| author | blanchet | 
| Wed, 24 Feb 2010 11:35:39 +0100 | |
| changeset 35341 | c6bbfa9c4eca | 
| parent 35109 | 0015a0a99ae9 | 
| child 35416 | d8d7d1b785af | 
| permissions | -rw-r--r-- | 
| 1839 | 1 | (* Title: HOL/Auth/Message | 
| 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 3 | Copyright 1996 University of Cambridge | |
| 4 | ||
| 5 | Datatypes of agents and messages; | |
| 1913 | 6 | Inductive relations "parts", "analz" and "synth" | 
| 1839 | 7 | *) | 
| 8 | ||
| 13956 | 9 | header{*Theory of Agents and Messages for Security Protocols*}
 | 
| 10 | ||
| 27105 
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26807diff
changeset | 11 | theory Message | 
| 
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26807diff
changeset | 12 | imports Main | 
| 
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26807diff
changeset | 13 | begin | 
| 11189 | 14 | |
| 15 | (*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*) | |
| 13926 | 16 | lemma [simp] : "A \<union> (B \<union> A) = B \<union> A" | 
| 11189 | 17 | by blast | 
| 1839 | 18 | |
| 19 | types | |
| 20 | key = nat | |
| 21 | ||
| 22 | consts | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 23 |   all_symmetric :: bool        --{*true if all keys are symmetric*}
 | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 24 |   invKey        :: "key=>key"  --{*inverse of a symmetric key*}
 | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 25 | |
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 26 | specification (invKey) | 
| 14181 | 27 | invKey [simp]: "invKey (invKey K) = K" | 
| 28 | invKey_symmetric: "all_symmetric --> invKey = id" | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 29 | by (rule exI [of _ id], auto) | 
| 1839 | 30 | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 31 | |
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 32 | text{*The inverse of a symmetric key is itself; that of a public key
 | 
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 33 | is the private key and vice versa*} | 
| 1839 | 34 | |
| 35 | constdefs | |
| 11230 
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
 paulson parents: 
11192diff
changeset | 36 | symKeys :: "key set" | 
| 
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
 paulson parents: 
11192diff
changeset | 37 |   "symKeys == {K. invKey K = K}"
 | 
| 1839 | 38 | |
| 16818 | 39 | datatype  --{*We allow any number of friendly agents*}
 | 
| 2032 | 40 | agent = Server | Friend nat | Spy | 
| 1839 | 41 | |
| 3668 | 42 | datatype | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 43 |      msg = Agent  agent     --{*Agent names*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 44 |          | Number nat       --{*Ordinary integers, timestamps, ...*}
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 45 |          | Nonce  nat       --{*Unguessable nonces*}
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 46 |          | Key    key       --{*Crypto keys*}
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 47 |          | Hash   msg       --{*Hashing*}
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 48 |          | MPair  msg msg   --{*Compound messages*}
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 49 |          | Crypt  key msg   --{*Encryption, public- or shared-key*}
 | 
| 1839 | 50 | |
| 5234 | 51 | |
| 16818 | 52 | text{*Concrete syntax: messages appear as {|A,B,NA|}, etc...*}
 | 
| 5234 | 53 | syntax | 
| 35109 | 54 |   "_MTuple"      :: "['a, args] => 'a * 'b"       ("(2{|_,/ _|})")
 | 
| 1839 | 55 | |
| 9686 | 56 | syntax (xsymbols) | 
| 35109 | 57 |   "_MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
 | 
| 9686 | 58 | |
| 1839 | 59 | translations | 
| 60 |   "{|x, y, z|}"   == "{|x, {|y, z|}|}"
 | |
| 35054 | 61 |   "{|x, y|}"      == "CONST MPair x y"
 | 
| 1839 | 62 | |
| 63 | ||
| 2484 | 64 | constdefs | 
| 11189 | 65 |   HPair :: "[msg,msg] => msg"                       ("(4Hash[_] /_)" [0, 1000])
 | 
| 16818 | 66 |     --{*Message Y paired with a MAC computed with the help of X*}
 | 
| 2516 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 paulson parents: 
2484diff
changeset | 67 |     "Hash[X] Y == {| Hash{|X,Y|}, Y|}"
 | 
| 2484 | 68 | |
| 11189 | 69 | keysFor :: "msg set => key set" | 
| 16818 | 70 |     --{*Keys useful to decrypt elements of a message set*}
 | 
| 11192 | 71 |   "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
 | 
| 1839 | 72 | |
| 16818 | 73 | |
| 74 | subsubsection{*Inductive Definition of All Parts" of a Message*}
 | |
| 1839 | 75 | |
| 23746 | 76 | inductive_set | 
| 77 | parts :: "msg set => msg set" | |
| 78 | for H :: "msg set" | |
| 79 | where | |
| 11192 | 80 | Inj [intro]: "X \<in> H ==> X \<in> parts H" | 
| 23746 | 81 |   | Fst:         "{|X,Y|}   \<in> parts H ==> X \<in> parts H"
 | 
| 82 |   | Snd:         "{|X,Y|}   \<in> parts H ==> Y \<in> parts H"
 | |
| 83 | | Body: "Crypt K X \<in> parts H ==> X \<in> parts H" | |
| 11189 | 84 | |
| 85 | ||
| 16818 | 86 | text{*Monotonicity*}
 | 
| 87 | lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)" | |
| 11189 | 88 | apply auto | 
| 89 | apply (erule parts.induct) | |
| 16818 | 90 | apply (blast dest: parts.Fst parts.Snd parts.Body)+ | 
| 11189 | 91 | done | 
| 1839 | 92 | |
| 93 | ||
| 16818 | 94 | text{*Equations hold because constructors are injective.*}
 | 
| 13926 | 95 | lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)" | 
