| author | wenzelm | 
| Fri, 20 Mar 2015 22:18:40 +0100 | |
| changeset 59771 | c6e60787ffe2 | 
| parent 59358 | 7fd531cc0172 | 
| child 59867 | 58043346ca64 | 
| permissions | -rw-r--r-- | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1  | 
(* Title: HOL/Probability/Set_Integral.thy  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
2  | 
Author: Jeremy Avigad, Johannes Hölzl, Luke Serafin  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
3  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
4  | 
Notation and useful facts for working with integrals over a set.  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
5  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
6  | 
TODO: keep all these? Need unicode translations as well.  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
7  | 
*)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
8  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
9  | 
theory Set_Integral  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
10  | 
imports Bochner_Integration Lebesgue_Measure  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
11  | 
begin  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
12  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
13  | 
(*  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
14  | 
Notation  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
15  | 
*)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
16  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
17  | 
syntax  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
18  | 
"_ascii_lebesgue_integral" :: "pttrn \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real"  | 
| 59358 | 19  | 
("(3LINT (1_)/|(_)./ _)" [0,110,60] 60)
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
20  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
21  | 
translations  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
22  | 
"LINT x|M. f" == "CONST lebesgue_integral M (\<lambda>x. f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
23  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
24  | 
abbreviation "set_borel_measurable M A f \<equiv> (\<lambda>x. indicator A x *\<^sub>R f x) \<in> borel_measurable M"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
25  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
26  | 
abbreviation "set_integrable M A f \<equiv> integrable M (\<lambda>x. indicator A x *\<^sub>R f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
27  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
28  | 
abbreviation "set_lebesgue_integral M A f \<equiv> lebesgue_integral M (\<lambda>x. indicator A x *\<^sub>R f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
29  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
30  | 
syntax  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
31  | 
"_ascii_set_lebesgue_integral" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real"  | 
| 59358 | 32  | 
("(4LINT (_):(_)/|(_)./ _)" [0,60,110,61] 60)
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
33  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
34  | 
translations  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
35  | 
"LINT x:A|M. f" == "CONST set_lebesgue_integral M A (\<lambda>x. f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
36  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
37  | 
abbreviation  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
38  | 
"set_almost_everywhere A M P \<equiv> AE x in M. x \<in> A \<longrightarrow> P x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
39  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
40  | 
syntax  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
41  | 
"_set_almost_everywhere" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> bool \<Rightarrow> bool"  | 
| 59358 | 42  | 
("AE _\<in>_ in _./ _" [0,0,0,10] 10)
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
43  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
44  | 
translations  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
45  | 
"AE x\<in>A in M. P" == "CONST set_almost_everywhere A M (\<lambda>x. P)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
46  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
47  | 
(*  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
48  | 
Notation for integration wrt lebesgue measure on the reals:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
49  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
50  | 
LBINT x. f  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
51  | 
LBINT x : A. f  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
52  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
53  | 
TODO: keep all these? Need unicode.  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
54  | 
*)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
55  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
56  | 
syntax  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
57  | 
"_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> real"  | 
| 59358 | 58  | 
("(2LBINT _./ _)" [0,60] 60)
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
59  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
60  | 
translations  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
61  | 
"LBINT x. f" == "CONST lebesgue_integral CONST lborel (\<lambda>x. f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
62  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
63  | 
syntax  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
64  | 
"_set_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real set \<Rightarrow> real \<Rightarrow> real"  | 
| 59358 | 65  | 
("(3LBINT _:_./ _)" [0,60,61] 60)
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
66  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
67  | 
translations  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
68  | 
"LBINT x:A. f" == "CONST set_lebesgue_integral CONST lborel A (\<lambda>x. f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
69  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
70  | 
(*  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
71  | 
Basic properties  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
72  | 
*)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
73  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
74  | 
(*  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
75  | 
lemma indicator_abs_eq: "\<And>A x. abs (indicator A x) = ((indicator A x) :: real)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
76  | 
by (auto simp add: indicator_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
77  | 
*)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
78  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
79  | 
lemma set_lebesgue_integral_cong:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
80  | 
assumes "A \<in> sets M" and "\<forall>x. x \<in> A \<longrightarrow> f x = g x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
81  | 
shows "(LINT x:A|M. f x) = (LINT x:A|M. g x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
82  | 
using assms by (auto intro!: integral_cong split: split_indicator simp add: sets.sets_into_space)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
83  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
84  | 
