| author | huffman | 
| Fri, 04 Jul 2008 16:33:08 +0200 | |
| changeset 27486 | c61507a98bff | 
| parent 26086 | 3c243098b64a | 
| child 27651 | 16a26996c30e | 
| permissions | -rw-r--r-- | 
| 23164 | 1  | 
(* Title: HOL/int_factor_simprocs.ML  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 2000 University of Cambridge  | 
|
5  | 
||
6  | 
Factor cancellation simprocs for the integers (and for fields).  | 
|
7  | 
||
8  | 
This file can't be combined with int_arith1 because it requires IntDiv.thy.  | 
|
9  | 
*)  | 
|
10  | 
||
11  | 
||
12  | 
(*To quote from Provers/Arith/cancel_numeral_factor.ML:  | 
|
13  | 
||
14  | 
Cancels common coefficients in balanced expressions:  | 
|
15  | 
||
16  | 
u*#m ~~ u'*#m' == #n*u ~~ #n'*u'  | 
|
17  | 
||
18  | 
where ~~ is an appropriate balancing operation (e.g. =, <=, <, div, /)  | 
|
19  | 
and d = gcd(m,m') and n=m/d and n'=m'/d.  | 
|
20  | 
*)  | 
|
21  | 
||
| 25481 | 22  | 
val rel_number_of = [@{thm eq_number_of_eq}, @{thm less_number_of_eq_neg}, @{thm le_number_of_eq}];
 | 
| 23164 | 23  | 
|
24  | 
local  | 
|
25  | 
open Int_Numeral_Simprocs  | 
|
26  | 
in  | 
|
27  | 
||
28  | 
structure CancelNumeralFactorCommon =  | 
|
29  | 
struct  | 
|
30  | 
val mk_coeff = mk_coeff  | 
|
31  | 
val dest_coeff = dest_coeff 1  | 
|
32  | 
val trans_tac = fn _ => trans_tac  | 
|
33  | 
||
34  | 
val norm_ss1 = HOL_ss addsimps minus_from_mult_simps @ mult_1s  | 
|
35  | 
val norm_ss2 = HOL_ss addsimps simps @ mult_minus_simps  | 
|
| 23881 | 36  | 
  val norm_ss3 = HOL_ss addsimps @{thms mult_ac}
 | 
| 23164 | 37  | 
fun norm_tac ss =  | 
38  | 
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))  | 
|
39  | 
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))  | 
|
40  | 
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss3))  | 
|
41  | 
||
42  | 
val numeral_simp_ss = HOL_ss addsimps rel_number_of @ simps  | 
|
43  | 
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))  | 
|
44  | 
val simplify_meta_eq = Int_Numeral_Simprocs.simplify_meta_eq  | 
|
45  | 
    [@{thm add_0}, @{thm add_0_right}, @{thm mult_zero_left},
 | 
|
| 
26086
 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 
huffman 
parents: 
25481 
diff
changeset
 | 
46  | 
      @{thm mult_zero_right}, @{thm mult_Bit1}, @{thm mult_1_right}];
 | 
| 23164 | 47  | 
end  | 
48  | 
||
49  | 
(*Version for integer division*)  | 
|
50  | 
structure IntDivCancelNumeralFactor = CancelNumeralFactorFun  | 
|
51  | 
(open CancelNumeralFactorCommon  | 
|
52  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
53  | 
  val mk_bal   = HOLogic.mk_binop @{const_name Divides.div}
 | 
|
54  | 
  val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.intT
 | 
|
| 23401 | 55  | 
  val cancel = @{thm zdiv_zmult_zmult1} RS trans
 | 
| 23164 | 56  | 
val neg_exchanges = false  | 
57  | 
)  | 
|
58  | 
||
59  | 
(*Version for fields*)  | 
|
60  | 
structure DivideCancelNumeralFactor = CancelNumeralFactorFun  | 
|
61  | 
(open CancelNumeralFactorCommon  | 
|
62  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
63  | 
  val mk_bal   = HOLogic.mk_binop @{const_name HOL.divide}
 | 
|
64  | 
  val dest_bal = HOLogic.dest_bin @{const_name HOL.divide} Term.dummyT
 | 
|
| 
23413
 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 
nipkow 
parents: 
23401 
diff
changeset
 | 
