14236
|
1 |
(* Title: FOL/ex/Classical
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
*)
|
|
6 |
|
|
7 |
header{*Classical Predicate Calculus Problems*}
|
|
8 |
|
|
9 |
theory Classical = FOL:
|
|
10 |
|
|
11 |
lemma "(P --> Q | R) --> (P-->Q) | (P-->R)"
|
|
12 |
by blast
|
|
13 |
|
|
14 |
text{*If and only if*}
|
|
15 |
|
|
16 |
lemma "(P<->Q) <-> (Q<->P)"
|
|
17 |
by blast
|
|
18 |
|
|
19 |
lemma "~ (P <-> ~P)"
|
|
20 |
by blast
|
|
21 |
|
|
22 |
|
|
23 |
text{*Sample problems from
|
|
24 |
F. J. Pelletier,
|
|
25 |
Seventy-Five Problems for Testing Automatic Theorem Provers,
|
|
26 |
J. Automated Reasoning 2 (1986), 191-216.
|
|
27 |
Errata, JAR 4 (1988), 236-236.
|
|
28 |
|
|
29 |
The hardest problems -- judging by experience with several theorem provers,
|
|
30 |
including matrix ones -- are 34 and 43.
|
|
31 |
*}
|
|
32 |
|
|
33 |
subsection{*Pelletier's examples*}
|
|
34 |
|
|
35 |
text{*1*}
|
|
36 |
lemma "(P-->Q) <-> (~Q --> ~P)"
|
|
37 |
by blast
|
|
38 |
|
|
39 |
text{*2*}
|
|
40 |
lemma "~ ~ P <-> P"
|
|
41 |
by blast
|
|
42 |
|
|
43 |
text{*3*}
|
|
44 |
lemma "~(P-->Q) --> (Q-->P)"
|
|
45 |
by blast
|
|
46 |
|
|
47 |
text{*4*}
|
|
48 |
lemma "(~P-->Q) <-> (~Q --> P)"
|
|
49 |
by blast
|
|
50 |
|
|
51 |
text{*5*}
|
|
52 |
lemma "((P|Q)-->(P|R)) --> (P|(Q-->R))"
|
|
53 |
by blast
|
|
54 |
|
|
55 |
text{*6*}
|
|
56 |
lemma "P | ~ P"
|
|
57 |
by blast
|
|
58 |
|
|
59 |
text{*7*}
|
|
60 |
lemma "P | ~ ~ ~ P"
|
|
61 |
by blast
|
|
62 |
|
|
63 |
text{*8. Peirce's law*}
|
|
64 |
lemma "((P-->Q) --> P) --> P"
|
|
65 |
by blast
|
|
66 |
|
|
67 |
text{*9*}
|
|
68 |
lemma "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
|
|
69 |
by blast
|
|
70 |
|
|
71 |
text{*10*}
|
|
72 |
lemma "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P<->Q)"
|
|
73 |
by blast
|
|
74 |
|
|
75 |
text{*11. Proved in each direction (incorrectly, says Pelletier!!) *}
|
|
76 |
lemma "P<->P"
|
|
77 |
by blast
|
|
78 |
|
|
79 |
text{*12. "Dijkstra's law"*}
|
|
80 |
lemma "((P <-> Q) <-> R) <-> (P <-> (Q <-> R))"
|
|
81 |
by blast
|
|
82 |
|
|
83 |
text{*13. Distributive law*}
|
|
84 |
lemma "P | (Q & R) <-> (P | Q) & (P | R)"