lemma set_lebesgue_integral_cong_AE:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
85  | 
assumes [measurable]: "A \<in> sets M" "f \<in> borel_measurable M" "g \<in> borel_measurable M"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
86  | 
assumes "AE x \<in> A in M. f x = g x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
87  | 
shows "LINT x:A|M. f x = LINT x:A|M. g x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
88  | 
proof-  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
89  | 
have "AE x in M. indicator A x *\<^sub>R f x = indicator A x *\<^sub>R g x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
90  | 
using assms by auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
91  | 
thus ?thesis by (intro integral_cong_AE) auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
92  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
93  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
94  | 
lemma set_integrable_cong_AE:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
95  | 
"f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
96  | 
AE x \<in> A in M. f x = g x \<Longrightarrow> A \<in> sets M \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
97  | 
set_integrable M A f = set_integrable M A g"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
98  | 
by (rule integrable_cong_AE) auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
99  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
100  | 
lemma set_integrable_subset:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
101  | 
  fixes M A B and f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
102  | 
assumes "set_integrable M A f" "B \<in> sets M" "B \<subseteq> A"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
103  | 
shows "set_integrable M B f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
104  | 
proof -  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
105  | 
have "set_integrable M B (\<lambda>x. indicator A x *\<^sub>R f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
106  | 
by (rule integrable_mult_indicator) fact+  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
107  | 
with `B \<subseteq> A` show ?thesis  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
108  | 
by (simp add: indicator_inter_arith[symmetric] Int_absorb2)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
109  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
110  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
111  | 
(* TODO: integral_cmul_indicator should be named set_integral_const *)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
112  | 
(* TODO: borel_integrable_atLeastAtMost should be named something like set_integrable_Icc_isCont *)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
113  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
114  | 
lemma set_integral_scaleR_right [simp]: "LINT t:A|M. a *\<^sub>R f t = a *\<^sub>R (LINT t:A|M. f t)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
115  | 
by (subst integral_scaleR_right[symmetric]) (auto intro!: integral_cong)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
116  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
117  | 
lemma set_integral_mult_right [simp]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
118  | 
  fixes a :: "'a::{real_normed_field, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
119  | 
shows "LINT t:A|M. a * f t = a * (LINT t:A|M. f t)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
120  | 
by (subst integral_mult_right_zero[symmetric]) (auto intro!: integral_cong)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
121  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
122  | 
lemma set_integral_mult_left [simp]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
123  | 
  fixes a :: "'a::{real_normed_field, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
124  | 
shows "LINT t:A|M. f t * a = (LINT t:A|M. f t) * a"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
125  | 
by (subst integral_mult_left_zero[symmetric]) (auto intro!: integral_cong)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
126  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
127  | 
lemma set_integral_divide_zero [simp]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
128  | 
  fixes a :: "'a::{real_normed_field, field_inverse_zero, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
129  | 
shows "LINT t:A|M. f t / a = (LINT t:A|M. f t) / a"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
130  | 
by (subst integral_divide_zero[symmetric], intro integral_cong)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
131  | 
(auto split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
132  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
133  | 
lemma set_integrable_scaleR_right [simp, intro]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
134  | 
shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. a *\<^sub>R f t)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
135  | 
unfolding scaleR_left_commute by (rule integrable_scaleR_right)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
136  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
137  | 
lemma set_integrable_scaleR_left [simp, intro]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
138  | 
  fixes a :: "_ :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
139  | 
shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. f t *\<^sub>R a)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
140  | 
using integrable_scaleR_left[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
141  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
142  | 
lemma set_integrable_mult_right [simp, intro]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
143  | 
  fixes a :: "'a::{real_normed_field, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
144  | 
shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. a * f t)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
145  | 
using integrable_mult_right[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
146  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
147  | 
lemma set_integrable_mult_left [simp, intro]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
148  | 
  fixes a :: "'a::{real_normed_field, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
149  | 
shows "(a \<noteq> 0 \<Longrightarrow> set_integrable M A f) \<Longrightarrow> set_integrable M A (\<lambda>t. f t * a)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
150  | 
using integrable_mult_left[of a M "\<lambda>x. indicator A x *\<^sub>R f x"] by simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
151  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
152  | 
lemma set_integrable_divide [simp, intro]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
153  | 
  fixes a :: "'a::{real_normed_field, field_inverse_zero, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
154  | 
assumes "a \<noteq> 0 \<Longrightarrow> set_integrable M A f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
155  | 
shows "set_integrable M A (\<lambda>t. f t / a)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
156  | 
proof -  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
157  | 
have "integrable M (\<lambda>x. indicator A x *\<^sub>R f x / a)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
158  | 
