| author | nipkow | 
| Wed, 13 Jan 1999 12:16:34 +0100 | |
| changeset 6115 | c70bce7deb0f | 
| parent 5758 | 27a2b36efd95 | 
| child 6162 | 484adda70b65 | 
| permissions | -rw-r--r-- | 
| 5323 | 1 | (* Title: HOL/Lex/RegExp2NA.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow | |
| 4 | Copyright 1998 TUM | |
| 5 | *) | |
| 6 | ||
| 7 | (******************************************************) | |
| 8 | (* atom *) | |
| 9 | (******************************************************) | |
| 10 | ||
| 11 | Goalw [atom_def] "(fin (atom a) q) = (q = [False])"; | |
| 12 | by(Simp_tac 1); | |
| 13 | qed "fin_atom"; | |
| 14 | ||
| 15 | Goalw [atom_def] "start (atom a) = [True]"; | |
| 16 | by(Simp_tac 1); | |
| 17 | qed "start_atom"; | |
| 18 | ||
| 19 | Goalw [atom_def,step_def] | |
| 20 | "(p,q) : step (atom a) b = (p=[True] & q=[False] & b=a)"; | |
| 21 | by(Simp_tac 1); | |
| 22 | qed "in_step_atom_Some"; | |
| 23 | Addsimps [in_step_atom_Some]; | |
| 24 | ||
| 25 | Goal | |
| 26 | "([False],[False]) : steps (atom a) w = (w = [])"; | |
| 27 | by (induct_tac "w" 1); | |
| 28 | by(Simp_tac 1); | |
| 29 | by(asm_simp_tac (simpset() addsimps [comp_def]) 1); | |
| 30 | qed "False_False_in_steps_atom"; | |
| 31 | ||
| 32 | Goal | |
| 33 | "(start (atom a), [False]) : steps (atom a) w = (w = [a])"; | |
| 34 | by (induct_tac "w" 1); | |
| 35 | by(asm_simp_tac (simpset() addsimps [start_atom]) 1); | |
| 36 | by(asm_full_simp_tac (simpset() | |
| 37 | addsimps [False_False_in_steps_atom,comp_def,start_atom]) 1); | |
| 38 | qed "start_fin_in_steps_atom"; | |
| 39 | ||
| 40 | Goal | |
| 41 | "accepts (atom a) w = (w = [a])"; | |
| 42 | by(simp_tac(simpset() addsimps | |
| 43 | [accepts_conv_steps,start_fin_in_steps_atom,fin_atom]) 1); | |
| 44 | qed "accepts_atom"; | |
| 45 | ||
| 46 | ||
| 47 | (******************************************************) | |
| 48 | (* union *) | |
| 49 | (******************************************************) | |
| 50 | ||
| 51 | (***** True/False ueber fin anheben *****) | |
| 52 | ||
| 53 | Goalw [union_def] | |
| 54 | "!L R. fin (union L R) (True#p) = fin L p"; | |
| 55 | by (Simp_tac 1); | |
| 56 | qed_spec_mp "fin_union_True"; | |
| 57 | ||
| 58 | Goalw [union_def] | |
| 59 | "!L R. fin (union L R) (False#p) = fin R p"; | |
| 60 | by (Simp_tac 1); | |
| 61 | qed_spec_mp "fin_union_False"; | |
| 62 | ||
| 63 | AddIffs [fin_union_True,fin_union_False]; | |
| 64 | ||
| 65 | (***** True/False ueber step anheben *****) | |
| 66 | ||
| 67 | Goalw [union_def,step_def] | |
| 68 | "!L R. (True#p,q) : step (union L R) a = (? r. q = True#r & (p,r) : step L a)"; | |
| 69 | by (Simp_tac 1); | |
| 70 | by(Blast_tac 1); | |
| 71 | qed_spec_mp "True_in_step_union"; | |
| 72 | ||
| 73 | Goalw [union_def,step_def] | |
| 74 | "!L R. (False#p,q) : step (union L R) a = (? r. q = False#r & (p,r) : step R a)"; | |
| 75 | by (Simp_tac 1); | |
| 76 | by(Blast_tac 1); | |
| 77 | qed_spec_mp "False_in_step_union"; | |