65  | 
  val cancel = @{thm mult_divide_mult_cancel_left} RS trans
 | 
| 23164 | 66  | 
val neg_exchanges = false  | 
67  | 
)  | 
|
68  | 
||
69  | 
structure EqCancelNumeralFactor = CancelNumeralFactorFun  | 
|
70  | 
(open CancelNumeralFactorCommon  | 
|
71  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
72  | 
val mk_bal = HOLogic.mk_eq  | 
|
73  | 
val dest_bal = HOLogic.dest_bin "op =" Term.dummyT  | 
|
74  | 
  val cancel = @{thm mult_cancel_left} RS trans
 | 
|
75  | 
val neg_exchanges = false  | 
|
76  | 
)  | 
|
77  | 
||
78  | 
structure LessCancelNumeralFactor = CancelNumeralFactorFun  | 
|
79  | 
(open CancelNumeralFactorCommon  | 
|
80  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
| 23881 | 81  | 
  val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less}
 | 
82  | 
  val dest_bal = HOLogic.dest_bin @{const_name HOL.less} Term.dummyT
 | 
|
| 23164 | 83  | 
  val cancel = @{thm mult_less_cancel_left} RS trans
 | 
84  | 
val neg_exchanges = true  | 
|
85  | 
)  | 
|
86  | 
||
87  | 
structure LeCancelNumeralFactor = CancelNumeralFactorFun  | 
|
88  | 
(open CancelNumeralFactorCommon  | 
|
89  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
| 23881 | 90  | 
  val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less_eq}
 | 
91  | 
  val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} Term.dummyT
 | 
|
| 23164 | 92  | 
  val cancel = @{thm mult_le_cancel_left} RS trans
 | 
93  | 
val neg_exchanges = true  | 
|
94  | 
)  | 
|
95  | 
||
96  | 
val cancel_numeral_factors =  | 
|
97  | 
map Int_Numeral_Base_Simprocs.prep_simproc  | 
|
98  | 
   [("ring_eq_cancel_numeral_factor",
 | 
|
99  | 
     ["(l::'a::{idom,number_ring}) * m = n",
 | 
|
100  | 
      "(l::'a::{idom,number_ring}) = m * n"],
 | 
|
101  | 
K EqCancelNumeralFactor.proc),  | 
|
102  | 
    ("ring_less_cancel_numeral_factor",
 | 
|
103  | 
     ["(l::'a::{ordered_idom,number_ring}) * m < n",
 | 
|
104  | 
      "(l::'a::{ordered_idom,number_ring}) < m * n"],
 | 
|
105  | 
K LessCancelNumeralFactor.proc),  | 
|
106  | 
    ("ring_le_cancel_numeral_factor",
 | 
|
107  | 
     ["(l::'a::{ordered_idom,number_ring}) * m <= n",
 | 
|
108  | 
      "(l::'a::{ordered_idom,number_ring}) <= m * n"],
 | 
|
109  | 
K LeCancelNumeralFactor.proc),  | 
|
110  | 
    ("int_div_cancel_numeral_factors",
 | 
|
111  | 
["((l::int) * m) div n", "(l::int) div (m * n)"],  | 
|
112  | 
K IntDivCancelNumeralFactor.proc),  | 
|
113  | 
    ("divide_cancel_numeral_factor",
 | 
|
114  | 
     ["((l::'a::{division_by_zero,field,number_ring}) * m) / n",
 | 
|
115  | 
      "(l::'a::{division_by_zero,field,number_ring}) / (m * n)",
 | 
|
116  | 
      "((number_of v)::'a::{division_by_zero,field,number_ring}) / (number_of w)"],
 | 
|
117  | 
K DivideCancelNumeralFactor.proc)];  | 
|
118  | 
||
119  | 
(* referenced by rat_arith.ML *)  | 
|
120  | 
val field_cancel_numeral_factors =  | 
|
121  | 
map Int_Numeral_Base_Simprocs.prep_simproc  | 
|
122  | 
   [("field_eq_cancel_numeral_factor",
 | 
|
123  | 
     ["(l::'a::{field,number_ring}) * m = n",
 | 
|
124  | 
      "(l::'a::{field,number_ring}) = m * n"],
 | 
|
125  | 
K EqCancelNumeralFactor.proc),  | 
|
126  | 
    ("field_cancel_numeral_factor",
 | 
|
127  | 
     ["((l::'a::{division_by_zero,field,number_ring}) * m) / n",
 | 
|
128  | 