|
|
85 |
by blast
|
|
86 |
|
|
87 |
text{*14*}
|
|
88 |
lemma "(P <-> Q) <-> ((Q | ~P) & (~Q|P))"
|
|
89 |
by blast
|
|
90 |
|
|
91 |
text{*15*}
|
|
92 |
lemma "(P --> Q) <-> (~P | Q)"
|
|
93 |
by blast
|
|
94 |
|
|
95 |
text{*16*}
|
|
96 |
lemma "(P-->Q) | (Q-->P)"
|
|
97 |
by blast
|
|
98 |
|
|
99 |
text{*17*}
|
|
100 |
lemma "((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))"
|
|
101 |
by blast
|
|
102 |
|
|
103 |
subsection{*Classical Logic: examples with quantifiers*}
|
|
104 |
|
|
105 |
lemma "(\<forall>x. P(x) & Q(x)) <-> (\<forall>x. P(x)) & (\<forall>x. Q(x))"
|
|
106 |
by blast
|
|
107 |
|
|
108 |
lemma "(\<exists>x. P-->Q(x)) <-> (P --> (\<exists>x. Q(x)))"
|
|
109 |
by blast
|
|
110 |
|
|
111 |
lemma "(\<exists>x. P(x)-->Q) <-> (\<forall>x. P(x)) --> Q"
|
|
112 |
by blast
|
|
113 |
|
|
114 |
lemma "(\<forall>x. P(x)) | Q <-> (\<forall>x. P(x) | Q)"
|
|
115 |
by blast
|
|
116 |
|
|
117 |
text{*Discussed in Avron, Gentzen-Type Systems, Resolution and Tableaux,
|
|
118 |
JAR 10 (265-281), 1993. Proof is trivial!*}
|
|
119 |
lemma "~((\<exists>x.~P(x)) & ((\<exists>x. P(x)) | (\<exists>x. P(x) & Q(x))) & ~ (\<exists>x. P(x)))"
|
|
120 |
by blast
|
|
121 |
|
|
122 |
subsection{*Problems requiring quantifier duplication*}
|
|
123 |
|
|
124 |
text{*Theorem B of Peter Andrews, Theorem Proving via General Matings,
|
|
125 |
JACM 28 (1981).*}
|
|
126 |
lemma "(\<exists>x. \<forall>y. P(x) <-> P(y)) --> ((\<exists>x. P(x)) <-> (\<forall>y. P(y)))"
|
|
127 |
by blast
|
|
128 |
|
|
129 |
text{*Needs multiple instantiation of ALL.*}
|
|
130 |
lemma "(\<forall>x. P(x)-->P(f(x))) & P(d)-->P(f(f(f(d))))"
|
|
131 |
by blast
|
|
132 |
|
|
133 |
text{*Needs double instantiation of the quantifier*}
|
|
134 |
lemma "\<exists>x. P(x) --> P(a) & P(b)"
|
|
135 |
by blast
|
|
136 |
|
|
137 |
lemma "\<exists>z. P(z) --> (\<forall>x. P(x))"
|
|
138 |
by blast
|
|
139 |
|
|
140 |
lemma "\<exists>x. (\<exists>y. P(y)) --> P(x)"
|
|
141 |
by blast
|
|
142 |
|
|
143 |
text{*V. Lifschitz, What Is the Inverse Method?, JAR 5 (1989), 1--23. NOT PROVED*}
|
|
144 |
lemma "\<exists>x x'. \<forall>y. \<exists>z z'.