using assms by (rule integrable_divide_zero)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
159  | 
also have "(\<lambda>x. indicator A x *\<^sub>R f x / a) = (\<lambda>x. indicator A x *\<^sub>R (f x / a))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
160  | 
by (auto split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
161  | 
finally show ?thesis .  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
162  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
163  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
164  | 
lemma set_integral_add [simp, intro]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
165  | 
  fixes f g :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
166  | 
assumes "set_integrable M A f" "set_integrable M A g"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
167  | 
shows "set_integrable M A (\<lambda>x. f x + g x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
168  | 
and "LINT x:A|M. f x + g x = (LINT x:A|M. f x) + (LINT x:A|M. g x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
169  | 
using assms by (simp_all add: scaleR_add_right)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
170  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
171  | 
lemma set_integral_diff [simp, intro]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
172  | 
assumes "set_integrable M A f" "set_integrable M A g"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
173  | 
shows "set_integrable M A (\<lambda>x. f x - g x)" and "LINT x:A|M. f x - g x =  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
174  | 
(LINT x:A|M. f x) - (LINT x:A|M. g x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
175  | 
using assms by (simp_all add: scaleR_diff_right)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
176  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
177  | 
lemma set_integral_reflect:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
178  | 
  fixes S and f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
179  | 
  shows "(LBINT x : S. f x) = (LBINT x : {x. - x \<in> S}. f (- x))"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
180  | 
using assms  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
181  | 
by (subst lborel_integral_real_affine[where c="-1" and t=0])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
182  | 
(auto intro!: integral_cong split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
183  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
184  | 
(* question: why do we have this for negation, but multiplication by a constant  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
185  | 
requires an integrability assumption? *)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
186  | 
lemma set_integral_uminus: "set_integrable M A f \<Longrightarrow> LINT x:A|M. - f x = - (LINT x:A|M. f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
187  | 
by (subst integral_minus[symmetric]) simp_all  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
188  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
189  | 
lemma set_integral_complex_of_real:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
190  | 
"LINT x:A|M. complex_of_real (f x) = of_real (LINT x:A|M. f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
191  | 
by (subst integral_complex_of_real[symmetric])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
192  | 
(auto intro!: integral_cong split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
193  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
194  | 
lemma set_integral_mono:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
195  | 
fixes f g :: "_ \<Rightarrow> real"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
196  | 
assumes "set_integrable M A f" "set_integrable M A g"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
197  | 
"\<And>x. x \<in> A \<Longrightarrow> f x \<le> g x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
198  | 
shows "(LINT x:A|M. f x) \<le> (LINT x:A|M. g x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
199  | 
using assms by (auto intro: integral_mono split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
200  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
201  | 
lemma set_integral_mono_AE:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
202  | 
fixes f g :: "_ \<Rightarrow> real"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
203  | 
assumes "set_integrable M A f" "set_integrable M A g"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
204  | 
"AE x \<in> A in M. f x \<le> g x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
205  | 
shows "(LINT x:A|M. f x) \<le> (LINT x:A|M. g x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
206  | 
using assms by (auto intro: integral_mono_AE split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
207  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
208  | 
lemma set_integrable_abs: "set_integrable M A f \<Longrightarrow> set_integrable M A (\<lambda>x. \<bar>f x\<bar> :: real)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
209  | 
using integrable_abs[of M "\<lambda>x. f x * indicator A x"] by (simp add: abs_mult ac_simps)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
210  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
211  | 
lemma set_integrable_abs_iff:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
212  | 
fixes f :: "_ \<Rightarrow> real"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
213  | 
shows "set_borel_measurable M A f \<Longrightarrow> set_integrable M A (\<lambda>x. \<bar>f x\<bar>) = set_integrable M A f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
214  | 
by (subst (2) integrable_abs_iff[symmetric]) (simp_all add: abs_mult ac_simps)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
215  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
216  | 
lemma set_integrable_abs_iff':  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
217  | 
fixes f :: "_ \<Rightarrow> real"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
218  | 
shows "f \<in> borel_measurable M \<Longrightarrow> A \<in> sets M \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
219  | 
set_integrable M A (\<lambda>x. \<bar>f x\<bar>) = set_integrable M A f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
220  | 
by (intro set_integrable_abs_iff) auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
221  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
222  | 
lemma set_integrable_discrete_difference:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
223  | 
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
224  | 
assumes "countable X"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
225  | 
assumes diff: "(A - B) \<union> (B - A) \<subseteq> X"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
226  | 
  assumes "\<And>x. x \<in> X \<Longrightarrow> emeasure M {x} = 0" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
227  | 
shows "set_integrable M A f \<longleftrightarrow> set_integrable M B f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
228  | 
proof (rule integrable_discrete_difference[where X=X])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
229  | 
show "\<And>x. x \<in> space M \<Longrightarrow> x \<notin> X \<Longrightarrow> indicator A x *\<^sub>R f x = indicator B x *\<^sub>R f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
