author | wenzelm |
Sun, 25 Aug 2024 21:10:01 +0200 | |
changeset 80768 | c7723cc15de8 |
parent 78248 | 740b23f1138a |
child 80790 | 07c51801c2ea |
permissions | -rw-r--r-- |
68189 | 1 |
(* Title: HOL/Library/FuncSet.thy |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
2 |
Author: Florian Kammueller and Lawrence C Paulson, Lukas Bulwahn |
13586 | 3 |
*) |
4 |
||
58881 | 5 |
section \<open>Pi and Function Sets\<close> |
13586 | 6 |
|
15131 | 7 |
theory FuncSet |
67006 | 8 |
imports Main |
64910 | 9 |
abbrevs PiE = "Pi\<^sub>E" |
67013
335a7dce7cb3
more uniform header syntax, in contrast to the former etc/abbrevs file-format (see 73939a9b70a3);
wenzelm
parents:
67006
diff
changeset
|
10 |
and PIE = "\<Pi>\<^sub>E" |
15131 | 11 |
begin |
13586 | 12 |
|
58783 | 13 |
definition Pi :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set" |
14 |
where "Pi A B = {f. \<forall>x. x \<in> A \<longrightarrow> f x \<in> B x}" |
|
13586 | 15 |
|
58783 | 16 |
definition extensional :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) set" |
17 |
where "extensional A = {f. \<forall>x. x \<notin> A \<longrightarrow> f x = undefined}" |
|
13586 | 18 |
|
58783 | 19 |
definition "restrict" :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b" |
20 |
where "restrict f A = (\<lambda>x. if x \<in> A then f x else undefined)" |
|
13586 | 21 |
|
61384 | 22 |
abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>" 60) |
23 |
where "A \<rightarrow> B \<equiv> Pi A (\<lambda>_. B)" |
|
19536 | 24 |
|
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61585
diff
changeset
|
25 |
syntax |
58783 | 26 |
"_Pi" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" ("(3\<Pi> _\<in>_./ _)" 10) |
27 |
"_lam" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3) |
|
80768 | 28 |
syntax_consts |
29 |
"_Pi" \<rightleftharpoons> Pi and |
|
30 |
"_lam" \<rightleftharpoons> restrict |
|
13586 | 31 |
translations |
58783 | 32 |
"\<Pi> x\<in>A. B" \<rightleftharpoons> "CONST Pi A (\<lambda>x. B)" |
33 |
"\<lambda>x\<in>A. f" \<rightleftharpoons> "CONST restrict (\<lambda>x. f) A" |
|
13586 | 34 |
|
58783 | 35 |
definition "compose" :: "'a set \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'c)" |
36 |
where "compose A g f = (\<lambda>x\<in>A. g (f x))" |
|
13586 | 37 |
|
38 |
||
69593 | 39 |
subsection \<open>Basic Properties of \<^term>\<open>Pi\<close>\<close> |
13586 | 40 |
|
58783 | 41 |
lemma Pi_I[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B" |
14706 | 42 |
by (simp add: Pi_def) |
13586 | 43 |
|
58783 | 44 |
lemma Pi_I'[simp]: "(\<And>x. x \<in> A \<longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B" |
45 |
by (simp add:Pi_def) |
|
31731 | 46 |
|
58783 | 47 |
lemma funcsetI: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f \<in> A \<rightarrow> B" |
14706 | 48 |
by (simp add: Pi_def) |
13586 | 49 |
|
58783 | 50 |
lemma Pi_mem: "f \<in> Pi A B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B x" |
14706 | 51 |
by (simp add: Pi_def) |
13586 | 52 |
|
47761 | 53 |
lemma Pi_iff: "f \<in> Pi I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i)" |
54 |
unfolding Pi_def by auto |
|
55 |
||
58783 | 56 |
lemma PiE [elim]: "f \<in> Pi A B \<Longrightarrow> (f x \<in> B x \<Longrightarrow> Q) \<Longrightarrow> (x \<notin> A \<Longrightarrow> Q) \<Longrightarrow> Q" |
57 |
by (auto simp: Pi_def) |
|
31754 | 58 |
|
58783 | 59 |
lemma Pi_cong: "(\<And>w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B" |
38656 | 60 |
by (auto simp: Pi_def) |
61 |
||
31769 | 62 |
lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A" |
44382 | 63 |
by auto |
31769 | 64 |
|
58783 | 65 |
lemma funcset_mem: "f \<in> A \<rightarrow> B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B" |
14706 | 66 |
by (simp add: Pi_def) |
13586 | 67 |
|
58783 | 68 |
lemma funcset_image: "f \<in> A \<rightarrow> B \<Longrightarrow> f ` A \<subseteq> B" |
50104 | 69 |
by auto |
70 |
||
71 |
lemma image_subset_iff_funcset: "F ` A \<subseteq> B \<longleftrightarrow> F \<in> A \<rightarrow> B" |
|
72 |
by auto |
|
14762 | 73 |
|
71258
d67924987c34
a few new and tidier proofs (mostly about finite sets)
paulson <lp15@cam.ac.uk>
parents:
70063
diff
changeset
|
74 |
lemma funcset_to_empty_iff: "A \<rightarrow> {} = (if A={} then UNIV else {})" |
d67924987c34
a few new and tidier proofs (mostly about finite sets)
paulson <lp15@cam.ac.uk>
parents:
70063
diff
changeset
|
75 |
by auto |
d67924987c34
a few new and tidier proofs (mostly about finite sets)
paulson <lp15@cam.ac.uk>
parents:
70063
diff
changeset
|
76 |
|
58783 | 77 |
lemma Pi_eq_empty[simp]: "(\<Pi> x \<in> A. B x) = {} \<longleftrightarrow> (\<exists>x\<in>A. B x = {})" |
71258
d67924987c34
a few new and tidier proofs (mostly about finite sets)
paulson <lp15@cam.ac.uk>
parents:
70063
diff
changeset
|
78 |
proof - |
73348
65c45cba3f54
reverted simprule status on a new lemma
paulson <lp15@cam.ac.uk>
parents:
73346
diff
changeset
|
79 |