|
|
145 |
(~P(y,y) | P(x,x) | ~S(z,x)) &
|
|
146 |
(S(x,y) | ~S(y,z) | Q(z',z')) &
|
|
147 |
(Q(x',y) | ~Q(y,z') | S(x',x'))"
|
|
148 |
oops
|
|
149 |
|
|
150 |
|
|
151 |
|
|
152 |
subsection{*Hard examples with quantifiers*}
|
|
153 |
|
|
154 |
text{*18*}
|
|
155 |
lemma "\<exists>y. \<forall>x. P(y)-->P(x)"
|
|
156 |
by blast
|
|
157 |
|
|
158 |
text{*19*}
|
|
159 |
lemma "\<exists>x. \<forall>y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"
|
|
160 |
by blast
|
|
161 |
|
|
162 |
text{*20*}
|
|
163 |
lemma "(\<forall>x y. \<exists>z. \<forall>w. (P(x)&Q(y)-->R(z)&S(w)))
|
|
164 |
--> (\<exists>x y. P(x) & Q(y)) --> (\<exists>z. R(z))"
|
|
165 |
by blast
|
|
166 |
|
|
167 |
text{*21*}
|
|
168 |
lemma "(\<exists>x. P-->Q(x)) & (\<exists>x. Q(x)-->P) --> (\<exists>x. P<->Q(x))"
|
|
169 |
by blast
|
|
170 |
|
|
171 |
text{*22*}
|
|
172 |
lemma "(\<forall>x. P <-> Q(x)) --> (P <-> (\<forall>x. Q(x)))"
|
|
173 |
by blast
|
|
174 |
|
|
175 |
text{*23*}
|
|
176 |
lemma "(\<forall>x. P | Q(x)) <-> (P | (\<forall>x. Q(x)))"
|
|
177 |
by blast
|
|
178 |
|
|
179 |
text{*24*}
|
|
180 |
lemma "~(\<exists>x. S(x)&Q(x)) & (\<forall>x. P(x) --> Q(x)|R(x)) &
|
|
181 |
(~(\<exists>x. P(x)) --> (\<exists>x. Q(x))) & (\<forall>x. Q(x)|R(x) --> S(x))
|
|
182 |
--> (\<exists>x. P(x)&R(x))"
|
|
183 |
by blast
|
|
184 |
|
|
185 |
text{*25*}
|
|
186 |
lemma "(\<exists>x. P(x)) &
|
|
187 |
(\<forall>x. L(x) --> ~ (M(x) & R(x))) &
|
|
188 |
(\<forall>x. P(x) --> (M(x) & L(x))) &
|
|
189 |
((\<forall>x. P(x)-->Q(x)) | (\<exists>x. P(x)&R(x)))
|
|
190 |
--> (\<exists>x. Q(x)&P(x))"
|
|
191 |
by blast
|
|
192 |
|
|
193 |
text{*26*}
|
|
194 |
lemma "((\<exists>x. p(x)) <-> (\<exists>x. q(x))) &
|
|
195 |
(\<forall>x. \<forall>y. p(x) & q(y) --> (r(x) <-> s(y)))
|
|
196 |
--> ((\<forall>x. p(x)-->r(x)) <-> (\<forall>x. q(x)-->s(x)))"
|
|
197 |
by blast
|
|
198 |
|
|
199 |
text{*27*}
|
|
200 |
lemma "(\<exists>x. P(x) & ~Q(x)) &
|
|
201 |
(\<forall>x. P(x) --> R(x)) &
|
|
202 |
(\<forall>x. M(x) & L(x) --> P(x)) &
|
|
203 |
((\<exists>x. R(x) & ~ Q(x)) --> (\<forall>x. L(x) --> ~ R(x)))
|
|
204 |
--> (\<forall>x. M(x) --> ~L(x))"
|
|
205 |
by blast
|
|
206 |
|
|
207 |
text{*28. AMENDED*}
|
|
208 |
lemma "(\<forall>x. P(x) --> (\<forall>x. Q(x))) &
|
|
209 |
((\<forall>x. Q(x)|R(x)) --> (\<exists>x. Q(x)&S(x))) &
|
|
210 |
((\<exists>x. S(x)) --> (\<forall>x. L(x) --> M(x)))
|
|
211 |
--> (\<forall>x. P(x) & L(x) --> M(x))"
|
|
212 |
by blast
|
|
213 |
|
|
214 |
text{*29. Essentially the same as Principia Mathematica *11.71*}
|
|
215 |
lemma "(\<exists>x. P(x)) & (\<exists>y. Q(y))
|
|
216 |
--> ((\<forall>x. P(x)-->R(x)) & (\<forall>y. Q(y)-->S(y)) <->
|
|
217 |
(\<forall>x y. P(x) & Q(y) --> R(x) & S(y)))"
|
|
218 |
by blast
|
|
219 |
|
|
220 |
text{*30*}
|
|
221 |
lemma "(\<forall>x. P(x) | Q(x) --> ~ R(x)) &
|
|
222 |
(\<forall>x. (Q(x) --> ~ S(x)) --> P(x) & R(x))
|
|
223 |
--> (\<forall>x. S(x))"
|
|
224 |
by blast
|
|
225 |
|
|
226 |
text{*31*}
|
|
227 |