| 78 | ||
| 79 | AddIffs [True_in_step_union,False_in_step_union]; | |
| 80 | ||
| 81 | ||
| 82 | (***** True/False ueber steps anheben *****) | |
| 83 | ||
| 84 | Goal | |
| 85 | "!p. (True#p,q):steps (union L R) w = (? r. q = True # r & (p,r):steps L w)"; | |
| 86 | by (induct_tac "w" 1); | |
| 5758 
27a2b36efd95
corrected auto_tac (applications of unsafe wrappers)
 oheimb parents: 
5525diff
changeset | 87 | by (ALLGOALS Force_tac); | 
| 5323 | 88 | qed_spec_mp "lift_True_over_steps_union"; | 
| 89 | ||
| 90 | Goal | |
| 91 | "!p. (False#p,q):steps (union L R) w = (? r. q = False#r & (p,r):steps R w)"; | |
| 92 | by (induct_tac "w" 1); | |
| 5758 
27a2b36efd95
corrected auto_tac (applications of unsafe wrappers)
 oheimb parents: 
5525diff
changeset | 93 | by (ALLGOALS Force_tac); | 
| 5323 | 94 | qed_spec_mp "lift_False_over_steps_union"; | 
| 95 | ||
| 96 | AddIffs [lift_True_over_steps_union,lift_False_over_steps_union]; | |
| 97 | ||
| 98 | ||
| 99 | (** From the start **) | |
| 100 | ||
| 101 | Goalw [union_def,step_def] | |
| 102 | "!L R. (start(union L R),q) : step(union L R) a = \ | |
| 103 | \ (? p. (q = True#p & (start L,p) : step L a) | \ | |
| 104 | \ (q = False#p & (start R,p) : step R a))"; | |
| 105 | by(Simp_tac 1); | |
| 106 | by(Blast_tac 1); | |
| 107 | qed_spec_mp "start_step_union"; | |
| 108 | AddIffs [start_step_union]; | |
| 109 | ||
| 110 | Goal | |
| 111 | "(start(union L R), q) : steps (union L R) w = \ | |
| 112 | \ ( (w = [] & q = start(union L R)) | \ | |
| 113 | \ (w ~= [] & (? p. q = True # p & (start L,p) : steps L w | \ | |
| 114 | \ q = False # p & (start R,p) : steps R w)))"; | |
| 115 | by(exhaust_tac "w" 1); | |
| 116 | by (Asm_simp_tac 1); | |
| 117 | by(Blast_tac 1); | |
| 118 | by (Asm_simp_tac 1); | |
| 119 | by(Blast_tac 1); | |
| 120 | qed "steps_union"; | |
| 121 | ||
| 122 | Goalw [union_def] | |
| 123 | "!L R. fin (union L R) (start(union L R)) = \ | |
| 124 | \ (fin L (start L) | fin R (start R))"; | |
| 125 | by(Simp_tac 1); | |
| 126 | qed_spec_mp "fin_start_union"; | |
| 127 | AddIffs [fin_start_union]; | |
| 128 | ||
| 129 | Goal | |
| 130 | "accepts (union L R) w = (accepts L w | accepts R w)"; | |
| 131 | by (simp_tac (simpset() addsimps [accepts_conv_steps,steps_union]) 1); | |
| 132 | (* get rid of case_tac: *) | |
| 133 | by(case_tac "w = []" 1); | |
| 134 | by(Auto_tac); | |
| 135 | qed "accepts_union"; | |
| 136 | AddIffs [accepts_union]; | |
| 137 | ||
| 138 | (******************************************************) | |
| 139 | (* conc *) | |
| 140 | (******************************************************) | |
| 141 | ||
| 142 | (** True/False in fin **) | |
| 143 | ||
| 144 | Goalw [conc_def] | |
| 145 | "!L R. fin (conc L R) (True#p) = (fin L p & fin R (start R))"; | |
| 146 | by (Simp_tac 1); | |
| 147 | qed_spec_mp "fin_conc_True"; | |
| 148 | ||
| 149 | Goalw [conc_def] | |
| 150 | "!L R. fin (conc L R) (False#p) = fin R p"; | |