230  | 
using diff by (auto split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
231  | 
qed fact+  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
232  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
233  | 
lemma set_integral_discrete_difference:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
234  | 
  fixes f :: "'a \<Rightarrow> 'b::{banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
235  | 
assumes "countable X"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
236  | 
assumes diff: "(A - B) \<union> (B - A) \<subseteq> X"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
237  | 
  assumes "\<And>x. x \<in> X \<Longrightarrow> emeasure M {x} = 0" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
238  | 
shows "set_lebesgue_integral M A f = set_lebesgue_integral M B f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
239  | 
proof (rule integral_discrete_difference[where X=X])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
240  | 
show "\<And>x. x \<in> space M \<Longrightarrow> x \<notin> X \<Longrightarrow> indicator A x *\<^sub>R f x = indicator B x *\<^sub>R f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
241  | 
using diff by (auto split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
242  | 
qed fact+  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
243  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
244  | 
lemma set_integrable_Un:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
245  | 
  fixes f g :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
246  | 
assumes f_A: "set_integrable M A f" and f_B: "set_integrable M B f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
247  | 
and [measurable]: "A \<in> sets M" "B \<in> sets M"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
248  | 
shows "set_integrable M (A \<union> B) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
249  | 
proof -  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
250  | 
have "set_integrable M (A - B) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
251  | 
using f_A by (rule set_integrable_subset) auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
252  | 
from integrable_add[OF this f_B] show ?thesis  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
253  | 
by (rule integrable_cong[THEN iffD1, rotated 2]) (auto split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
254  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
255  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
256  | 
lemma set_integrable_UN:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
257  | 
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
258  | 
assumes "finite I" "\<And>i. i\<in>I \<Longrightarrow> set_integrable M (A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
259  | 
"\<And>i. i\<in>I \<Longrightarrow> A i \<in> sets M"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
260  | 
shows "set_integrable M (\<Union>i\<in>I. A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
261  | 
using assms by (induct I) (auto intro!: set_integrable_Un)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
262  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
263  | 
lemma set_integral_Un:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
264  | 
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
265  | 
  assumes "A \<inter> B = {}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
266  | 
and "set_integrable M A f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
267  | 
and "set_integrable M B f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
268  | 
shows "LINT x:A\<union>B|M. f x = (LINT x:A|M. f x) + (LINT x:B|M. f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
269  | 
by (auto simp add: indicator_union_arith indicator_inter_arith[symmetric]  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
270  | 
scaleR_add_left assms)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
271  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
272  | 
lemma set_integral_cong_set:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
273  | 
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
274  | 
assumes [measurable]: "set_borel_measurable M A f" "set_borel_measurable M B f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
275  | 
and ae: "AE x in M. x \<in> A \<longleftrightarrow> x \<in> B"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
276  | 
shows "LINT x:B|M. f x = LINT x:A|M. f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
277  | 
proof (rule integral_cong_AE)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
278  | 
show "AE x in M. indicator B x *\<^sub>R f x = indicator A x *\<^sub>R f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
279  | 
using ae by (auto simp: subset_eq split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
280  | 
qed fact+  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
281  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
282  | 
lemma set_borel_measurable_subset:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
283  | 
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
284  | 
assumes [measurable]: "set_borel_measurable M A f" "B \<in> sets M" and "B \<subseteq> A"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
285  | 
shows "set_borel_measurable M B f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
286  | 
proof -  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
287  | 
have "set_borel_measurable M B (\<lambda>x. indicator A x *\<^sub>R f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
288  | 
by measurable  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
289  | 
also have "(\<lambda>x. indicator B x *\<^sub>R indicator A x *\<^sub>R f x) = (\<lambda>x. indicator B x *\<^sub>R f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
290  | 
using `B \<subseteq> A` by (auto simp: fun_eq_iff split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
291  | 
finally show ?thesis .  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
292  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
293  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
294  | 
lemma set_integral_Un_AE:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
295  | 
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
296  | 
assumes ae: "AE x in M. \<not> (x \<in> A \<and> x \<in> B)" and [measurable]: "A \<in> sets M" "B \<in> sets M"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
297  | 
and "set_integrable M A f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
298  | 
and "set_integrable M B f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
299  | 
shows "LINT x:A\<union>B|M. f x = (LINT x:A|M. f x) + (LINT x:B|M. f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
300  | 
proof -  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
301  | 
have f: "set_integrable M (A \<union> B) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
302  | 
by (intro set_integrable_Un assms)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
303  | 
then have f': "set_borel_measurable M (A \<union> B) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
304  | 
by (rule borel_measurable_integrable)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
305  | 
have "LINT x:A\<union>B|M. f x = LINT x:(A - A \<inter> B) \<union> (B - A \<inter> B)|M. f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