| 96 | by auto | |
| 97 | ||
| 98 | lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)" | |
| 99 | by auto | |
| 100 | ||
| 101 | lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)" | |
| 102 | by auto | |
| 103 | ||
| 104 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 105 | subsubsection{*Inverse of keys *}
 | 
| 13926 | 106 | |
| 107 | lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')" | |
| 28698 | 108 | by (metis invKey) | 
| 13926 | 109 | |
| 110 | ||
| 111 | subsection{*keysFor operator*}
 | |
| 112 | ||
| 113 | lemma keysFor_empty [simp]: "keysFor {} = {}"
 | |
| 114 | by (unfold keysFor_def, blast) | |
| 115 | ||
| 116 | lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" | |
| 117 | by (unfold keysFor_def, blast) | |
| 118 | ||
| 119 | lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))" | |
| 120 | by (unfold keysFor_def, blast) | |
| 121 | ||
| 16818 | 122 | text{*Monotonicity*}
 | 
| 123 | lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)" | |
| 13926 | 124 | by (unfold keysFor_def, blast) | 
| 125 | ||
| 126 | lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" | |
| 127 | by (unfold keysFor_def, auto) | |
| 128 | ||
| 129 | lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H" | |
| 130 | by (unfold keysFor_def, auto) | |
| 131 | ||
| 132 | lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H" | |
| 133 | by (unfold keysFor_def, auto) | |
| 134 | ||
| 135 | lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H" | |
| 136 | by (unfold keysFor_def, auto) | |
| 137 | ||
| 138 | lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H" | |
| 139 | by (unfold keysFor_def, auto) | |
| 140 | ||
| 141 | lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H"
 | |
| 142 | by (unfold keysFor_def, auto) | |
| 143 | ||
| 144 | lemma keysFor_insert_Crypt [simp]: | |
| 145 | "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)" | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 146 | by (unfold keysFor_def, auto) | 
| 13926 | 147 | |
| 148 | lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
 | |
| 149 | by (unfold keysFor_def, auto) | |
| 150 | ||
| 151 | lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H" | |
| 152 | by (unfold keysFor_def, blast) | |
| 153 | ||
| 154 | ||
| 155 | subsection{*Inductive relation "parts"*}
 | |
| 156 | ||
| 157 | lemma MPair_parts: | |
| 158 |      "[| {|X,Y|} \<in> parts H;        
 | |
| 159 | [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P" | |
| 160 | by (blast dest: parts.Fst parts.Snd) | |
| 161 | ||
| 162 | declare MPair_parts [elim!] parts.Body [dest!] | |
| 163 | text{*NB These two rules are UNSAFE in the formal sense, as they discard the
 | |
| 164 | compound message. They work well on THIS FILE. | |
| 165 |   @{text MPair_parts} is left as SAFE because it speeds up proofs.
 | |
| 166 | The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*} | |
| 167 | ||
| 168 | lemma parts_increasing: "H \<subseteq> parts(H)" | |
| 169 | by blast | |
| 170 | ||
| 171 | lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard] | |
| 172 | ||
| 173 | lemma parts_empty [simp]: "parts{} = {}"
 | |
| 174 | apply safe | |
| 175 | apply (erule parts.induct, blast+) | |
| 176 | done | |
| 177 | ||
| 178 | lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
 | |
| 179 | by simp | |
| 180 | ||
| 16818 | 181 | text{*WARNING: loops if H = {Y}, therefore must not be repeated!*}
 | 
| 13926 | 182 | lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
 | 
| 26807 
4cd176ea28dc
Replaced blast by fast in proof of parts_singleton, since blast looped
 berghofe parents: 
26342diff
changeset | 183 | by (erule parts.induct, fast+) | 
| 13926 | 184 | |
| 185 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 186 | subsubsection{*Unions *}
 | 
| 13926 | 187 | |
| 188 | lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)" | |
| 189 | by (intro Un_least parts_mono Un_upper1 Un_upper2) | |
| 190 | ||
| 191 | lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)" | |
| 192 | apply (rule subsetI) | |
| 193 | apply (erule parts.induct, blast+) | |
| 194 | done | |
| 195 | ||
| 196 | lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)" | |
| 197 | by (intro equalityI parts_Un_subset1 parts_Un_subset2) | |
| 198 | ||
| 199 | lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
 | |
| 34185 | 200 | by (metis insert_is_Un parts_Un) | 
| 13926 | 201 | |
| 16818 | 202 | text{*TWO inserts to avoid looping.  This rewrite is better than nothing.
 | 
| 203 | Not suitable for Addsimps: its behaviour can be strange.*} | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 204 | lemma parts_insert2: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 205 |      "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
 | 
| 34185 | 206 | by (metis Un_commute Un_empty_right Un_insert_right insert_is_Un parts_Un) | 
| 13926 | 207 | |
| 208 | lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)" | |
| 209 | by (intro UN_least parts_mono UN_upper) | |
| 210 | ||
| 211 | lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))" | |
| 212 | apply (rule subsetI) | |
| 213 | apply (erule parts.induct, blast+) | |
| 214 | done | |
| 215 | ||
| 216 | lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))" | |
| 217 | by (intro equalityI parts_UN_subset1 parts_UN_subset2) | |
| 218 | ||
| 16818 | 219 | text{*Added to simplify arguments to parts, analz and synth.