      "(l::'a::{division_by_zero,field,number_ring}) / (m * n)",
 | 
|
129  | 
      "((number_of v)::'a::{division_by_zero,field,number_ring}) / (number_of w)"],
 | 
|
130  | 
K DivideCancelNumeralFactor.proc)]  | 
|
131  | 
||
132  | 
end;  | 
|
133  | 
||
134  | 
Addsimprocs cancel_numeral_factors;  | 
|
135  | 
||
136  | 
(*examples:  | 
|
137  | 
print_depth 22;  | 
|
138  | 
set timing;  | 
|
139  | 
set trace_simp;  | 
|
140  | 
fun test s = (Goal s; by (Simp_tac 1));  | 
|
141  | 
||
142  | 
test "9*x = 12 * (y::int)";  | 
|
143  | 
test "(9*x) div (12 * (y::int)) = z";  | 
|
144  | 
test "9*x < 12 * (y::int)";  | 
|
145  | 
test "9*x <= 12 * (y::int)";  | 
|
146  | 
||
147  | 
test "-99*x = 132 * (y::int)";  | 
|
148  | 
test "(-99*x) div (132 * (y::int)) = z";  | 
|
149  | 
test "-99*x < 132 * (y::int)";  | 
|
150  | 
test "-99*x <= 132 * (y::int)";  | 
|
151  | 
||
152  | 
test "999*x = -396 * (y::int)";  | 
|
153  | 
test "(999*x) div (-396 * (y::int)) = z";  | 
|
154  | 
test "999*x < -396 * (y::int)";  | 
|
155  | 
test "999*x <= -396 * (y::int)";  | 
|
156  | 
||
157  | 
test "-99*x = -81 * (y::int)";  | 
|
158  | 
test "(-99*x) div (-81 * (y::int)) = z";  | 
|
159  | 
test "-99*x <= -81 * (y::int)";  | 
|
160  | 
test "-99*x < -81 * (y::int)";  | 
|
161  | 
||
162  | 
test "-2 * x = -1 * (y::int)";  | 
|
163  | 
test "-2 * x = -(y::int)";  | 
|
164  | 
test "(-2 * x) div (-1 * (y::int)) = z";  | 
|
165  | 
test "-2 * x < -(y::int)";  | 
|
166  | 
test "-2 * x <= -1 * (y::int)";  | 
|
167  | 
test "-x < -23 * (y::int)";  | 
|
168  | 
test "-x <= -23 * (y::int)";  | 
|
169  | 
*)  | 
|
170  | 
||
171  | 
(*And the same examples for fields such as rat or real:  | 
|
172  | 
test "0 <= (y::rat) * -2";  | 
|
173  | 
test "9*x = 12 * (y::rat)";  | 
|
174  | 
test "(9*x) / (12 * (y::rat)) = z";  | 
|
175  | 
test "9*x < 12 * (y::rat)";  | 
|
176  | 
test "9*x <= 12 * (y::rat)";  | 
|
177  | 
||
178  | 
test "-99*x = 132 * (y::rat)";  | 
|
179  | 
test "(-99*x) / (132 * (y::rat)) = z";  | 
|
180  | 
test "-99*x < 132 * (y::rat)";  | 
|
181  | 
test "-99*x <= 132 * (y::rat)";  | 
|
182  | 
||
183  | 
test "999*x = -396 * (y::rat)";  | 
|
184  | 
test "(999*x) / (-396 * (y::rat)) = z";  | 
|
185  | 
test "999*x < -396 * (y::rat)";  | 
|
186  | 
test "999*x <= -396 * (y::rat)";  | 
|
187  | 
||
188  | 
test "(- ((2::rat) * x) <= 2 * y)";  | 
|
189  | 
test "-99*x = -81 * (y::rat)";  | 
|
190  | 
test "(-99*x) / (-81 * (y::rat)) = z";  | 
|
191  | 
test "-99*x <= -81 * (y::rat)";  | 
|
192  | 
test "-99*x < -81 * (y::rat)";  | 
|
193  | 
||
194  | 
test "-2 * x = -1 * (y::rat)";  | 
|
195  | 
test "-2 * x = -(y::rat)";  | 
|
196  | 
test "(-2 * x) / (-1 * (y::rat)) = z";  | 
|
197  | 
test "-2 * x < -(y::rat)";  | 
|
198  | 
test "-2 * x <= -1 * (y::rat)";  | 
|
199  | 
test "-x < -23 * (y::rat)";  | 
|
200  | 
test "-x <= -23 * (y::rat)";  | 
|
201  | 
*)  | 
|
202  | 
||
203  | 
||
204  | 
(** Declarations for ExtractCommonTerm **)  | 
|
205  | 
||
206  | 
local  | 
|
207  | 
open Int_Numeral_Simprocs  | 
|
208  | 
in  | 
|
209  | 
||
210  | 
(*Find first term that matches u*)  | 
|
211  | 
fun find_first_t past u []         = raise TERM ("find_first_t", [])
 | 
|
212  | 
| find_first_t past u (t::terms) =  | 
|
213  | 
if u aconv t then (rev past @ terms)  | 
|
214  | 
else find_first_t (t::past) u terms  | 