lemma "~(\<exists>x. P(x) & (Q(x) | R(x))) &
|
|
228 |
(\<exists>x. L(x) & P(x)) &
|
|
229 |
(\<forall>x. ~ R(x) --> M(x))
|
|
230 |
--> (\<exists>x. L(x) & M(x))"
|
|
231 |
by blast
|
|
232 |
|
|
233 |
text{*32*}
|
|
234 |
lemma "(\<forall>x. P(x) & (Q(x)|R(x))-->S(x)) &
|
|
235 |
(\<forall>x. S(x) & R(x) --> L(x)) &
|
|
236 |
(\<forall>x. M(x) --> R(x))
|
|
237 |
--> (\<forall>x. P(x) & M(x) --> L(x))"
|
|
238 |
by blast
|
|
239 |
|
|
240 |
text{*33*}
|
|
241 |
lemma "(\<forall>x. P(a) & (P(x)-->P(b))-->P(c)) <->
|
|
242 |
(\<forall>x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))"
|
|
243 |
by blast
|
|
244 |
|
|
245 |
text{*34 AMENDED (TWICE!!). Andrews's challenge*}
|
|
246 |
lemma "((\<exists>x. \<forall>y. p(x) <-> p(y)) <->
|
|
247 |
((\<exists>x. q(x)) <-> (\<forall>y. p(y)))) <->
|
|
248 |
((\<exists>x. \<forall>y. q(x) <-> q(y)) <->
|
|
249 |
((\<exists>x. p(x)) <-> (\<forall>y. q(y))))"
|
|
250 |
by blast
|
|
251 |
|
|
252 |
text{*35*}
|
|
253 |
lemma "\<exists>x y. P(x,y) --> (\<forall>u v. P(u,v))"
|
|
254 |
by blast
|
|
255 |
|
|
256 |
text{*36*}
|
|
257 |
lemma "(\<forall>x. \<exists>y. J(x,y)) &
|
|
258 |
(\<forall>x. \<exists>y. G(x,y)) &
|
|
259 |
(\<forall>x y. J(x,y) | G(x,y) --> (\<forall>z. J(y,z) | G(y,z) --> H(x,z)))
|
|
260 |
--> (\<forall>x. \<exists>y. H(x,y))"
|
|
261 |
by blast
|
|
262 |
|
|
263 |
text{*37*}
|
|
264 |
lemma "(\<forall>z. \<exists>w. \<forall>x. \<exists>y.
|
|
265 |
(P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (\<exists>u. Q(u,w)))) &
|
|
266 |
(\<forall>x z. ~P(x,z) --> (\<exists>y. Q(y,z))) &
|
|
267 |
((\<exists>x y. Q(x,y)) --> (\<forall>x. R(x,x)))
|
|
268 |
--> (\<forall>x. \<exists>y. R(x,y))"
|
|
269 |
by blast
|
|
270 |
|
|
271 |
text{*38*}
|
|
272 |
lemma "(\<forall>x. p(a) & (p(x) --> (\<exists>y. p(y) & r(x,y))) -->
|
|
273 |
(\<exists>z. \<exists>w. p(z) & r(x,w) & r(w,z))) <->
|
|
274 |
(\<forall>x. (~p(a) | p(x) | (\<exists>z. \<exists>w. p(z) & r(x,w) & r(w,z))) &
|
|
275 |
(~p(a) | ~(\<exists>y. p(y) & r(x,y)) |
|
|
276 |
(\<exists>z. \<exists>w. p(z) & r(x,w) & r(w,z))))"
|
|
277 |
by blast
|
|
278 |
|
|
279 |
text{*39*}
|
|
280 |
lemma "~ (\<exists>x. \<forall>y. F(y,x) <-> ~F(y,y))"
|
|
281 |
by blast
|
|
282 |
|
|
283 |
text{*40. AMENDED*}
|
|
284 |
lemma "(\<exists>y. \<forall>x. F(x,y) <-> F(x,x)) -->
|
|
285 |
~(\<forall>x. \<exists>y. \<forall>z. F(z,y) <-> ~ F(z,x))"
|
|
286 |
by blast
|
|
287 |
|
|
288 |
text{*41*}
|
|
289 |
lemma "(\<forall>z. \<exists>y. \<forall>x. f(x,y) <-> f(x,z) & ~ f(x,x))
|
|
290 |
--> ~ (\<exists>z. \<forall>x. f(x,z))"
|
|
291 |
by blast
|
|
292 |
|
|
293 |
text{*42*}
|
|
294 |
lemma "~ (\<exists>y. \<forall>x. p(x,y) <-> ~ (\<exists>z. p(x,z) & p(z,x)))"
|
|
295 |
by blast
|
|
296 |
|
|
297 |
text{*43*}
|
|
298 |
lemma "(\<forall>x. \<forall>y. q(x,y) <-> (\<forall>z. p(z,x) <-> p(z,y)))
|
|
299 |
--> (\<forall>x. \<forall>y. q(x,y) <-> q(y,x))"
|
|
300 |
by blast
|
|
301 |
|
|
302 |
(*Other proofs: Can use auto, which cheats by using rewriting!