306  | 
proof (rule set_integral_cong_set)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
307  | 
show "AE x in M. (x \<in> A - A \<inter> B \<union> (B - A \<inter> B)) = (x \<in> A \<union> B)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
308  | 
using ae by auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
309  | 
show "set_borel_measurable M (A - A \<inter> B \<union> (B - A \<inter> B)) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
310  | 
using f' by (rule set_borel_measurable_subset) auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
311  | 
qed fact  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
312  | 
also have "\<dots> = (LINT x:(A - A \<inter> B)|M. f x) + (LINT x:(B - A \<inter> B)|M. f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
313  | 
by (auto intro!: set_integral_Un set_integrable_subset[OF f])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
314  | 
also have "\<dots> = (LINT x:A|M. f x) + (LINT x:B|M. f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
315  | 
using ae  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
316  | 
by (intro arg_cong2[where f="op+"] set_integral_cong_set)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
317  | 
(auto intro!: set_borel_measurable_subset[OF f'])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
318  | 
finally show ?thesis .  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
319  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
320  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
321  | 
lemma set_integral_finite_Union:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
322  | 
  fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
323  | 
assumes "finite I" "disjoint_family_on A I"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
324  | 
and "\<And>i. i \<in> I \<Longrightarrow> set_integrable M (A i) f" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets M"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
325  | 
shows "(LINT x:(\<Union>i\<in>I. A i)|M. f x) = (\<Sum>i\<in>I. LINT x:A i|M. f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
326  | 
using assms  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
327  | 
apply induct  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
328  | 
apply (auto intro!: set_integral_Un set_integrable_Un set_integrable_UN simp: disjoint_family_on_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
329  | 
by (subst set_integral_Un, auto intro: set_integrable_UN)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
330  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
331  | 
(* TODO: find a better name? *)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
332  | 
lemma pos_integrable_to_top:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
333  | 
fixes l::real  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
334  | 
assumes "\<And>i. A i \<in> sets M" "mono A"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
335  | 
assumes nneg: "\<And>x i. x \<in> A i \<Longrightarrow> 0 \<le> f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
336  | 
and intgbl: "\<And>i::nat. set_integrable M (A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
337  | 
and lim: "(\<lambda>i::nat. LINT x:A i|M. f x) ----> l"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
338  | 
shows "set_integrable M (\<Union>i. A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
339  | 
apply (rule integrable_monotone_convergence[where f = "\<lambda>i::nat. \<lambda>x. indicator (A i) x *\<^sub>R f x" and x = l])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
340  | 
apply (rule intgbl)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
341  | 
prefer 3 apply (rule lim)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
342  | 
apply (rule AE_I2)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
343  | 
using `mono A` apply (auto simp: mono_def nneg split: split_indicator) []  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
344  | 
proof (rule AE_I2)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
345  | 
  { fix x assume "x \<in> space M"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
346  | 
show "(\<lambda>i. indicator (A i) x *\<^sub>R f x) ----> indicator (\<Union>i. A i) x *\<^sub>R f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
347  | 
proof cases  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
348  | 
assume "\<exists>i. x \<in> A i"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
349  | 
then guess i ..  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
350  | 
then have *: "eventually (\<lambda>i. x \<in> A i) sequentially"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
351  | 
using `x \<in> A i` `mono A` by (auto simp: eventually_sequentially mono_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
352  | 
show ?thesis  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
353  | 
apply (intro Lim_eventually)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
354  | 
using *  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
355  | 
apply eventually_elim  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
356  | 
apply (auto split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
357  | 
done  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
358  | 
qed auto }  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
359  | 
then show "(\<lambda>x. indicator (\<Union>i. A i) x *\<^sub>R f x) \<in> borel_measurable M"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
360  | 
apply (rule borel_measurable_LIMSEQ)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
361  | 
apply assumption  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
362  | 
apply (intro borel_measurable_integrable intgbl)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
363  | 
done  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
364  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
365  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
366  | 
(* Proof from Royden Real Analysis, p. 91. *)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
367  | 
lemma lebesgue_integral_countable_add:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
368  | 
  fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
369  | 
assumes meas[intro]: "\<And>i::nat. A i \<in> sets M"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
370  | 
    and disj: "\<And>i j. i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
371  | 
and intgbl: "set_integrable M (\<Union>i. A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
372  | 
shows "LINT x:(\<Union>i. A i)|M. f x = (\<Sum>i. (LINT x:(A i)|M. f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
373  | 
proof (subst integral_suminf[symmetric])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
374  | 
show int_A: "\<And>i. set_integrable M (A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
375  | 
using intgbl by (rule set_integrable_subset) auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
376  | 
  { fix x assume "x \<in> space M"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
377  | 
have "(\<lambda>i. indicator (A i) x *\<^sub>R f x) sums (indicator (\<Union>i. A i) x *\<^sub>R f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
378  | 
by (intro sums_scaleR_left indicator_sums) fact }  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