 | 
| 220 | NOTE: the UN versions are no longer used!*} | |
| 13926 | 221 | |
| 222 | ||
| 223 | text{*This allows @{text blast} to simplify occurrences of 
 | |
| 224 |   @{term "parts(G\<union>H)"} in the assumption.*}
 | |
| 17729 | 225 | lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] | 
| 226 | declare in_parts_UnE [elim!] | |
| 13926 | 227 | |
| 228 | ||
| 229 | lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" | |
| 230 | by (blast intro: parts_mono [THEN [2] rev_subsetD]) | |
| 231 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 232 | subsubsection{*Idempotence and transitivity *}
 | 
| 13926 | 233 | |
| 234 | lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H" | |
| 235 | by (erule parts.induct, blast+) | |
| 236 | ||
| 237 | lemma parts_idem [simp]: "parts (parts H) = parts H" | |
| 238 | by blast | |
| 239 | ||
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 240 | lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)" | 
| 34185 | 241 | by (metis equalityE parts_idem parts_increasing parts_mono subset_trans) | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 242 | |
| 13926 | 243 | lemma parts_trans: "[| X\<in> parts G; G \<subseteq> parts H |] ==> X\<in> parts H" | 
| 244 | by (drule parts_mono, blast) | |
| 245 | ||
| 16818 | 246 | text{*Cut*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 247 | lemma parts_cut: | 
| 18492 | 248 | "[| Y\<in> parts (insert X G); X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" | 
| 249 | by (blast intro: parts_trans) | |
| 250 | ||
| 13926 | 251 | |
| 252 | lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H" | |
| 253 | by (force dest!: parts_cut intro: parts_insertI) | |
| 254 | ||
| 255 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 256 | subsubsection{*Rewrite rules for pulling out atomic messages *}
 | 
| 13926 | 257 | |
| 258 | lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset] | |
| 259 | ||
| 260 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 261 | lemma parts_insert_Agent [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 262 | "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)" | 
| 13926 | 263 | apply (rule parts_insert_eq_I) | 
| 264 | apply (erule parts.induct, auto) | |
| 265 | done | |
| 266 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 267 | lemma parts_insert_Nonce [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 268 | "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)" | 
| 13926 | 269 | apply (rule parts_insert_eq_I) | 
| 270 | apply (erule parts.induct, auto) | |
| 271 | done | |
| 272 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 273 | lemma parts_insert_Number [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 274 | "parts (insert (Number N) H) = insert (Number N) (parts H)" | 
| 13926 | 275 | apply (rule parts_insert_eq_I) | 
| 276 | apply (erule parts.induct, auto) | |
| 277 | done | |
| 278 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 279 | lemma parts_insert_Key [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 280 | "parts (insert (Key K) H) = insert (Key K) (parts H)" | 
| 13926 | 281 | apply (rule parts_insert_eq_I) | 
| 282 | apply (erule parts.induct, auto) | |
| 283 | done | |
| 284 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 285 | lemma parts_insert_Hash [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 286 | "parts (insert (Hash X) H) = insert (Hash X) (parts H)" | 
| 13926 | 287 | apply (rule parts_insert_eq_I) | 
| 288 | apply (erule parts.induct, auto) | |
| 289 | done | |
| 290 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 291 | lemma parts_insert_Crypt [simp]: | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 292 | "parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))" | 
| 13926 | 293 | apply (rule equalityI) | 
| 294 | apply (rule subsetI) | |
| 295 | apply (erule parts.induct, auto) | |
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 296 | apply (blast intro: parts.Body) | 
| 13926 | 297 | done | 
| 298 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 299 | lemma parts_insert_MPair [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 300 |      "parts (insert {|X,Y|} H) =  
 | 
| 13926 | 301 |           insert {|X,Y|} (parts (insert X (insert Y H)))"
 | 
| 302 | apply (rule equalityI) | |
| 303 | apply (rule subsetI) | |
| 304 | apply (erule parts.induct, auto) | |
| 305 | apply (blast intro: parts.Fst parts.Snd)+ | |
| 306 | done | |
| 307 | ||
| 308 | lemma parts_image_Key [simp]: "parts (Key`N) = Key`N" | |
| 309 | apply auto | |
| 310 | apply (erule parts.induct, auto) | |
| 311 | done | |
| 312 | ||
| 313 | ||
| 16818 | 314 | text{*In any message, there is an upper bound N on its greatest nonce.*}
 | 
| 13926 | 315 | lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
 | 
| 27105 
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26807diff
changeset | 316 | apply (induct msg) | 
| 13926 | 317 | apply (simp_all (no_asm_simp) add: exI parts_insert2) | 
| 16818 | 318 | txt{*Nonce case*}
 | 
| 34185 | 319 | apply (metis Suc_n_not_le_n) | 
| 320 | txt{*MPair case: metis works out the necessary sum itself!*}
 | |
| 321 | apply (metis le_trans nat_le_linear) | |
| 13926 | 322 | done | 
| 323 | ||
| 324 | ||
| 325 | subsection{*Inductive relation "analz"*}
 | |
| 326 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 327 | text{*Inductive definition of "analz" -- what can be broken down from a set of
 | 
| 1839 | 328 | messages, including keys. A form of downward closure. Pairs can | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 329 | be taken apart; messages decrypted with known keys. *} | 
| 1839 | 330 | |
| 23746 | 331 | inductive_set | 
| 332 | analz :: "msg set => msg set" | |
| 333 | for H :: "msg set" | |
| 334 | where | |
| 11192 | 335 | Inj [intro,simp] : "X \<in> H ==> X \<in> analz H" | 
| 23746 | 336 |   | Fst:     "{|X,Y|} \<in> analz H ==> X \<in> analz H"
 | 
| 337 |   | Snd:     "{|X,Y|} \<in> analz H ==> Y \<in> analz H"
 | |
| 338 | | Decrypt [dest]: | |
| 11192 | 339 | "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H" | 
| 1839 | 340 | |
| 341 | ||
| 16818 | 342 | text{*Monotonicity; Lemma 1 of Lowe's paper*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 343 | lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)" | 