|
|
303 |
Deepen_tac alone requires 253 secs. Or
|
|
304 |
by (mini_tac 1 THEN Deepen_tac 5 1) *)
|
|
305 |
|
|
306 |
text{*44*}
|
|
307 |
lemma "(\<forall>x. f(x) --> (\<exists>y. g(y) & h(x,y) & (\<exists>y. g(y) & ~ h(x,y)))) &
|
|
308 |
(\<exists>x. j(x) & (\<forall>y. g(y) --> h(x,y)))
|
|
309 |
--> (\<exists>x. j(x) & ~f(x))"
|
|
310 |
by blast
|
|
311 |
|
|
312 |
text{*45*}
|
|
313 |
lemma "(\<forall>x. f(x) & (\<forall>y. g(y) & h(x,y) --> j(x,y))
|
|
314 |
--> (\<forall>y. g(y) & h(x,y) --> k(y))) &
|
|
315 |
~ (\<exists>y. l(y) & k(y)) &
|
|
316 |
(\<exists>x. f(x) & (\<forall>y. h(x,y) --> l(y))
|
|
317 |
& (\<forall>y. g(y) & h(x,y) --> j(x,y)))
|
|
318 |
--> (\<exists>x. f(x) & ~ (\<exists>y. g(y) & h(x,y)))"
|
|
319 |
by blast
|
|
320 |
|
|
321 |
|
|
322 |
text{*46*}
|
|
323 |
lemma "(\<forall>x. f(x) & (\<forall>y. f(y) & h(y,x) --> g(y)) --> g(x)) &
|
|
324 |
((\<exists>x. f(x) & ~g(x)) -->
|
|
325 |
(\<exists>x. f(x) & ~g(x) & (\<forall>y. f(y) & ~g(y) --> j(x,y)))) &
|
|
326 |
(\<forall>x y. f(x) & f(y) & h(x,y) --> ~j(y,x))
|
|
327 |
--> (\<forall>x. f(x) --> g(x))"
|
|
328 |
by blast
|
|
329 |
|
|
330 |
|
|
331 |
subsection{*Problems (mainly) involving equality or functions*}
|
|
332 |
|
|
333 |
text{*48*}
|
|
334 |
lemma "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"
|
|
335 |
by blast
|
|
336 |
|
|
337 |
text{*49 NOT PROVED AUTOMATICALLY. Hard because it involves substitution
|
|
338 |
for Vars
|
|
339 |
the type constraint ensures that x,y,z have the same type as a,b,u. *}
|
|
340 |
lemma "(\<exists>x y::'a. \<forall>z. z=x | z=y) & P(a) & P(b) & a~=b
|
|
341 |
--> (\<forall>u::'a. P(u))"
|
|
342 |
apply safe
|
|
343 |
apply (rule_tac x = a in allE, assumption)
|
|
344 |
apply (rule_tac x = b in allE, assumption, fast)
|
|
345 |
--{*blast's treatment of equality can't do it*}
|
|
346 |
done
|
|
347 |
|
|
348 |
text{*50. (What has this to do with equality?) *}
|
|
349 |
lemma "(\<forall>x. P(a,x) | (\<forall>y. P(x,y))) --> (\<exists>x. \<forall>y. P(x,y))"
|
|
350 |
by blast
|
|
351 |
|
|
352 |
text{*51*}
|
|
353 |
lemma "(\<exists>z w. \<forall>x y. P(x,y) <-> (x=z & y=w)) -->
|
|
354 |
(\<exists>z. \<forall>x. \<exists>w. (\<forall>y. P(x,y) <-> y=w) <-> x=z)"
|
|
355 |
by blast
|
|
356 |
|
|
357 |
text{*52*}
|
|
358 |
text{*Almost the same as 51. *}
|
|
359 |
lemma "(\<exists>z w. \<forall>x y. P(x,y) <-> (x=z & y=w)) -->
|
|
360 |
(\<exists>w. \<forall>y. \<exists>z. (\<forall>x. P(x,y) <-> x=z) <-> y=w)"
|
|
361 |
by blast
|
|
362 |
|
|
363 |
text{*55*}
|
|