| 151 | by (Simp_tac 1); | |
| 152 | qed "fin_conc_False"; | |
| 153 | ||
| 154 | AddIffs [fin_conc_True,fin_conc_False]; | |
| 155 | ||
| 156 | (** True/False in step **) | |
| 157 | ||
| 158 | Goalw [conc_def,step_def] | |
| 159 | "!L R. (True#p,q) : step (conc L R) a = \ | |
| 160 | \ ((? r. q=True#r & (p,r): step L a) | \ | |
| 161 | \ (fin L p & (? r. q=False#r & (start R,r) : step R a)))"; | |
| 162 | by (Simp_tac 1); | |
| 163 | by(Blast_tac 1); | |
| 164 | qed_spec_mp "True_step_conc"; | |
| 165 | ||
| 166 | Goalw [conc_def,step_def] | |
| 167 | "!L R. (False#p,q) : step (conc L R) a = \ | |
| 168 | \ (? r. q = False#r & (p,r) : step R a)"; | |
| 169 | by (Simp_tac 1); | |
| 170 | by(Blast_tac 1); | |
| 171 | qed_spec_mp "False_step_conc"; | |
| 172 | ||
| 173 | AddIffs [True_step_conc, False_step_conc]; | |
| 174 | ||
| 175 | (** False in steps **) | |
| 176 | ||
| 177 | Goal | |
| 178 | "!p. (False#p,q): steps (conc L R) w = (? r. q=False#r & (p,r): steps R w)"; | |
| 179 | by (induct_tac "w" 1); | |
| 5758 
27a2b36efd95
corrected auto_tac (applications of unsafe wrappers)
 oheimb parents: 
5525diff
changeset | 180 | by (ALLGOALS Force_tac); | 
| 5323 | 181 | qed_spec_mp "False_steps_conc"; | 
| 182 | AddIffs [False_steps_conc]; | |
| 183 | ||
| 184 | (** True in steps **) | |
| 185 | ||
| 186 | Goal | |
| 187 | "!!L R. !p. (p,q) : steps L w --> (True#p,True#q) : steps (conc L R) w"; | |
| 188 | by(induct_tac "w" 1); | |
| 189 | by (Simp_tac 1); | |
| 190 | by (Simp_tac 1); | |
| 191 | by(Blast_tac 1); | |
| 192 | qed_spec_mp "True_True_steps_concI"; | |
| 193 | ||
| 194 | Goal | |
| 195 | "!L R. (True#p,False#q) : step (conc L R) a = \ | |
| 196 | \ (fin L p & (start R,q) : step R a)"; | |
| 197 | by(Simp_tac 1); | |
| 198 | qed "True_False_step_conc"; | |
| 199 | AddIffs [True_False_step_conc]; | |
| 200 | ||
| 201 | Goal | |
| 202 | "!p. (True#p,q) : steps (conc L R) w --> \ | |
| 203 | \ ((? r. (p,r) : steps L w & q = True#r) | \ | |
| 204 | \ (? u a v. w = u@a#v & \ | |
| 205 | \ (? r. (p,r) : steps L u & fin L r & \ | |
| 206 | \ (? s. (start R,s) : step R a & \ | |
| 207 | \ (? t. (s,t) : steps R v & q = False#t)))))"; | |
| 208 | by(induct_tac "w" 1); | |
| 209 | by(Simp_tac 1); | |
| 210 | by(Simp_tac 1); | |
| 211 | by(clarify_tac (claset() delrules [disjCI]) 1); | |
| 212 | be disjE 1; | |
| 213 | by(clarify_tac (claset() delrules [disjCI]) 1); | |
| 214 | by(etac allE 1 THEN mp_tac 1); | |
| 215 | be disjE 1; | |
| 216 | by (Blast_tac 1); | |
| 217 | br disjI2 1; | |
| 218 | by (Clarify_tac 1); | |
| 219 | by(Simp_tac 1); | |
| 220 |  by(res_inst_tac[("x","a#u")] exI 1);
 | |
| 221 | by(Simp_tac 1); | |
| 222 | by (Blast_tac 1); | |
| 223 | br disjI2 1; | |
| 224 | by (Clarify_tac 1); | |
| 225 | by(Simp_tac 1); | |
| 226 | by(res_inst_tac[("x","[]")] exI 1);
 | |
| 227 | by(Simp_tac 1); | |
| 228 | by (Blast_tac 1); | |
| 229 | qed_spec_mp "True_steps_concD"; | |