| 11189 | 344 | apply auto | 
| 345 | apply (erule analz.induct) | |
| 16818 | 346 | apply (auto dest: analz.Fst analz.Snd) | 
| 11189 | 347 | done | 
| 348 | ||
| 13926 | 349 | text{*Making it safe speeds up proofs*}
 | 
| 350 | lemma MPair_analz [elim!]: | |
| 351 |      "[| {|X,Y|} \<in> analz H;        
 | |
| 352 | [| X \<in> analz H; Y \<in> analz H |] ==> P | |
| 353 | |] ==> P" | |
| 354 | by (blast dest: analz.Fst analz.Snd) | |
| 355 | ||
| 356 | lemma analz_increasing: "H \<subseteq> analz(H)" | |
| 357 | by blast | |
| 358 | ||
| 359 | lemma analz_subset_parts: "analz H \<subseteq> parts H" | |
| 360 | apply (rule subsetI) | |
| 361 | apply (erule analz.induct, blast+) | |
| 362 | done | |
| 363 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 364 | lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard] | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 365 | |
| 13926 | 366 | lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard] | 
| 367 | ||
| 368 | ||
| 369 | lemma parts_analz [simp]: "parts (analz H) = parts H" | |
| 34185 | 370 | by (metis analz_increasing analz_subset_parts equalityI parts_mono parts_subset_iff) | 
| 13926 | 371 | |
| 372 | lemma analz_parts [simp]: "analz (parts H) = parts H" | |
| 373 | apply auto | |
| 374 | apply (erule analz.induct, auto) | |
| 375 | done | |
| 376 | ||
| 377 | lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard] | |
| 378 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 379 | subsubsection{*General equational properties *}
 | 
| 13926 | 380 | |
| 381 | lemma analz_empty [simp]: "analz{} = {}"
 | |
| 382 | apply safe | |
| 383 | apply (erule analz.induct, blast+) | |
| 384 | done | |
| 385 | ||
| 16818 | 386 | text{*Converse fails: we can analz more from the union than from the 
 | 
| 387 | separate parts, as a key in one might decrypt a message in the other*} | |
| 13926 | 388 | lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" | 
| 389 | by (intro Un_least analz_mono Un_upper1 Un_upper2) | |
| 390 | ||
| 391 | lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" | |
| 392 | by (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 393 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 394 | subsubsection{*Rewrite rules for pulling out atomic messages *}
 | 
| 13926 | 395 | |
| 396 | lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] | |
| 397 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 398 | lemma analz_insert_Agent [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 399 | "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" | 
| 13926 | 400 | apply (rule analz_insert_eq_I) | 
| 401 | apply (erule analz.induct, auto) | |
| 402 | done | |
| 403 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 404 | lemma analz_insert_Nonce [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 405 | "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)" | 
| 13926 | 406 | apply (rule analz_insert_eq_I) | 
| 407 | apply (erule analz.induct, auto) | |
| 408 | done | |
| 409 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 410 | lemma analz_insert_Number [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 411 | "analz (insert (Number N) H) = insert (Number N) (analz H)" | 
| 13926 | 412 | apply (rule analz_insert_eq_I) | 
| 413 | apply (erule analz.induct, auto) | |
| 414 | done | |
| 415 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 416 | lemma analz_insert_Hash [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 417 | "analz (insert (Hash X) H) = insert (Hash X) (analz H)" | 
| 13926 | 418 | apply (rule analz_insert_eq_I) | 
| 419 | apply (erule analz.induct, auto) | |
| 420 | done | |
| 421 | ||
| 16818 | 422 | text{*Can only pull out Keys if they are not needed to decrypt the rest*}
 | 
| 13926 | 423 | lemma analz_insert_Key [simp]: | 
| 424 | "K \<notin> keysFor (analz H) ==> | |
| 425 | analz (insert (Key K) H) = insert (Key K) (analz H)" | |
| 426 | apply (unfold keysFor_def) | |
| 427 | apply (rule analz_insert_eq_I) | |
| 428 | apply (erule analz.induct, auto) | |
| 429 | done | |
| 430 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 431 | lemma analz_insert_MPair [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 432 |      "analz (insert {|X,Y|} H) =  
 | 
| 13926 | 433 |           insert {|X,Y|} (analz (insert X (insert Y H)))"
 | 
| 434 | apply (rule equalityI) | |
| 435 | apply (rule subsetI) | |
| 436 | apply (erule analz.induct, auto) | |
| 437 | apply (erule analz.induct) | |
| 438 | apply (blast intro: analz.Fst analz.Snd)+ | |
| 439 | done | |
| 440 | ||
| 16818 | 441 | text{*Can pull out enCrypted message if the Key is not known*}
 | 
| 13926 | 442 | lemma analz_insert_Crypt: | 
| 443 | "Key (invKey K) \<notin> analz H | |
| 444 | ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" | |
| 445 | apply (rule analz_insert_eq_I) | |
| 446 | apply (erule analz.induct, auto) | |
| 447 | ||
| 448 | done | |
| 449 | ||
| 450 | lemma lemma1: "Key (invKey K) \<in> analz H ==> | |
| 451 | analz (insert (Crypt K X) H) \<subseteq> | |
| 452 | insert (Crypt K X) (analz (insert X H))" | |
| 453 | apply (rule subsetI) | |
| 23746 | 454 | apply (erule_tac x = x in analz.induct, auto) | 
| 13926 | 455 | done | 
| 456 | ||
| 457 | lemma lemma2: "Key (invKey K) \<in> analz H ==> | |
| 458 | insert (Crypt K X) (analz (insert X H)) \<subseteq> | |
| 459 | analz (insert (Crypt K X) H)" | |
| 460 | apply auto | |
| 23746 | 461 | apply (erule_tac x = x in analz.induct, auto) | 
| 13926 | 462 | apply (blast intro: analz_insertI analz.Decrypt) | 
| 463 | done | |
| 464 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 465 | lemma analz_insert_Decrypt: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 466 | "Key (invKey K) \<in> analz H ==> | 
| 13926 | 467 | analz (insert (Crypt K X) H) = | 
| 468 | insert (Crypt K X) (analz (insert X H))" | |
| 469 | by (intro equalityI lemma1 lemma2) | |
| 470 | ||
| 16818 | 471 | text{*Case analysis: either the message is secure, or it is not! Effective,
 | 
| 472 | but can cause subgoals to blow up! Use with @{text "split_if"}; apparently
 | |
| 473 | @{text "split_tac"} does not cope with patterns such as @{term"analz (insert
 | |