|
215  | 
handle TERM _ => find_first_t (t::past) u terms;  | 
|
216  | 
||
217  | 
(** Final simplification for the CancelFactor simprocs **)  | 
|
218  | 
val simplify_one = Int_Numeral_Simprocs.simplify_meta_eq  | 
|
| 25481 | 219  | 
  [@{thm mult_1_left}, @{thm mult_1_right}, @{thm zdiv_1}, @{thm numeral_1_eq_1}];
 | 
| 23164 | 220  | 
|
221  | 
fun cancel_simplify_meta_eq cancel_th ss th =  | 
|
222  | 
simplify_one ss (([th, cancel_th]) MRS trans);  | 
|
223  | 
||
224  | 
structure CancelFactorCommon =  | 
|
225  | 
struct  | 
|
226  | 
val mk_sum = long_mk_prod  | 
|
227  | 
val dest_sum = dest_prod  | 
|
228  | 
val mk_coeff = mk_coeff  | 
|
229  | 
val dest_coeff = dest_coeff  | 
|
230  | 
val find_first = find_first_t []  | 
|
231  | 
val trans_tac = fn _ => trans_tac  | 
|
| 23881 | 232  | 
  val norm_ss = HOL_ss addsimps mult_1s @ @{thms mult_ac}
 | 
| 23164 | 233  | 
fun norm_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss))  | 
234  | 
end;  | 
|
235  | 
||
236  | 
(*mult_cancel_left requires a ring with no zero divisors.*)  | 
|
237  | 
structure EqCancelFactor = ExtractCommonTermFun  | 
|
238  | 
(open CancelFactorCommon  | 
|
239  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
240  | 
val mk_bal = HOLogic.mk_eq  | 
|
241  | 
val dest_bal = HOLogic.dest_bin "op =" Term.dummyT  | 
|
242  | 
  val simplify_meta_eq  = cancel_simplify_meta_eq @{thm mult_cancel_left}
 | 
|
243  | 
);  | 
|
244  | 
||
| 23401 | 245  | 
(*zdiv_zmult_zmult1_if is for integer division (div).*)  | 
| 23164 | 246  | 
structure IntDivCancelFactor = ExtractCommonTermFun  | 
247  | 
(open CancelFactorCommon  | 
|
248  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
249  | 
  val mk_bal   = HOLogic.mk_binop @{const_name Divides.div}
 | 
|
250  | 
  val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.intT
 | 
|
| 23401 | 251  | 
  val simplify_meta_eq  = cancel_simplify_meta_eq @{thm zdiv_zmult_zmult1_if}
 | 
| 23164 | 252  | 
);  | 
253  | 
||
| 24395 | 254  | 
structure IntModCancelFactor = ExtractCommonTermFun  | 
255  | 
(open CancelFactorCommon  | 
|
256  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
257  | 
  val mk_bal   = HOLogic.mk_binop @{const_name Divides.mod}
 | 
|
258  | 
  val dest_bal = HOLogic.dest_bin @{const_name Divides.mod} HOLogic.intT
 | 
|
259  | 
  val simplify_meta_eq  = cancel_simplify_meta_eq @{thm zmod_zmult_zmult1}
 | 
|
260  | 
);  | 
|
261  | 
||
| 23969 | 262  | 
structure IntDvdCancelFactor = ExtractCommonTermFun  | 
263  | 
(open CancelFactorCommon  | 
|
264  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
265  | 
  val mk_bal   = HOLogic.mk_binrel @{const_name Divides.dvd}
 | 
|
266  | 
  val dest_bal = HOLogic.dest_bin @{const_name Divides.dvd} HOLogic.intT
 | 
|
267  | 
  val simplify_meta_eq  = cancel_simplify_meta_eq @{thm zdvd_zmult_cancel_disj}
 | 
|
268  | 
);  | 
|
269  | 
||
| 23164 | 270  | 
(*Version for all fields, including unordered ones (type complex).*)  | 
271  | 
structure DivideCancelFactor = ExtractCommonTermFun  | 
|
272  | 
(open CancelFactorCommon  | 
|
273  | 
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv  | 
|
274  | 
  val mk_bal   = HOLogic.mk_binop @{const_name HOL.divide}
 | 
|
275  | 
  val dest_bal = HOLogic.dest_bin @{const_name HOL.divide} Term.dummyT
 | 
|
| 
23413
 