| 230 | ||
| 231 | Goal | |
| 232 | "(True#p,q) : steps (conc L R) w = \ | |
| 233 | \ ((? r. (p,r) : steps L w & q = True#r) | \ | |
| 234 | \ (? u a v. w = u@a#v & \ | |
| 235 | \ (? r. (p,r) : steps L u & fin L r & \ | |
| 236 | \ (? s. (start R,s) : step R a & \ | |
| 237 | \ (? t. (s,t) : steps R v & q = False#t)))))"; | |
| 5525 | 238 | by(force_tac (claset() addDs [True_steps_concD] | 
| 239 | addIs [True_True_steps_concI],simpset()) 1); | |
| 5323 | 240 | qed "True_steps_conc"; | 
| 241 | ||
| 242 | (** starting from the start **) | |
| 243 | ||
| 244 | Goalw [conc_def] | |
| 245 | "!L R. start(conc L R) = True#start L"; | |
| 246 | by(Simp_tac 1); | |
| 247 | qed_spec_mp "start_conc"; | |
| 248 | ||
| 249 | Goalw [conc_def] | |
| 250 | "!L R. fin(conc L R) p = ((fin R (start R) & (? s. p = True#s & fin L s)) | \ | |
| 251 | \ (? s. p = False#s & fin R s))"; | |
| 252 | by (simp_tac (simpset() addsplits [list.split]) 1); | |
| 253 | by (Blast_tac 1); | |
| 254 | qed_spec_mp "final_conc"; | |
| 255 | ||
| 256 | Goal | |
| 257 | "accepts (conc L R) w = (? u v. w = u@v & accepts L u & accepts R v)"; | |
| 258 | by (simp_tac (simpset() addsimps | |
| 259 | [accepts_conv_steps,True_steps_conc,final_conc,start_conc]) 1); | |
| 260 | br iffI 1; | |
| 261 | by (Clarify_tac 1); | |
| 262 | be disjE 1; | |
| 263 | by (Clarify_tac 1); | |
| 264 | be disjE 1; | |
| 265 |    by(res_inst_tac [("x","w")] exI 1);
 | |
| 266 | by(Simp_tac 1); | |
| 267 | by(Blast_tac 1); | |
| 268 | by(Blast_tac 1); | |
| 269 | be disjE 1; | |
| 270 | by(Blast_tac 1); | |
| 271 | by (Clarify_tac 1); | |
| 272 |  by(res_inst_tac [("x","u")] exI 1);
 | |
| 273 | by(Simp_tac 1); | |
| 274 | by(Blast_tac 1); | |
| 275 | by (Clarify_tac 1); | |
| 276 | by(exhaust_tac "v" 1); | |
| 277 | by(Asm_full_simp_tac 1); | |
| 278 | by(Blast_tac 1); | |
| 279 | by(Asm_full_simp_tac 1); | |
| 280 | by(Blast_tac 1); | |
| 281 | qed "accepts_conc"; | |
| 282 | ||
| 283 | (******************************************************) | |
| 284 | (* epsilon *) | |
| 285 | (******************************************************) | |
| 286 | ||
| 287 | Goalw [epsilon_def,step_def] "step epsilon a = {}";
 | |
| 288 | by(Simp_tac 1); | |
| 289 | by(Blast_tac 1); | |
| 290 | qed "step_epsilon"; | |
| 291 | Addsimps [step_epsilon]; | |
| 292 | ||
| 293 | Goal "((p,q) : steps epsilon w) = (w=[] & p=q)"; | |
| 294 | by(induct_tac "w" 1); | |
| 295 | by(Auto_tac); | |
| 296 | qed "steps_epsilon"; | |
| 297 | ||
| 298 | Goal "accepts epsilon w = (w = [])"; | |
| 299 | by(simp_tac (simpset() addsimps [steps_epsilon,accepts_conv_steps]) 1); | |
| 300 | by(simp_tac (simpset() addsimps [epsilon_def]) 1); | |
| 301 | qed "accepts_epsilon"; | |
| 302 | AddIffs [accepts_epsilon]; | |
| 303 | ||
| 304 | (******************************************************) | |
| 305 | (* plus *) | |
| 306 | (******************************************************) | |