| 474 | (Crypt K X) H)"} *} | |
| 13926 | 475 | lemma analz_Crypt_if [simp]: | 
| 476 | "analz (insert (Crypt K X) H) = | |
| 477 | (if (Key (invKey K) \<in> analz H) | |
| 478 | then insert (Crypt K X) (analz (insert X H)) | |
| 479 | else insert (Crypt K X) (analz H))" | |
| 480 | by (simp add: analz_insert_Crypt analz_insert_Decrypt) | |
| 481 | ||
| 482 | ||
| 16818 | 483 | text{*This rule supposes "for the sake of argument" that we have the key.*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 484 | lemma analz_insert_Crypt_subset: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 485 | "analz (insert (Crypt K X) H) \<subseteq> | 
| 13926 | 486 | insert (Crypt K X) (analz (insert X H))" | 
| 487 | apply (rule subsetI) | |
| 488 | apply (erule analz.induct, auto) | |
| 489 | done | |
| 490 | ||
| 491 | ||
| 492 | lemma analz_image_Key [simp]: "analz (Key`N) = Key`N" | |
| 493 | apply auto | |
| 494 | apply (erule analz.induct, auto) | |
| 495 | done | |
| 496 | ||
| 497 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 498 | subsubsection{*Idempotence and transitivity *}
 | 
| 13926 | 499 | |
| 500 | lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H" | |
| 501 | by (erule analz.induct, blast+) | |
| 502 | ||
| 503 | lemma analz_idem [simp]: "analz (analz H) = analz H" | |
| 504 | by blast | |
| 505 | ||
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 506 | lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)" | 
| 34185 | 507 | by (metis analz_idem analz_increasing analz_mono subset_trans) | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 508 | |
| 13926 | 509 | lemma analz_trans: "[| X\<in> analz G; G \<subseteq> analz H |] ==> X\<in> analz H" | 
| 510 | by (drule analz_mono, blast) | |
| 511 | ||
| 16818 | 512 | text{*Cut; Lemma 2 of Lowe*}
 | 
| 13926 | 513 | lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H" | 
| 514 | by (erule analz_trans, blast) | |
| 515 | ||
| 516 | (*Cut can be proved easily by induction on | |
| 517 | "Y: analz (insert X H) ==> X: analz H --> Y: analz H" | |
| 518 | *) | |
| 519 | ||
| 16818 | 520 | text{*This rewrite rule helps in the simplification of messages that involve
 | 
| 13926 | 521 | the forwarding of unknown components (X). Without it, removing occurrences | 
| 16818 | 522 | of X can be very complicated. *} | 
| 13926 | 523 | lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H" | 
| 524 | by (blast intro: analz_cut analz_insertI) | |
| 525 | ||
| 526 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 527 | text{*A congruence rule for "analz" *}
 | 
| 13926 | 528 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 529 | lemma analz_subset_cong: | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 530 | "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] | 
| 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 531 | ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" | 
| 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 532 | apply simp | 
| 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 533 | apply (iprover intro: conjI subset_trans analz_mono Un_upper1 Un_upper2) | 
| 13926 | 534 | done | 
| 535 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 536 | lemma analz_cong: | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 537 | "[| analz G = analz G'; analz H = analz H' |] | 
| 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 538 | ==> analz (G \<union> H) = analz (G' \<union> H')" | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 539 | by (intro equalityI analz_subset_cong, simp_all) | 
| 13926 | 540 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 541 | lemma analz_insert_cong: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 542 | "analz H = analz H' ==> analz(insert X H) = analz(insert X H')" | 
| 13926 | 543 | by (force simp only: insert_def intro!: analz_cong) | 
| 544 | ||
| 16818 | 545 | text{*If there are no pairs or encryptions then analz does nothing*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 546 | lemma analz_trivial: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 547 |      "[| \<forall>X Y. {|X,Y|} \<notin> H;  \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
 | 
| 13926 | 548 | apply safe | 
| 549 | apply (erule analz.induct, blast+) | |
| 550 | done | |
| 551 | ||
| 16818 | 552 | text{*These two are obsolete (with a single Spy) but cost little to prove...*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 553 | lemma analz_UN_analz_lemma: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 554 | "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)" | 
| 13926 | 555 | apply (erule analz.induct) | 
| 556 | apply (blast intro: analz_mono [THEN [2] rev_subsetD])+ | |
| 557 | done | |
| 558 | ||
| 559 | lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)" | |
| 560 | by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD]) | |
| 561 | ||
| 562 | ||
| 563 | subsection{*Inductive relation "synth"*}
 | |
| 564 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 565 | text{*Inductive definition of "synth" -- what can be built up from a set of
 | 
| 1839 | 566 | messages. A form of upward closure. Pairs can be built, messages | 
| 3668 | 567 | encrypted with known keys. Agent names are public domain. | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 568 | Numbers can be guessed, but Nonces cannot be. *} | 
| 1839 | 569 | |
| 23746 | 570 | inductive_set | 
| 571 | synth :: "msg set => msg set" | |
| 572 | for H :: "msg set" | |
| 573 | where | |
| 11192 | 574 | Inj [intro]: "X \<in> H ==> X \<in> synth H" | 
| 23746 | 575 | | Agent [intro]: "Agent agt \<in> synth H" | 
| 576 | | Number [intro]: "Number n \<in> synth H" | |
| 577 | | Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H" | |
| 578 |   | MPair  [intro]:   "[|X \<in> synth H;  Y \<in> synth H|] ==> {|X,Y|} \<in> synth H"
 | |
| 579 | | Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H" | |
| 11189 | 580 | |
| 16818 | 581 | text{*Monotonicity*}
 | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 582 | lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)" | 
| 16818 | 583 | by (auto, erule synth.induct, auto) | 
| 11189 | 584 | |
| 16818 | 585 | text{*NO @{text Agent_synth}, as any Agent name can be synthesized.  