379  | 
note sums = this  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
380  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
381  | 
have norm_f: "\<And>i. set_integrable M (A i) (\<lambda>x. norm (f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
382  | 
using int_A[THEN integrable_norm] by auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
383  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
384  | 
show "AE x in M. summable (\<lambda>i. norm (indicator (A i) x *\<^sub>R f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
385  | 
using disj by (intro AE_I2) (auto intro!: summable_mult2 sums_summable[OF indicator_sums])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
386  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
387  | 
show "summable (\<lambda>i. LINT x|M. norm (indicator (A i) x *\<^sub>R f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
388  | 
proof (rule summableI_nonneg_bounded)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
389  | 
fix n  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
390  | 
show "0 \<le> LINT x|M. norm (indicator (A n) x *\<^sub>R f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
391  | 
using norm_f by (auto intro!: integral_nonneg_AE)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
392  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
393  | 
have "(\<Sum>i<n. LINT x|M. norm (indicator (A i) x *\<^sub>R f x)) =  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
394  | 
(\<Sum>i<n. set_lebesgue_integral M (A i) (\<lambda>x. norm (f x)))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
395  | 
by (simp add: abs_mult)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
396  | 
also have "\<dots> = set_lebesgue_integral M (\<Union>i<n. A i) (\<lambda>x. norm (f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
397  | 
using norm_f  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
398  | 
by (subst set_integral_finite_Union) (auto simp: disjoint_family_on_def disj)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
399  | 
also have "\<dots> \<le> set_lebesgue_integral M (\<Union>i. A i) (\<lambda>x. norm (f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
400  | 
using intgbl[THEN integrable_norm]  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
401  | 
      by (intro integral_mono set_integrable_UN[of "{..<n}"] norm_f)
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
402  | 
(auto split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
403  | 
finally show "(\<Sum>i<n. LINT x|M. norm (indicator (A i) x *\<^sub>R f x)) \<le>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
404  | 
set_lebesgue_integral M (\<Union>i. A i) (\<lambda>x. norm (f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
405  | 
by simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
406  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
407  | 
show "set_lebesgue_integral M (UNION UNIV A) f = LINT x|M. (\<Sum>i. indicator (A i) x *\<^sub>R f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
408  | 
apply (rule integral_cong[OF refl])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
409  | 
apply (subst suminf_scaleR_left[OF sums_summable[OF indicator_sums, OF disj], symmetric])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
410  | 
using sums_unique[OF indicator_sums[OF disj]]  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
411  | 
apply auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
412  | 
done  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
413  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
414  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
415  | 
lemma set_integral_cont_up:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
416  | 
  fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
417  | 
assumes [measurable]: "\<And>i. A i \<in> sets M" and A: "incseq A"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
418  | 
and intgbl: "set_integrable M (\<Union>i. A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
419  | 
shows "(\<lambda>i. LINT x:(A i)|M. f x) ----> LINT x:(\<Union>i. A i)|M. f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
420  | 
proof (intro integral_dominated_convergence[where w="\<lambda>x. indicator (\<Union>i. A i) x *\<^sub>R norm (f x)"])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
421  | 
have int_A: "\<And>i. set_integrable M (A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
422  | 
using intgbl by (rule set_integrable_subset) auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
423  | 
then show "\<And>i. set_borel_measurable M (A i) f" "set_borel_measurable M (\<Union>i. A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
424  | 
"set_integrable M (\<Union>i. A i) (\<lambda>x. norm (f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
425  | 
using intgbl integrable_norm[OF intgbl] by auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
426  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
427  | 
  { fix x i assume "x \<in> A i"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
428  | 
with A have "(\<lambda>xa. indicator (A xa) x::real) ----> 1 \<longleftrightarrow> (\<lambda>xa. 1::real) ----> 1"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
429  | 
by (intro filterlim_cong refl)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
430  | 
(fastforce simp: eventually_sequentially incseq_def subset_eq intro!: exI[of _ i]) }  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
431  | 
then show "AE x in M. (\<lambda>i. indicator (A i) x *\<^sub>R f x) ----> indicator (\<Union>i. A i) x *\<^sub>R f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
432  | 
by (intro AE_I2 tendsto_intros) (auto split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
433  | 
qed (auto split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
434  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
435  | 
(* Can the int0 hypothesis be dropped? *)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
436  | 
lemma set_integral_cont_down:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
437  | 
  fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
438  | 
assumes [measurable]: "\<And>i. A i \<in> sets M" and A: "decseq A"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
439  | 
and int0: "set_integrable M (A 0) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
440  | 
shows "(\<lambda>i::nat. LINT x:(A i)|M. f x) ----> LINT x:(\<Inter>i. A i)|M. f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
441  | 
proof (rule integral_dominated_convergence)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
442  | 
have int_A: "\<And>i. set_integrable M (A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
443  | 
using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
444  | 
show "set_integrable M (A 0) (\<lambda>x. norm (f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
445  | 
using int0[THEN integrable_norm] by simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
446  | 
have "set_integrable M (\<Inter>i. A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
447  | 
using int0 by (rule set_integrable_subset) (insert A, auto simp: decseq_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
448  | 
