deg R (p \<oplus>\<^bsub>P\<^esub> q)}. h (coeff P (p \<oplus>\<^bsub>P\<^esub> q) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1138 |       (\<Oplus>\<^bsub>S\<^esub>i \<in> {..deg R p}. h (coeff P p i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) \<oplus>\<^bsub>S\<^esub>
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1139 |       (\<Oplus>\<^bsub>S\<^esub>i \<in> {..deg R q}. h (coeff P q i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" .
 | 
| 13940 | 1140 | qed | 
| 1141 | next | |
| 17094 | 1142 | show "eval R S h s \<one>\<^bsub>P\<^esub> = \<one>\<^bsub>S\<^esub>" | 
| 13940 | 1143 | by (simp only: eval_on_carrier UP_one_closed) simp | 
| 1144 | qed | |
| 1145 | ||
| 17094 | 1146 | text {* Interpretation of ring homomorphism lemmas. *}
 | 
| 13940 | 1147 | |
| 17094 | 1148 | interpretation UP_univ_prop < ring_hom_cring P S Eval | 
| 1149 | by (unfold Eval_def) | |
| 1150 | (fast intro!: ring_hom_cring.intro UP_cring cring.axioms prems | |
| 1151 | intro: ring_hom_cring_axioms.intro eval_ring_hom) | |
| 13940 | 1152 | |
| 1153 | text {* Further properties of the evaluation homomorphism. *}
 | |
| 1154 | ||
| 1155 | (* The following lemma could be proved in UP\_cring with the additional | |
| 1156 | assumption that h is closed. *) | |
| 1157 | ||
| 17094 | 1158 | lemma (in UP_pre_univ_prop) eval_const: | 
| 13940 | 1159 | "[| s \<in> carrier S; r \<in> carrier R |] ==> eval R S h s (monom P r 0) = h r" | 
| 1160 | by (simp only: eval_on_carrier monom_closed) simp | |
| 1161 | ||
| 1162 | text {* The following proof is complicated by the fact that in arbitrary
 | |
| 1163 |   rings one might have @{term "one R = zero R"}. *}
 | |
| 1164 | ||
| 1165 | (* TODO: simplify by cases "one R = zero R" *) | |
| 1166 | ||
| 17094 | 1167 | lemma (in UP_pre_univ_prop) eval_monom1: | 
| 1168 | assumes S: "s \<in> carrier S" | |
| 1169 | shows "eval R S h s (monom P \<one> 1) = s" | |
| 13940 | 1170 | proof (simp only: eval_on_carrier monom_closed R.one_closed) | 
| 17094 | 1171 | from S have | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1172 |     "(\<Oplus>\<^bsub>S\<^esub> i\<in>{..deg R (monom P \<one> 1)}. h (coeff P (monom P \<one> 1) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) =
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1173 |     (\<Oplus>\<^bsub>S\<^esub> i\<in>{..deg R (monom P \<one> 1)} \<union> {deg R (monom P \<one> 1)<..1}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1174 | h (coeff P (monom P \<one> 1) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)" | 
| 17094 | 1175 | by (simp cong: S.finsum_cong del: coeff_monom | 
| 1176 | add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def) | |
| 14666 | 1177 | also have "... = | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1178 |     (\<Oplus>\<^bsub>S\<^esub> i \<in> {..1}. h (coeff P (monom P \<one> 1) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i)"
 | 
| 13940 | 1179 | by (simp only: ivl_disj_un_one deg_monom_le R.one_closed) | 
| 1180 | also have "... = s" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1181 | proof (cases "s = \<zero>\<^bsub>S\<^esub>") | 
| 13940 | 1182 | case True then show ?thesis by (simp add: Pi_def) | 
| 1183 | next | |
| 17094 | 1184 | case False then show ?thesis by (simp add: S Pi_def) | 
| 13940 | 1185 | qed | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1186 |   finally show "(\<Oplus>\<^bsub>S\<^esub> i \<in> {..deg R (monom P \<one> 1)}.
 | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1187 | h (coeff P (monom P \<one> 1) i) \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> i) = s" . | 
| 13940 | 1188 | qed | 
| 1189 | ||
| 1190 | lemma (in UP_cring) monom_pow: | |
| 1191 | assumes R: "a \<in> carrier R" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1192 | shows "(monom P a n) (^)\<^bsub>P\<^esub> m = monom P (a (^) m) (n * m)" | 
| 13940 | 1193 | proof (induct m) | 
| 1194 | case 0 from R show ?case by simp | |
| 1195 | next | |
| 1196 | case Suc with R show ?case | |
| 1197 | by (simp del: monom_mult add: monom_mult [THEN sym] add_commute) | |
| 1198 | qed | |
| 1199 | ||
| 1200 | lemma (in ring_hom_cring) hom_pow [simp]: | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1201 | "x \<in> carrier R ==> h (x (^) n) = h x (^)\<^bsub>S\<^esub> (n::nat)" | 
| 13940 | 1202 | by (induct n) simp_all | 
| 1203 | ||
| 17094 | 1204 | lemma (in UP_univ_prop) Eval_monom: | 
| 1205 | "r \<in> carrier R ==> Eval (monom P r n) = h r \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> n" | |
| 13940 | 1206 | proof - | 
| 17094 | 1207 | assume R: "r \<in> carrier R" | 
| 1208 | from R have "Eval (monom P r n) = Eval (monom P r 0 \<otimes>\<^bsub>P\<^esub> (monom P \<one> 1) (^)\<^bsub>P\<^esub> n)" | |
| 1209 | by (simp del: monom_mult add: monom_mult [THEN sym] monom_pow) | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1210 | also | 
| 17094 | 1211 | from R eval_monom1 [where s = s, folded Eval_def] | 
| 1212 | have "... = h r \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> n" | |
| 1213 | by (simp add: eval_const [where s = s, folded Eval_def]) | |
| 13940 | 1214 | finally show ?thesis . | 
| 1215 | qed | |
| 1216 | ||
| 17094 | 1217 | lemma (in UP_pre_univ_prop) eval_monom: | 
| 1218 | assumes R: "r \<in> carrier R" and S: "s \<in> carrier S" | |
| 1219 | shows "eval R S h s (monom P r n) = h r \<otimes>\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> n" | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1220 | proof - | 
| 17094 | 1221 | from S interpret UP_univ_prop [R S h P s _] | 
| 1222 | by (auto intro!: UP_univ_prop_axioms.intro) | |
| 1223 | from R | |
| 1224 | show ?thesis by (rule Eval_monom) | |
| 1225 | qed | |
| 1226 | ||
| 1227 | lemma (in UP_univ_prop) Eval_smult: | |
| 1228 | "[| r \<in> carrier R; p \<in> carrier P |] ==> Eval (r \<odot>\<^bsub>P\<^esub> p) = h r \<otimes>\<^bsub>S\<^esub> Eval p" | |
| 1229 | proof - | |
| 1230 | assume R: "r \<in> carrier R" and P: "p \<in> carrier P" | |
| 1231 | then show ?thesis | |
| 1232 | by (simp add: monom_mult_is_smult [THEN sym] | |
| 1233 | eval_const [where s = s, folded Eval_def]) | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1234 | qed | 
| 13940 | 1235 | |
| 1236 | lemma ring_hom_cringI: | |
| 1237 | assumes "cring R" | |
| 1238 | and "cring S" | |
| 1239 | and "h \<in> ring_hom R S" | |
| 1240 | shows "ring_hom_cring R S h" | |
| 1241 | by (fast intro: ring_hom_cring.intro ring_hom_cring_axioms.intro | |
| 1242 | cring.axioms prems) | |
| 1243 | ||
| 17094 | 1244 | lemma (in UP_pre_univ_prop) UP_hom_unique: | 
| 1245 | includes ring_hom_cring P S Phi | |
| 1246 | assumes Phi: "Phi (monom P \<one> (Suc 0)) = s" | |
| 13940 | 1247 | "!!r. r \<in> carrier R ==> Phi (monom P r 0) = h r" | 
| 17094 | 1248 | includes ring_hom_cring P S Psi | 
| 1249 | assumes Psi: "Psi (monom P \<one> (Suc 0)) = s" | |
| 13940 | 1250 | "!!r. r \<in> carrier R ==> Psi (monom P r 0) = h r" | 
| 17094 | 1251 | and P: "p \<in> carrier P" and S: "s \<in> carrier S" | 
| 13940 | 1252 | shows "Phi p = Psi p" | 
| 1253 | proof - | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1254 | have "Phi p = | 
| 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1255 |       Phi (\<Oplus>\<^bsub>P \<^esub>i \<in> {..deg R p}. monom P (coeff P p i) 0 \<otimes>\<^bsub>P\<^esub> monom P \<one> 1 (^)\<^bsub>P\<^esub> i)"
 | 
| 17094 | 1256 | by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult) | 
| 15696 | 1257 | also | 
| 1258 | have "... = | |