 | 
| 586 |   The same holds for @{term Number}*}
 | |
| 11192 | 587 | inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H" | 
| 588 | inductive_cases Key_synth [elim!]: "Key K \<in> synth H" | |
| 589 | inductive_cases Hash_synth [elim!]: "Hash X \<in> synth H" | |
| 590 | inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H"
 | |
| 591 | inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H" | |
| 11189 | 592 | |
| 13926 | 593 | |
| 594 | lemma synth_increasing: "H \<subseteq> synth(H)" | |
| 595 | by blast | |
| 596 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 597 | subsubsection{*Unions *}
 | 
| 13926 | 598 | |
| 16818 | 599 | text{*Converse fails: we can synth more from the union than from the 
 | 
| 600 | separate parts, building a compound message using elements of each.*} | |
| 13926 | 601 | lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" | 
| 602 | by (intro Un_least synth_mono Un_upper1 Un_upper2) | |
| 603 | ||
| 604 | lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" | |
| 605 | by (blast intro: synth_mono [THEN [2] rev_subsetD]) | |
| 606 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 607 | subsubsection{*Idempotence and transitivity *}
 | 
| 13926 | 608 | |
| 609 | lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H" | |
| 610 | by (erule synth.induct, blast+) | |
| 611 | ||
| 612 | lemma synth_idem: "synth (synth H) = synth H" | |
| 613 | by blast | |
| 614 | ||
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 615 | lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)" | 
| 34185 | 616 | by (metis equalityE subset_trans synth_idem synth_increasing synth_mono) | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 617 | |
| 13926 | 618 | lemma synth_trans: "[| X\<in> synth G; G \<subseteq> synth H |] ==> X\<in> synth H" | 
| 619 | by (drule synth_mono, blast) | |
| 620 | ||
| 16818 | 621 | text{*Cut; Lemma 2 of Lowe*}
 | 
| 13926 | 622 | lemma synth_cut: "[| Y\<in> synth (insert X H); X\<in> synth H |] ==> Y\<in> synth H" | 
| 623 | by (erule synth_trans, blast) | |
| 624 | ||
| 625 | lemma Agent_synth [simp]: "Agent A \<in> synth H" | |
| 626 | by blast | |
| 627 | ||
| 628 | lemma Number_synth [simp]: "Number n \<in> synth H" | |
| 629 | by blast | |
| 630 | ||
| 631 | lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)" | |
| 632 | by blast | |
| 633 | ||
| 634 | lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)" | |
| 635 | by blast | |
| 636 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 637 | lemma Crypt_synth_eq [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 638 | "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)" | 
| 13926 | 639 | by blast | 
| 640 | ||
| 641 | ||
| 642 | lemma keysFor_synth [simp]: | |
| 643 |     "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 644 | by (unfold keysFor_def, blast) | 
| 13926 | 645 | |
| 646 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 647 | subsubsection{*Combinations of parts, analz and synth *}
 | 
| 13926 | 648 | |
| 649 | lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H" | |
| 650 | apply (rule equalityI) | |
| 651 | apply (rule subsetI) | |
| 652 | apply (erule parts.induct) | |
| 653 | apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] | |
| 654 | parts.Fst parts.Snd parts.Body)+ | |
| 655 | done | |
| 656 | ||
| 657 | lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)" | |
| 658 | apply (intro equalityI analz_subset_cong)+ | |
| 659 | apply simp_all | |
| 660 | done | |
| 661 | ||
| 662 | lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G" | |
| 663 | apply (rule equalityI) | |
| 664 | apply (rule subsetI) | |
| 665 | apply (erule analz.induct) | |
| 666 | prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 667 | apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+ | |
| 668 | done | |
| 669 | ||
| 670 | lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H" | |
| 34185 | 671 | by (metis Un_empty_right analz_synth_Un) | 
| 13926 | 672 | |
| 673 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 674 | subsubsection{*For reasoning about the Fake rule in traces *}
 | 
| 13926 | 675 | |
| 676 | lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H" | |
| 34185 | 677 | by (metis UnCI Un_upper2 insert_subset parts_Un parts_mono) | 
| 13926 | 678 | |
| 16818 | 679 | text{*More specifically for Fake.  Very occasionally we could do with a version
 | 
| 680 |   of the form  @{term"parts{X} \<subseteq> synth (analz H) \<union> parts H"} *}
 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 681 | lemma Fake_parts_insert: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 682 | "X \<in> synth (analz H) ==> | 
| 13926 | 683 | parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" | 
| 34185 | 684 | by (metis Un_commute analz_increasing insert_subset parts_analz parts_mono | 
| 685 | parts_synth synth_mono synth_subset_iff) | |
| 13926 | 686 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 687 | lemma Fake_parts_insert_in_Un: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 688 | "[|Z \<in> parts (insert X H); X: synth (analz H)|] | 
| 34185 | 689 | ==> Z \<in> synth (analz H) \<union> parts H" | 
| 690 | by (metis Fake_parts_insert set_mp) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 691 | |
| 16818 | 692 | text{*@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put 
 | 
| 693 |   @{term "G=H"}.*}
 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 694 | lemma Fake_analz_insert: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 695 | "X\<in> synth (analz G) ==> | 
| 13926 | 696 | analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)" | 
| 697 | apply (rule subsetI) | |
| 34185 | 698 | apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H)", force) | 
| 699 | apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD]) | |
| 13926 | 700 | done | 