with int_A show "set_borel_measurable M (\<Inter>i. A i) f" "\<And>i. set_borel_measurable M (A i) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
449  | 
by auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
450  | 
show "\<And>i. AE x in M. norm (indicator (A i) x *\<^sub>R f x) \<le> indicator (A 0) x *\<^sub>R norm (f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
451  | 
using A by (auto split: split_indicator simp: decseq_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
452  | 
  { fix x i assume "x \<in> space M" "x \<notin> A i"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
453  | 
with A have "(\<lambda>i. indicator (A i) x::real) ----> 0 \<longleftrightarrow> (\<lambda>i. 0::real) ----> 0"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
454  | 
by (intro filterlim_cong refl)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
455  | 
(auto split: split_indicator simp: eventually_sequentially decseq_def intro!: exI[of _ i]) }  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
456  | 
then show "AE x in M. (\<lambda>i. indicator (A i) x *\<^sub>R f x) ----> indicator (\<Inter>i. A i) x *\<^sub>R f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
457  | 
by (intro AE_I2 tendsto_intros) (auto split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
458  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
459  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
460  | 
lemma set_integral_at_point:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
461  | 
fixes a :: real  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
462  | 
  assumes "set_integrable M {a} f"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
463  | 
  and [simp]: "{a} \<in> sets M" and "(emeasure M) {a} \<noteq> \<infinity>"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
464  | 
  shows "(LINT x:{a} | M. f x) = f a * measure M {a}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
465  | 
proof-  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
466  | 
  have "set_lebesgue_integral M {a} f = set_lebesgue_integral M {a} (%x. f a)"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
467  | 
by (intro set_lebesgue_integral_cong) simp_all  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
468  | 
then show ?thesis using assms by simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
469  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
470  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
471  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
472  | 
abbreviation complex_integrable :: "'a measure \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> bool" where
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
473  | 
"complex_integrable M f \<equiv> integrable M f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
474  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
475  | 
abbreviation complex_lebesgue_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> complex" ("integral\<^sup>C") where
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
476  | 
"integral\<^sup>C M f == integral\<^sup>L M f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
477  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
478  | 
syntax  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
479  | 
"_complex_lebesgue_integral" :: "pttrn \<Rightarrow> complex \<Rightarrow> 'a measure \<Rightarrow> complex"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
480  | 
 ("\<integral>\<^sup>C _. _ \<partial>_" [60,61] 110)
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
481  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
482  | 
translations  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
483  | 
"\<integral>\<^sup>Cx. f \<partial>M" == "CONST complex_lebesgue_integral M (\<lambda>x. f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
484  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
485  | 
syntax  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
486  | 
"_ascii_complex_lebesgue_integral" :: "pttrn \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
487  | 
  ("(3CLINT _|_. _)" [0,110,60] 60)
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
488  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
489  | 
translations  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
490  | 
"CLINT x|M. f" == "CONST complex_lebesgue_integral M (\<lambda>x. f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
491  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
492  | 
lemma complex_integrable_cnj [simp]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
493  | 
"complex_integrable M (\<lambda>x. cnj (f x)) \<longleftrightarrow> complex_integrable M f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
494  | 
proof  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
495  | 
assume "complex_integrable M (\<lambda>x. cnj (f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
496  | 
then have "complex_integrable M (\<lambda>x. cnj (cnj (f x)))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
497  | 
by (rule integrable_cnj)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
498  | 
then show "complex_integrable M f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
499  | 
by simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
500  | 
qed simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
501  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
502  | 
lemma complex_of_real_integrable_eq:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
503  | 
"complex_integrable M (\<lambda>x. complex_of_real (f x)) \<longleftrightarrow> integrable M f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
504  | 
proof  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
505  | 
assume "complex_integrable M (\<lambda>x. complex_of_real (f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
506  | 
then have "integrable M (\<lambda>x. Re (complex_of_real (f x)))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
507  | 
by (rule integrable_Re)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
508  | 
then show "integrable M f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
509  | 
by simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
510  | 
qed simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
511  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
512  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
513  | 
abbreviation complex_set_integrable :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> bool" where
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
514  | 
"complex_set_integrable M A f \<equiv> set_integrable M A f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
515  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
516  | 
abbreviation complex_set_lebesgue_integral :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> complex) \<Rightarrow> complex" where
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
517  | 
"complex_set_lebesgue_integral M A f \<equiv> set_lebesgue_integral M A f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
518  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
519  | 
syntax  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
520  | 
"_ascii_complex_set_lebesgue_integral" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
521  | 
("(4CLINT _:_|_. _)" [0,60,110,61] 60)
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