364 |
|
|
365 |
(*Original, equational version by Len Schubert, via Pelletier *** NOT PROVED
|
|
366 |
Goal "(\<exists>x. lives(x) & killed(x,agatha)) &
|
|
367 |
lives(agatha) & lives(butler) & lives(charles) &
|
|
368 |
(\<forall>x. lives(x) --> x=agatha | x=butler | x=charles) &
|
|
369 |
(\<forall>x y. killed(x,y) --> hates(x,y)) &
|
|
370 |
(\<forall>x y. killed(x,y) --> ~richer(x,y)) &
|
|
371 |
(\<forall>x. hates(agatha,x) --> ~hates(charles,x)) &
|
|
372 |
(\<forall>x. ~ x=butler --> hates(agatha,x)) &
|
|
373 |
(\<forall>x. ~richer(x,agatha) --> hates(butler,x)) &
|
|
374 |
(\<forall>x. hates(agatha,x) --> hates(butler,x)) &
|
|
375 |
(\<forall>x. \<exists>y. ~hates(x,y)) &
|
|
376 |
~ agatha=butler -->
|
|
377 |
killed(?who,agatha)"
|
|
378 |
by Safe_tac;
|
|
379 |
by (dres_inst_tac [("x1","x")] (spec RS mp) 1);
|
|
380 |
by (assume_tac 1);
|
|
381 |
by (etac (spec RS exE) 1);
|
|
382 |
by (REPEAT (etac allE 1));
|
|
383 |
by (Blast_tac 1);
|
|
384 |
result();
|
|
385 |
****)
|
|
386 |
|
|
387 |
text{*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
|
|
388 |
fast DISCOVERS who killed Agatha. *}
|
|
389 |
lemma "lives(agatha) & lives(butler) & lives(charles) &
|
|
390 |
(killed(agatha,agatha) | killed(butler,agatha) | killed(charles,agatha)) &
|
|
391 |
(\<forall>x y. killed(x,y) --> hates(x,y) & ~richer(x,y)) &
|
|
392 |
(\<forall>x. hates(agatha,x) --> ~hates(charles,x)) &
|
|
393 |
(hates(agatha,agatha) & hates(agatha,charles)) &
|
|
394 |
(\<forall>x. lives(x) & ~richer(x,agatha) --> hates(butler,x)) &
|
|
395 |
(\<forall>x. hates(agatha,x) --> hates(butler,x)) &
|
|
396 |
(\<forall>x. ~hates(x,agatha) | ~hates(x,butler) | ~hates(x,charles)) -->
|
|
397 |
killed(?who,agatha)"
|
|
398 |
by fast --{*MUCH faster than blast*}
|
|
399 |
|
|
400 |
|
|
401 |
text{*56*}
|
|
402 |
lemma "(\<forall>x. (\<exists>y. P(y) & x=f(y)) --> P(x)) <-> (\<forall>x. P(x) --> P(f(x)))"
|
|
403 |
by blast
|
|
404 |
|
|
405 |
text{*57*}
|
|
406 |
lemma "P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) &
|
|
407 |
(\<forall>x y z. P(x,y) & P(y,z) --> P(x,z)) --> P(f(a,b), f(a,c))"
|
|
408 |
by blast
|
|
409 |
|
|
410 |
text{*58 NOT PROVED AUTOMATICALLY*}
|
|
411 |
lemma "(\<forall>x y. f(x)=g(y)) --> (\<forall>x y. f(f(x))=f(g(y)))"
|
|
412 |
by (slow elim: subst_context)
|
|
413 |
|
|
414 |
|
|
415 |
text{*59*}
|
|
416 |
lemma "(\<forall>x. P(x) <-> ~P(f(x))) --> (\<exists>x. P(x) & ~P(f(x)))"
|
|
417 |
by blast
|
|
418 |
|
|
419 |
text{*60*}
|
|
420 |