| 701 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 702 | lemma analz_conj_parts [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 703 | "(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)" | 
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 704 | by (blast intro: analz_subset_parts [THEN subsetD]) | 
| 13926 | 705 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 706 | lemma analz_disj_parts [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 707 | "(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)" | 
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 708 | by (blast intro: analz_subset_parts [THEN subsetD]) | 
| 13926 | 709 | |
| 16818 | 710 | text{*Without this equation, other rules for synth and analz would yield
 | 
| 711 | redundant cases*} | |
| 13926 | 712 | lemma MPair_synth_analz [iff]: | 
| 713 |      "({|X,Y|} \<in> synth (analz H)) =  
 | |
| 714 | (X \<in> synth (analz H) & Y \<in> synth (analz H))" | |
| 715 | by blast | |
| 716 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 717 | lemma Crypt_synth_analz: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 718 | "[| Key K \<in> analz H; Key (invKey K) \<in> analz H |] | 
| 13926 | 719 | ==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))" | 
| 720 | by blast | |
| 721 | ||
| 722 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 723 | lemma Hash_synth_analz [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 724 | "X \<notin> synth (analz H) | 
| 13926 | 725 |       ==> (Hash{|X,Y|} \<in> synth (analz H)) = (Hash{|X,Y|} \<in> analz H)"
 | 
| 726 | by blast | |
| 727 | ||
| 728 | ||
| 729 | subsection{*HPair: a combination of Hash and MPair*}
 | |
| 730 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 731 | subsubsection{*Freeness *}
 | 
| 13926 | 732 | |
| 733 | lemma Agent_neq_HPair: "Agent A ~= Hash[X] Y" | |
| 734 | by (unfold HPair_def, simp) | |
| 735 | ||
| 736 | lemma Nonce_neq_HPair: "Nonce N ~= Hash[X] Y" | |
| 737 | by (unfold HPair_def, simp) | |
| 738 | ||
| 739 | lemma Number_neq_HPair: "Number N ~= Hash[X] Y" | |
| 740 | by (unfold HPair_def, simp) | |
| 741 | ||
| 742 | lemma Key_neq_HPair: "Key K ~= Hash[X] Y" | |
| 743 | by (unfold HPair_def, simp) | |
| 744 | ||
| 745 | lemma Hash_neq_HPair: "Hash Z ~= Hash[X] Y" | |
| 746 | by (unfold HPair_def, simp) | |
| 747 | ||
| 748 | lemma Crypt_neq_HPair: "Crypt K X' ~= Hash[X] Y" | |
| 749 | by (unfold HPair_def, simp) | |
| 750 | ||
| 751 | lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair | |
| 752 | Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair | |
| 753 | ||
| 754 | declare HPair_neqs [iff] | |
| 755 | declare HPair_neqs [symmetric, iff] | |
| 756 | ||
| 757 | lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)" | |
| 758 | by (simp add: HPair_def) | |
| 759 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 760 | lemma MPair_eq_HPair [iff]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 761 |      "({|X',Y'|} = Hash[X] Y) = (X' = Hash{|X,Y|} & Y'=Y)"
 | 
| 13926 | 762 | by (simp add: HPair_def) | 
| 763 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 764 | lemma HPair_eq_MPair [iff]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 765 |      "(Hash[X] Y = {|X',Y'|}) = (X' = Hash{|X,Y|} & Y'=Y)"
 | 
| 13926 | 766 | by (auto simp add: HPair_def) | 
| 767 | ||
| 768 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 769 | subsubsection{*Specialized laws, proved in terms of those for Hash and MPair *}
 | 
| 13926 | 770 | |
| 771 | lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H" | |
| 772 | by (simp add: HPair_def) | |
| 773 | ||
| 774 | lemma parts_insert_HPair [simp]: | |
| 775 | "parts (insert (Hash[X] Y) H) = | |
| 776 |      insert (Hash[X] Y) (insert (Hash{|X,Y|}) (parts (insert Y H)))"
 | |
| 777 | by (simp add: HPair_def) | |
| 778 | ||
| 779 | lemma analz_insert_HPair [simp]: | |
| 780 | "analz (insert (Hash[X] Y) H) = | |
| 781 |      insert (Hash[X] Y) (insert (Hash{|X,Y|}) (analz (insert Y H)))"
 | |
| 782 | by (simp add: HPair_def) | |
| 783 | ||
| 784 | lemma HPair_synth_analz [simp]: | |
| 785 | "X \<notin> synth (analz H) | |
| 786 | ==> (Hash[X] Y \<in> synth (analz H)) = | |
| 787 |         (Hash {|X, Y|} \<in> analz H & Y \<in> synth (analz H))"
 | |
| 788 | by (simp add: HPair_def) | |
| 789 | ||
| 790 | ||
| 16818 | 791 | text{*We do NOT want Crypt... messages broken up in protocols!!*}
 | 
| 13926 | 792 | declare parts.Body [rule del] | 
| 793 | ||
| 794 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 795 | text{*Rewrites to push in Key and Crypt messages, so that other messages can
 | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 796 |     be pulled out using the @{text analz_insert} rules*}
 | 
| 13926 | 797 | |
| 27225 | 798 | lemmas pushKeys [standard] = | 
| 799 | insert_commute [of "Key K" "Agent C"] | |
| 800 | insert_commute [of "Key K" "Nonce N"] | |
| 801 | insert_commute [of "Key K" "Number N"] | |
| 802 | insert_commute [of "Key K" "Hash X"] | |
| 803 | insert_commute [of "Key K" "MPair X Y"] | |
| 804 | insert_commute [of "Key K" "Crypt X K'"] | |
| 13926 | 805 | |
| 27225 | 806 | lemmas pushCrypts [standard] = | 
| 807 | insert_commute [of "Crypt X K" "Agent C"] | |
| 808 | insert_commute [of "Crypt X K" "Agent C"] | |
| 809 | insert_commute [of "Crypt X K" "Nonce N"] | |
| 810 | insert_commute [of "Crypt X K" "Number N"] | |
| 811 | insert_commute [of "Crypt X K" "Hash X'"] | |
| 812 | insert_commute [of "Crypt X K" "MPair X' Y"] | |
| 13926 | 813 | |
| 814 | text{*Cannot be added with @{text "[simp]"} -- messages should not always be
 | |
| 815 | re-ordered. *} | |
| 816 | lemmas pushes = pushKeys pushCrypts | |
| 817 | ||
| 818 | ||
| 819 | subsection{*Tactics useful for many protocol proofs*}
 | |
| 820 | ML | |
| 821 | {*
 | |
| 24122 | 822 | structure Message = | 