| 307 | ||
| 308 | Goalw [plus_def] "!A. start (plus A) = start A"; | |
| 309 | by(Simp_tac 1); | |
| 310 | qed_spec_mp "start_plus"; | |
| 311 | Addsimps [start_plus]; | |
| 312 | ||
| 313 | Goalw [plus_def] "!A. fin (plus A) = fin A"; | |
| 314 | by(Simp_tac 1); | |
| 315 | qed_spec_mp "fin_plus"; | |
| 316 | AddIffs [fin_plus]; | |
| 317 | ||
| 318 | Goalw [plus_def,step_def] | |
| 319 | "!A. (p,q) : step A a --> (p,q) : step (plus A) a"; | |
| 320 | by(Simp_tac 1); | |
| 321 | qed_spec_mp "step_plusI"; | |
| 322 | ||
| 323 | Goal "!p. (p,q) : steps A w --> (p,q) : steps (plus A) w"; | |
| 324 | by(induct_tac "w" 1); | |
| 325 | by(Simp_tac 1); | |
| 326 | by(Simp_tac 1); | |
| 327 | by(blast_tac (claset() addIs [step_plusI]) 1); | |
| 328 | qed_spec_mp "steps_plusI"; | |
| 329 | ||
| 330 | Goalw [plus_def,step_def] | |
| 331 | "!A. (p,r): step (plus A) a = \ | |
| 332 | \ ( (p,r): step A a | fin A p & (start A,r) : step A a )"; | |
| 333 | by(Simp_tac 1); | |
| 334 | qed_spec_mp "step_plus_conv"; | |
| 335 | AddIffs [step_plus_conv]; | |
| 336 | ||
| 337 | Goal | |
| 338 | "[| (start A,q) : steps A u; u ~= []; fin A p |] \ | |
| 339 | \ ==> (p,q) : steps (plus A) u"; | |
| 340 | by(exhaust_tac "u" 1); | |
| 341 | by(Blast_tac 1); | |
| 342 | by(Asm_full_simp_tac 1); | |
| 343 | by(blast_tac (claset() addIs [steps_plusI]) 1); | |
| 344 | qed "fin_steps_plusI"; | |
| 345 | ||
| 346 | (* reverse list induction! Complicates matters for conc? *) | |
| 347 | Goal | |
| 348 | "!r. (start A,r) : steps (plus A) w --> \ | |
| 349 | \ (? us v. w = concat us @ v & \ | |
| 350 | \ (!u:set us. u ~= [] & accepts A u) & \ | |
| 351 | \ (start A,r) : steps A v)"; | |
| 352 | by(rev_induct_tac "w" 1); | |
| 353 | by (Simp_tac 1); | |
| 354 |  by(res_inst_tac [("x","[]")] exI 1);
 | |
| 355 | by (Simp_tac 1); | |
| 356 | by (Simp_tac 1); | |
| 357 | by (Clarify_tac 1); | |
| 358 | by(etac allE 1 THEN mp_tac 1); | |
| 359 | by (Clarify_tac 1); | |
| 360 | be disjE 1; | |
| 361 |  by(res_inst_tac [("x","us")] exI 1);
 | |
| 362 | by(Asm_simp_tac 1); | |
| 363 | by(Blast_tac 1); | |
| 364 | by(exhaust_tac "v" 1); | |
| 365 |  by(res_inst_tac [("x","us")] exI 1);
 | |
| 366 | by(Asm_full_simp_tac 1); | |
| 367 | by(res_inst_tac [("x","us@[v]")] exI 1);
 | |
| 368 | by(asm_full_simp_tac (simpset() addsimps [accepts_conv_steps]) 1); | |
| 369 | by(Blast_tac 1); | |
| 370 | qed_spec_mp "start_steps_plusD"; | |
| 371 | ||
| 372 | Goal | |
| 373 | "!r. (start A,r) : steps (plus A) w --> \ | |
| 374 | \ (? us v. w = concat us @ v & \ | |
| 375 | \ (!u:set us. accepts A u) & \ | |
| 376 | \ (start A,r) : steps A v)"; | |
| 377 | by(rev_induct_tac "w" 1); | |
| 378 | by (Simp_tac 1); | |
| 379 |  by(res_inst_tac [("x","[]")] exI 1);
 | |
| 380 | by (Simp_tac 1); | |
| 381 | by (Simp_tac 1); | |
| 382 | by (Clarify_tac 1); | |
| 383 | by(etac allE 1 THEN mp_tac 1); | |
| 384 | by (Clarify_tac 1); | |
| 385 | be disjE 1; | |