lemma "\<forall>x. P(x,f(x)) <-> (\<exists>y. (\<forall>z. P(z,y) --> P(z,f(x))) & P(x,y))"
|
|
421 |
by blast
|
|
422 |
|
|
423 |
text{*62 as corrected in JAR 18 (1997), page 135*}
|
|
424 |
lemma "(\<forall>x. p(a) & (p(x) --> p(f(x))) --> p(f(f(x)))) <->
|
|
425 |
(\<forall>x. (~p(a) | p(x) | p(f(f(x)))) &
|
|
426 |
(~p(a) | ~p(f(x)) | p(f(f(x)))))"
|
|
427 |
by blast
|
|
428 |
|
|
429 |
text{*From Davis, Obvious Logical Inferences, IJCAI-81, 530-531
|
|
430 |
fast indeed copes!*}
|
|
431 |
lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &
|
|
432 |
(\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y))) &
|
|
433 |
(\<forall>x. K(x) --> ~G(x)) --> (\<exists>x. K(x) & J(x))"
|
|
434 |
by fast
|
|
435 |
|
|
436 |
text{*From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393.
|
|
437 |
It does seem obvious!*}
|
|
438 |
lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &
|
|
439 |
(\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y))) &
|
|
440 |
(\<forall>x. K(x) --> ~G(x)) --> (\<exists>x. K(x) --> ~G(x))"
|
|
441 |
by fast
|
|
442 |
|
|
443 |
text{*Halting problem: Formulation of Li Dafa (AAR Newsletter 27, Oct 1994.)
|
|
444 |
author U. Egly*}
|
|
445 |
lemma "((\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z)))) -->
|
|
446 |
(\<exists>w. C(w) & (\<forall>y. C(y) --> (\<forall>z. D(w,y,z)))))
|
|
447 |
&
|
|
448 |
(\<forall>w. C(w) & (\<forall>u. C(u) --> (\<forall>v. D(w,u,v))) -->
|
|
449 |
(\<forall>y z.
|
|
450 |
(C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) &
|
|
451 |
(C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))))
|
|
452 |
&
|
|
453 |
(\<forall>w. C(w) &
|
|
454 |
(\<forall>y z.
|
|
455 |
(C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) &
|
|
456 |
(C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))) -->
|
|
457 |
(\<exists>v. C(v) &
|
|
458 |
(\<forall>y. ((C(y) & Q(w,y,y)) & OO(w,g) --> ~P(v,y)) &
|
|
459 |
((C(y) & Q(w,y,y)) & OO(w,b) --> P(v,y) & OO(v,b)))))
|
|
460 |
-->
|
|
461 |
~ (\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z))))"
|
|
462 |
by (tactic{*Blast.depth_tac (claset ()) 12 1*})
|
|
463 |
--{*Needed because the search for depths below 12 is very slow*}
|
|
464 |
|
|
465 |
|
|
466 |
text{*Halting problem II: credited to M. Bruschi by Li Dafa in JAR 18(1), p.105*}
|
|
467 |
lemma "((\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z)))) -->
|
|
468 |
(\<exists>w. C(w) & (\<forall>y. C(y) --> (\<forall>z. D(w,y,z)))))
|
|
469 |
&
|
|
470 |
(\<forall>w. C(w) & (\<forall>u. C(u) --> (\<forall>v. D(w,u,v))) -->
|
|
471 |
(\<forall>y z.