| 823 | struct | |
| 13926 | 824 | |
| 825 | (*Prove base case (subgoal i) and simplify others. A typical base case | |
| 826 | concerns Crypt K X \<notin> Key`shrK`bad and cannot be proved by rewriting | |
| 827 | alone.*) | |
| 30607 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
30549diff
changeset | 828 | fun prove_simple_subgoals_tac (cs, ss) i = | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
30549diff
changeset | 829 |     force_tac (cs, ss addsimps [@{thm image_eq_UN}]) i THEN
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
30549diff
changeset | 830 | ALLGOALS (asm_simp_tac ss) | 
| 13926 | 831 | |
| 832 | (*Analysis of Fake cases. Also works for messages that forward unknown parts, | |
| 833 | but this application is no longer necessary if analz_insert_eq is used. | |
| 834 | Abstraction over i is ESSENTIAL: it delays the dereferencing of claset | |
| 835 | DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *) | |
| 836 | ||
| 32117 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
30607diff
changeset | 837 | fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
 | 
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
30607diff
changeset | 838 | |
| 13926 | 839 | (*Apply rules to break down assumptions of the form | 
| 840 | Y \<in> parts(insert X H) and Y \<in> analz(insert X H) | |
| 841 | *) | |
| 842 | val Fake_insert_tac = | |
| 24122 | 843 |     dresolve_tac [impOfSubs @{thm Fake_analz_insert},
 | 
| 844 |                   impOfSubs @{thm Fake_parts_insert}] THEN'
 | |
| 845 |     eresolve_tac [asm_rl, @{thm synth.Inj}];
 | |
| 13926 | 846 | |
| 847 | fun Fake_insert_simp_tac ss i = | |
| 848 | REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ss i; | |
| 849 | ||
| 850 | fun atomic_spy_analz_tac (cs,ss) = SELECT_GOAL | |
| 851 | (Fake_insert_simp_tac ss 1 | |
| 852 | THEN | |
| 853 | IF_UNSOLVED (Blast.depth_tac | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 854 |                   (cs addIs [@{thm analz_insertI},
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32149diff
changeset | 855 |                                    impOfSubs @{thm analz_subset_parts}]) 4 1))
 | 
| 13926 | 856 | |
| 30607 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
30549diff
changeset | 857 | fun spy_analz_tac (cs,ss) i = | 
| 13926 | 858 | DETERM | 
| 859 | (SELECT_GOAL | |
| 860 | (EVERY | |
| 861 | [ (*push in occurrences of X...*) | |
| 862 | (REPEAT o CHANGED) | |
| 27239 | 863 |            (res_inst_tac (Simplifier.the_context ss) [(("x", 1), "X")] (insert_commute RS ssubst) 1),
 | 
| 13926 | 864 | (*...allowing further simplifications*) | 
| 865 | simp_tac ss 1, | |
| 866 | REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])), | |
| 867 | DEPTH_SOLVE (atomic_spy_analz_tac (cs,ss) 1)]) i) | |
| 868 | ||
| 24122 | 869 | end | 
| 13926 | 870 | *} | 
| 871 | ||
| 16818 | 872 | text{*By default only @{text o_apply} is built-in.  But in the presence of
 | 
| 873 | eta-expansion this means that some terms displayed as @{term "f o g"} will be
 | |
| 874 | rewritten, and others will not!*} | |
| 13926 | 875 | declare o_def [simp] | 
| 876 | ||
| 11189 | 877 | |
| 13922 | 878 | lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A" | 
| 879 | by auto | |
| 880 | ||
| 881 | lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A" | |
| 882 | by auto | |
| 883 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 884 | lemma synth_analz_mono: "G\<subseteq>H ==> synth (analz(G)) \<subseteq> synth (analz(H))" | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 885 | by (iprover intro: synth_mono analz_mono) | 
| 13922 | 886 | |
| 887 | lemma Fake_analz_eq [simp]: | |
| 888 | "X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)" | |
| 34185 | 889 | by (metis Fake_analz_insert Un_absorb Un_absorb1 Un_commute equalityI | 
| 890 | subset_insertI synth_analz_mono synth_increasing synth_subset_iff) | |
| 13922 | 891 | |
| 892 | text{*Two generalizations of @{text analz_insert_eq}*}
 | |
| 893 | lemma gen_analz_insert_eq [rule_format]: | |
| 894 | "X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G"; | |
| 895 | by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD]) | |
| 896 | ||
| 897 | lemma synth_analz_insert_eq [rule_format]: | |
| 898 | "X \<in> synth (analz H) | |
| 899 | ==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)"; | |
| 900 | apply (erule synth.induct) | |
| 901 | apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) | |
| 902 | done | |
| 903 | ||
| 904 | lemma Fake_parts_sing: | |
| 34185 | 905 |      "X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H"
 | 
| 906 | by (metis Fake_parts_insert empty_subsetI insert_mono parts_mono subset_trans) | |
| 13922 | 907 | |
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 908 | lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD] | 
| 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 909 | |
| 11189 | 910 | method_setup spy_analz = {*
 | 
| 32149 
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
 wenzelm parents: 
32117diff
changeset | 911 | Scan.succeed (SIMPLE_METHOD' o Message.spy_analz_tac o clasimpset_of) *} | 
| 11189 | 912 | "for proving the Fake case when analz is involved" | 
| 1839 | 913 | |
| 11264 | 914 | method_setup atomic_spy_analz = {*
 | 
| 32149 
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
 wenzelm parents: 
32117diff
changeset | 915 | Scan.succeed (SIMPLE_METHOD' o Message.atomic_spy_analz_tac o clasimpset_of) *} | 
| 11264 | 916 | "for debugging spy_analz" | 
| 917 | ||
| 918 | method_setup Fake_insert_simp = {*
 | |
| 32149 
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
 wenzelm parents: 
32117diff
changeset | 919 | Scan.succeed (SIMPLE_METHOD' o Message.Fake_insert_simp_tac o simpset_of) *} | 
| 11264 | 920 | "for debugging spy_analz" | 
| 921 | ||
| 1839 | 922 | end |