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1259 |       Psi (\<Oplus>\<^bsub>P \<^esub>i\<in>{..deg R p}. monom P (coeff P p i) 0 \<otimes>\<^bsub>P\<^esub> monom P \<one> 1 (^)\<^bsub>P\<^esub> i)"
 | 
| 17094 | 1260 | by (simp add: Phi Psi P Pi_def comp_def) | 
| 13940 | 1261 | also have "... = Psi p" | 
| 17094 | 1262 | by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult) | 
| 13940 | 1263 | finally show ?thesis . | 
| 1264 | qed | |
| 1265 | ||
| 17094 | 1266 | lemma (in UP_pre_univ_prop) ring_homD: | 
| 1267 | assumes Phi: "Phi \<in> ring_hom P S" | |
| 1268 | shows "ring_hom_cring P S Phi" | |
| 1269 | proof (rule ring_hom_cring.intro) | |
| 1270 | show "ring_hom_cring_axioms P S Phi" | |
| 1271 | by (rule ring_hom_cring_axioms.intro) (rule Phi) | |
| 1272 | qed (auto intro: P.cring cring.axioms) | |
| 1273 | ||
| 1274 | theorem (in UP_pre_univ_prop) UP_universal_property: | |
| 1275 | assumes S: "s \<in> carrier S" | |
| 1276 | shows "EX! Phi. Phi \<in> ring_hom P S \<inter> extensional (carrier P) & | |
| 14666 | 1277 | Phi (monom P \<one> 1) = s & | 
| 13940 | 1278 | (ALL r : carrier R. Phi (monom P r 0) = h r)" | 
| 17094 | 1279 | using S eval_monom1 | 
| 13940 | 1280 | apply (auto intro: eval_ring_hom eval_const eval_extensional) | 
| 14666 | 1281 | apply (rule extensionalityI) | 
| 17094 | 1282 | apply (auto intro: UP_hom_unique ring_homD) | 
| 14666 | 1283 | done | 
| 13940 | 1284 | |
| 17094 | 1285 | |
| 13940 | 1286 | subsection {* Sample application of evaluation homomorphism *}
 | 
| 1287 | ||
| 17094 | 1288 | lemma UP_pre_univ_propI: | 
| 13940 | 1289 | assumes "cring R" | 
| 1290 | and "cring S" | |
| 1291 | and "h \<in> ring_hom R S" | |
| 17094 | 1292 | shows "UP_pre_univ_prop R S h " | 
| 1293 | by (fast intro: UP_pre_univ_prop.intro ring_hom_cring_axioms.intro | |
| 13940 | 1294 | cring.axioms prems) | 
| 1295 | ||
| 13975 | 1296 | constdefs | 
| 1297 | INTEG :: "int ring" | |
| 1298 | "INTEG == (| carrier = UNIV, mult = op *, one = 1, zero = 0, add = op + |)" | |
| 1299 | ||
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1300 | lemma INTEG_cring: | 
| 13975 | 1301 | "cring INTEG" | 
| 1302 | by (unfold INTEG_def) (auto intro!: cringI abelian_groupI comm_monoidI | |
| 1303 | zadd_zminus_inverse2 zadd_zmult_distrib) | |
| 1304 | ||
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1305 | lemma INTEG_id_eval: | 
| 17094 | 1306 | "UP_pre_univ_prop INTEG INTEG id" | 
| 1307 | by (fast intro: UP_pre_univ_propI INTEG_cring id_ring_hom) | |
| 13940 | 1308 | |
| 1309 | text {*
 | |
| 17094 | 1310 | Interpretation now enables to import all theorems and lemmas | 
| 13940 | 1311 |   valid in the context of homomorphisms between @{term INTEG} and @{term
 | 
| 15095 
63f5f4c265dd
Theories now take advantage of recent syntax improvements with (structure).
 ballarin parents: 
15076diff
changeset | 1312 | "UP INTEG"} globally. | 
| 14666 | 1313 | *} | 
| 13940 | 1314 | |
| 17094 | 1315 | interpretation INTEG: UP_pre_univ_prop [INTEG INTEG id] | 
| 15763 
b901a127ac73
Interpretation supports statically scoped attributes; documentation.
 ballarin parents: 
15696diff
changeset | 1316 | using INTEG_id_eval | 
| 17094 | 1317 | by - (erule UP_pre_univ_prop.axioms)+ | 
| 15763 
b901a127ac73
Interpretation supports statically scoped attributes; documentation.
 ballarin parents: 
15696diff
changeset | 1318 | |
| 13940 | 1319 | lemma INTEG_closed [intro, simp]: | 
| 1320 | "z \<in> carrier INTEG" | |
| 1321 | by (unfold INTEG_def) simp | |
| 1322 | ||
| 1323 | lemma INTEG_mult [simp]: | |
| 1324 | "mult INTEG z w = z * w" | |
| 1325 | by (unfold INTEG_def) simp | |
| 1326 | ||
| 1327 | lemma INTEG_pow [simp]: | |
| 1328 | "pow INTEG z n = z ^ n" | |
| 1329 | by (induct n) (simp_all add: INTEG_def nat_pow_def) | |
| 1330 | ||
| 1331 | lemma "eval INTEG INTEG id 10 (monom (UP INTEG) 5 2) = 500" | |
| 15763 
b901a127ac73
Interpretation supports statically scoped attributes; documentation.
 ballarin parents: 
15696diff
changeset | 1332 | by (simp add: INTEG.eval_monom) | 
| 13940 | 1333 | |
| 14590 | 1334 | end |