522  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
523  | 
translations  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
524  | 
"CLINT x:A|M. f" == "CONST complex_set_lebesgue_integral M A (\<lambda>x. f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
525  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
526  | 
(*  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
527  | 
lemma cmod_mult: "cmod ((a :: real) * (x :: complex)) = abs a * cmod x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
528  | 
apply (simp add: norm_mult)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
529  | 
by (subst norm_mult, auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
530  | 
*)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
531  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
532  | 
lemma borel_integrable_atLeastAtMost':  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
533  | 
  fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
534  | 
  assumes f: "continuous_on {a..b} f"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
535  | 
  shows "set_integrable lborel {a..b} f" (is "integrable _ ?f")
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
536  | 
by (intro borel_integrable_compact compact_Icc f)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
537  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
538  | 
lemma integral_FTC_atLeastAtMost:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
539  | 
fixes f :: "real \<Rightarrow> 'a :: euclidean_space"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
540  | 
assumes "a \<le> b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
541  | 
    and F: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (F has_vector_derivative f x) (at x within {a .. b})"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
542  | 
    and f: "continuous_on {a .. b} f"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
543  | 
  shows "integral\<^sup>L lborel (\<lambda>x. indicator {a .. b} x *\<^sub>R f x) = F b - F a"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
544  | 
proof -  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
545  | 
  let ?f = "\<lambda>x. indicator {a .. b} x *\<^sub>R f x"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
546  | 
have "(?f has_integral (\<integral>x. ?f x \<partial>lborel)) UNIV"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
547  | 
using borel_integrable_atLeastAtMost'[OF f] by (rule has_integral_integral_lborel)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
548  | 
moreover  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
549  | 
  have "(f has_integral F b - F a) {a .. b}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
550  | 
by (intro fundamental_theorem_of_calculus ballI assms) auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
551  | 
  then have "(?f has_integral F b - F a) {a .. b}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
552  | 
by (subst has_integral_eq_eq[where g=f]) auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
553  | 
then have "(?f has_integral F b - F a) UNIV"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
554  | 
    by (intro has_integral_on_superset[where t=UNIV and s="{a..b}"]) auto
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
555  | 
ultimately show "integral\<^sup>L lborel ?f = F b - F a"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
556  | 
by (rule has_integral_unique)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
557  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
558  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
559  | 
lemma set_borel_integral_eq_integral:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
560  | 
fixes f :: "real \<Rightarrow> 'a::euclidean_space"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
561  | 
assumes "set_integrable lborel S f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
562  | 
shows "f integrable_on S" "LINT x : S | lborel. f x = integral S f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
563  | 
proof -  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
564  | 
let ?f = "\<lambda>x. indicator S x *\<^sub>R f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
565  | 
have "(?f has_integral LINT x : S | lborel. f x) UNIV"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
566  | 
by (rule has_integral_integral_lborel) fact  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
567  | 
hence 1: "(f has_integral (set_lebesgue_integral lborel S f)) S"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
568  | 
apply (subst has_integral_restrict_univ [symmetric])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
569  | 
apply (rule has_integral_eq)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
570  | 
by auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
571  | 
thus "f integrable_on S"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
572  | 
by (auto simp add: integrable_on_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
573  | 
with 1 have "(f has_integral (integral S f)) S"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
574  | 
by (intro integrable_integral, auto simp add: integrable_on_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
575  | 
thus "LINT x : S | lborel. f x = integral S f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
576  | 
by (intro has_integral_unique [OF 1])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
577  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
578  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
579  | 
lemma set_borel_measurable_continuous:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
580  | 
fixes f :: "_ \<Rightarrow> _::real_normed_vector"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
581  | 
assumes "S \<in> sets borel" "continuous_on S f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
582  | 
shows "set_borel_measurable borel S f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
583  | 
proof -  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
584  | 
have "(\<lambda>x. if x \<in> S then f x else 0) \<in> borel_measurable borel"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
585  | 
by (intro assms borel_measurable_continuous_on_if continuous_on_const)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
586  | 
also have "(\<lambda>x. if x \<in> S then f x else 0) = (\<lambda>x. indicator S x *\<^sub>R f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
587  | 
by auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
588  | 
finally show ?thesis .  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
589  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
590  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
591  | 
lemma set_measurable_continuous_on_ivl:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
592  | 
  assumes "continuous_on {a..b} (f :: real \<Rightarrow> real)"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
593  | 
  shows "set_borel_measurable borel {a..b} f"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
594  | 
by (rule set_borel_measurable_continuous[OF _ assms]) simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
595  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
596  | 
end  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
597  |