|
|
472 |
(C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) &
|
|
473 |
(C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))))
|
|
474 |
&
|
|
475 |
((\<exists>w. C(w) & (\<forall>y. (C(y) & P(y,y) --> Q(w,y,y) & OO(w,g)) &
|
|
476 |
(C(y) & ~P(y,y) --> Q(w,y,y) & OO(w,b))))
|
|
477 |
-->
|
|
478 |
(\<exists>v. C(v) & (\<forall>y. (C(y) & P(y,y) --> P(v,y) & OO(v,g)) &
|
|
479 |
(C(y) & ~P(y,y) --> P(v,y) & OO(v,b)))))
|
|
480 |
-->
|
|
481 |
((\<exists>v. C(v) & (\<forall>y. (C(y) & P(y,y) --> P(v,y) & OO(v,g)) &
|
|
482 |
(C(y) & ~P(y,y) --> P(v,y) & OO(v,b))))
|
|
483 |
-->
|
|
484 |
(\<exists>u. C(u) & (\<forall>y. (C(y) & P(y,y) --> ~P(u,y)) &
|
|
485 |
(C(y) & ~P(y,y) --> P(u,y) & OO(u,b)))))
|
|
486 |
-->
|
|
487 |
~ (\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z))))"
|
|
488 |
by blast
|
|
489 |
|
|
490 |
text{* Challenge found on info-hol *}
|
|
491 |
lemma "\<forall>x. \<exists>v w. \<forall>y z. P(x) & Q(y) --> (P(v) | R(w)) & (R(z) --> Q(v))"
|
|
492 |
by blast
|
|
493 |
|
|
494 |
text{*Attributed to Lewis Carroll by S. G. Pulman. The first or last assumption
|
|
495 |
can be deleted.*}
|
|
496 |
lemma "(\<forall>x. honest(x) & industrious(x) --> healthy(x)) &
|
|
497 |
~ (\<exists>x. grocer(x) & healthy(x)) &
|
|
498 |
(\<forall>x. industrious(x) & grocer(x) --> honest(x)) &
|
|
499 |
(\<forall>x. cyclist(x) --> industrious(x)) &
|
|
500 |
(\<forall>x. ~healthy(x) & cyclist(x) --> ~honest(x))
|
|
501 |
--> (\<forall>x. grocer(x) --> ~cyclist(x))"
|
|
502 |
by blast
|
|
503 |
|
|
504 |
|
|
505 |
(*Runtimes for old versions of this file:
|
|
506 |
Thu Jul 23 1992: loaded in 467s using iffE [on SPARC2]
|
|
507 |
Mon Nov 14 1994: loaded in 144s [on SPARC10, with deepen_tac]
|
|
508 |
Wed Nov 16 1994: loaded in 138s [after addition of norm_term_skip]
|
|
509 |
Mon Nov 21 1994: loaded in 131s [DEPTH_FIRST suppressing repetitions]
|
|
510 |
|
|
511 |
Further runtimes on a Sun-4
|
|
512 |
Tue Mar 4 1997: loaded in 93s (version 94-7)
|
|
513 |
Tue Mar 4 1997: loaded in 89s
|
|
514 |
Thu Apr 3 1997: loaded in 44s--using mostly Blast_tac
|
|
515 |
Thu Apr 3 1997: loaded in 96s--addition of two Halting Probs
|
|
516 |
Thu Apr 3 1997: loaded in 98s--using lim-1 for all haz rules
|
|
517 |
Tue Dec 2 1997: loaded in 107s--added 46; new equalSubst
|
|
518 |
Fri Dec 12 1997: loaded in 91s--faster proof reconstruction
|
|
519 |
Thu Dec 18 1997: loaded in 94s--two new "obvious theorems" (??)
|
|
520 |
*)
|
|
521 |
|
|
522 |
end
|
|
523 |
|