5caa2710dd5b
tuned laws for cancellation in divisions for fields.
 
nipkow 
parents: 
23401 
diff
changeset
 | 
276  | 
  val simplify_meta_eq  = cancel_simplify_meta_eq @{thm mult_divide_mult_cancel_left_if}
 | 
| 23164 | 277  | 
);  | 
278  | 
||
279  | 
val cancel_factors =  | 
|
280  | 
map Int_Numeral_Base_Simprocs.prep_simproc  | 
|
281  | 
   [("ring_eq_cancel_factor",
 | 
|
| 
23400
 
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
 
nipkow 
parents: 
23398 
diff
changeset
 | 
282  | 
     ["(l::'a::{idom}) * m = n",
 | 
| 
 
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
 
nipkow 
parents: 
23398 
diff
changeset
 | 
283  | 
      "(l::'a::{idom}) = m * n"],
 | 
| 23164 | 284  | 
K EqCancelFactor.proc),  | 
285  | 
    ("int_div_cancel_factor",
 | 
|
286  | 
["((l::int) * m) div n", "(l::int) div (m * n)"],  | 
|
287  | 
K IntDivCancelFactor.proc),  | 
|
| 24395 | 288  | 
    ("int_mod_cancel_factor",
 | 
289  | 
["((l::int) * m) mod n", "(l::int) mod (m * n)"],  | 
|
290  | 
K IntModCancelFactor.proc),  | 
|
| 23969 | 291  | 
    ("int_dvd_cancel_factor",
 | 
292  | 
["((l::int) * m) dvd n", "(l::int) dvd (m * n)"],  | 
|
293  | 
K IntDvdCancelFactor.proc),  | 
|
| 23164 | 294  | 
    ("divide_cancel_factor",
 | 
| 
23400
 
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
 
nipkow 
parents: 
23398 
diff
changeset
 | 
295  | 
     ["((l::'a::{division_by_zero,field}) * m) / n",
 | 
| 
 
a64b39e5809b
The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
 
nipkow 
parents: 
23398 
diff
changeset
 | 
296  | 
      "(l::'a::{division_by_zero,field}) / (m * n)"],
 | 
| 23164 | 297  | 
K DivideCancelFactor.proc)];  | 
298  | 
||
299  | 
end;  | 
|
300  | 
||
301  | 
Addsimprocs cancel_factors;  | 
|
302  | 
||
303  | 
||
304  | 
(*examples:  | 
|
305  | 
print_depth 22;  | 
|
306  | 
set timing;  | 
|
307  | 
set trace_simp;  | 
|
308  | 
fun test s = (Goal s; by (Asm_simp_tac 1));  | 
|
309  | 
||
310  | 
test "x*k = k*(y::int)";  | 
|
311  | 
test "k = k*(y::int)";  | 
|
312  | 
test "a*(b*c) = (b::int)";  | 
|
313  | 
test "a*(b*c) = d*(b::int)*(x*a)";  | 
|
314  | 
||
315  | 
test "(x*k) div (k*(y::int)) = (uu::int)";  | 
|
316  | 
test "(k) div (k*(y::int)) = (uu::int)";  | 
|
317  | 
test "(a*(b*c)) div ((b::int)) = (uu::int)";  | 
|
318  | 
test "(a*(b*c)) div (d*(b::int)*(x*a)) = (uu::int)";  | 
|
319  | 
*)  | 
|
320  | 
||
321  | 
(*And the same examples for fields such as rat or real:  | 
|
322  | 
print_depth 22;  | 
|
323  | 
set timing;  | 
|
324  | 
set trace_simp;  | 
|
325  | 
fun test s = (Goal s; by (Asm_simp_tac 1));  | 
|
326  | 
||
327  | 
test "x*k = k*(y::rat)";  | 
|
328  | 
test "k = k*(y::rat)";  | 
|
329  | 
test "a*(b*c) = (b::rat)";  | 
|
330  | 
test "a*(b*c) = d*(b::rat)*(x*a)";  | 
|
331  | 
||
332  | 
||
333  | 
test "(x*k) / (k*(y::rat)) = (uu::rat)";  | 
|
334  | 
test "(k) / (k*(y::rat)) = (uu::rat)";  | 
|
335  | 
test "(a*(b*c)) / ((b::rat)) = (uu::rat)";  | 
|
336  | 
test "(a*(b*c)) / (d*(b::rat)*(x*a)) = (uu::rat)";  | 
|
337  | 
||
338  | 
(*FIXME: what do we do about this?*)  | 
|
339  | 
test "a*(b*c)/(y*z) = d*(b::rat)*(x*a)/z";  | 
|
340  | 
*)  |