| 386 |  by(res_inst_tac [("x","us")] exI 1);
 | |
| 387 | by(Asm_simp_tac 1); | |
| 388 | by(Blast_tac 1); | |
| 389 | by(res_inst_tac [("x","us@[v]")] exI 1);
 | |
| 390 | by(asm_full_simp_tac (simpset() addsimps [accepts_conv_steps]) 1); | |
| 391 | by(Blast_tac 1); | |
| 392 | qed_spec_mp "start_steps_plusD"; | |
| 393 | ||
| 394 | Goal | |
| 395 | "us ~= [] --> (!u : set us. accepts A u) --> accepts (plus A) (concat us)"; | |
| 396 | by(simp_tac (simpset() addsimps [accepts_conv_steps]) 1); | |
| 397 | by(rev_induct_tac "us" 1); | |
| 398 | by(Simp_tac 1); | |
| 399 | by(rename_tac "u us" 1); | |
| 400 | by(Simp_tac 1); | |
| 401 | by (Clarify_tac 1); | |
| 402 | by(case_tac "us = []" 1); | |
| 403 | by(Asm_full_simp_tac 1); | |
| 404 | by(blast_tac (claset() addIs [steps_plusI,fin_steps_plusI]) 1); | |
| 405 | by (Clarify_tac 1); | |
| 406 | by(case_tac "u = []" 1); | |
| 407 | by(Asm_full_simp_tac 1); | |
| 408 | by(blast_tac (claset() addIs [steps_plusI,fin_steps_plusI]) 1); | |
| 409 | by(Asm_full_simp_tac 1); | |
| 410 | by(blast_tac (claset() addIs [steps_plusI,fin_steps_plusI]) 1); | |
| 411 | qed_spec_mp "steps_star_cycle"; | |
| 412 | ||
| 413 | Goal | |
| 414 | "accepts (plus A) w = \ | |
| 415 | \ (? us. us ~= [] & w = concat us & (!u : set us. accepts A u))"; | |
| 416 | br iffI 1; | |
| 417 | by(asm_full_simp_tac (simpset() addsimps [accepts_conv_steps]) 1); | |
| 418 | by (Clarify_tac 1); | |
| 419 | bd start_steps_plusD 1; | |
| 420 | by (Clarify_tac 1); | |
| 421 |  by(res_inst_tac [("x","us@[v]")] exI 1);
 | |
| 422 | by(asm_full_simp_tac (simpset() addsimps [accepts_conv_steps]) 1); | |
| 423 | by(Blast_tac 1); | |
| 424 | by(blast_tac (claset() addIs [steps_star_cycle]) 1); | |
| 425 | qed "accepts_plus"; | |
| 426 | AddIffs [accepts_plus]; | |
| 427 | ||
| 428 | (******************************************************) | |
| 429 | (* star *) | |
| 430 | (******************************************************) | |
| 431 | ||
| 432 | Goalw [star_def] | |
| 433 | "accepts (star A) w = \ | |
| 434 | \ (? us. (!u : set us. accepts A u) & w = concat us)"; | |
| 435 | br iffI 1; | |
| 436 | by (Clarify_tac 1); | |
| 437 | be disjE 1; | |
| 438 |   by(res_inst_tac [("x","[]")] exI 1);
 | |
| 439 | by(Simp_tac 1); | |
| 440 | by(Blast_tac 1); | |
| 441 | by(Blast_tac 1); | |
| 5525 | 442 | by(Force_tac 1); | 
| 5323 | 443 | qed "accepts_star"; | 
| 444 | ||
| 445 | (***** Correctness of r2n *****) | |
| 446 | ||
| 447 | Goal | |
| 448 | "!w. accepts (rexp2na r) w = (w : lang r)"; | |
| 449 | by(induct_tac "r" 1); | |
| 450 | by(simp_tac (simpset() addsimps [accepts_conv_steps]) 1); | |
| 451 | by(simp_tac(simpset() addsimps [accepts_atom]) 1); | |
| 452 | by(Asm_simp_tac 1); | |
| 453 | by(asm_simp_tac (simpset() addsimps [accepts_conc,RegSet.conc_def]) 1); | |
| 454 | by(asm_simp_tac (simpset() addsimps [accepts_star,in_star]) 1); | |
| 455 | qed_spec_mp "accepts_rexp2na"; |