have "\<exists>x\<in>A. B x = {}" if "\<And>f. \<exists>y. y \<in> A \<and> f y \<notin> B y" |
71258
d67924987c34
a few new and tidier proofs (mostly about finite sets)
paulson <lp15@cam.ac.uk>
parents:
70063
diff
changeset
|
80 |
using that [of "\<lambda>u. SOME y. y \<in> B u"] some_in_eq by blast |
d67924987c34
a few new and tidier proofs (mostly about finite sets)
paulson <lp15@cam.ac.uk>
parents:
70063
diff
changeset
|
81 |
then show ?thesis |
d67924987c34
a few new and tidier proofs (mostly about finite sets)
paulson <lp15@cam.ac.uk>
parents:
70063
diff
changeset
|
82 |
by force |
d67924987c34
a few new and tidier proofs (mostly about finite sets)
paulson <lp15@cam.ac.uk>
parents:
70063
diff
changeset
|
83 |
qed |
13586 | 84 |
|
13593 | 85 |
lemma Pi_empty [simp]: "Pi {} B = UNIV" |
58783 | 86 |
by (simp add: Pi_def) |
13593 | 87 |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
88 |
lemma Pi_Int: "Pi I E \<inter> Pi I F = (\<Pi> i\<in>I. E i \<inter> F i)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
89 |
by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
90 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
91 |
lemma Pi_UN: |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
92 |
fixes A :: "nat \<Rightarrow> 'i \<Rightarrow> 'a set" |
58783 | 93 |
assumes "finite I" |
94 |
and mono: "\<And>i n m. i \<in> I \<Longrightarrow> n \<le> m \<Longrightarrow> A n i \<subseteq> A m i" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
95 |
shows "(\<Union>n. Pi I (A n)) = (\<Pi> i\<in>I. \<Union>n. A n i)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
96 |
proof (intro set_eqI iffI) |
58783 | 97 |
fix f |
98 |
assume "f \<in> (\<Pi> i\<in>I. \<Union>n. A n i)" |
|
99 |
then have "\<forall>i\<in>I. \<exists>n. f i \<in> A n i" |
|
100 |
by auto |
|
63060 | 101 |
from bchoice[OF this] obtain n where n: "f i \<in> A (n i) i" if "i \<in> I" for i |
58783 | 102 |
by auto |
63060 | 103 |
obtain k where k: "n i \<le> k" if "i \<in> I" for i |
58783 | 104 |
using \<open>finite I\<close> finite_nat_set_iff_bounded_le[of "n`I"] by auto |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
105 |
have "f \<in> Pi I (A k)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
106 |
proof (intro Pi_I) |
58783 | 107 |
fix i |
108 |
assume "i \<in> I" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
109 |
from mono[OF this, of "n i" k] k[OF this] n[OF this] |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
110 |
show "f i \<in> A k i" by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
111 |
qed |
58783 | 112 |
then show "f \<in> (\<Union>n. Pi I (A n))" |
113 |
by auto |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
114 |
qed auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
115 |
|
58783 | 116 |
lemma Pi_UNIV [simp]: "A \<rightarrow> UNIV = UNIV" |
117 |
by (simp add: Pi_def) |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
118 |
|
58783 | 119 |
text \<open>Covariance of Pi-sets in their second argument\<close> |
120 |
lemma Pi_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi A B \<subseteq> Pi A C" |
|
121 |
by auto |
|
13586 | 122 |
|
58783 | 123 |
text \<open>Contravariance of Pi-sets in their first argument\<close> |
124 |
lemma Pi_anti_mono: "A' \<subseteq> A \<Longrightarrow> Pi A B \<subseteq> Pi A' B" |
|
125 |
by auto |
|
13586 | 126 |
|
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
127 |
lemma prod_final: |
58783 | 128 |
assumes 1: "fst \<circ> f \<in> Pi A B" |
129 |
and 2: "snd \<circ> f \<in> Pi A C" |
|
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
130 |
shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)" |
58783 | 131 |
proof (rule Pi_I) |
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
132 |
fix z |
58783 | 133 |
assume z: "z \<in> A" |
134 |
have "f z = (fst (f z), snd (f z))" |
|
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
135 |
by simp |
58783 | 136 |
also have "\<dots> \<in> B z \<times> C z" |
137 |
by (metis SigmaI PiE o_apply 1 2 z) |
|
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
138 |
finally show "f z \<in> B z \<times> C z" . |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
139 |
qed |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
140 |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
141 |
lemma Pi_split_domain[simp]: "x \<in> Pi (I \<union> J) X \<longleftrightarrow> x \<in> Pi I X \<and> x \<in> Pi J X" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
142 |
by (auto simp: Pi_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
143 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
144 |
lemma Pi_split_insert_domain[simp]: "x \<in> Pi (insert i I) X \<longleftrightarrow> x \<in> Pi I X \<and> x i \<in> X i" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
145 |
by (auto simp: Pi_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
146 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
147 |
lemma Pi_cancel_fupd_range[simp]: "i \<notin> I \<Longrightarrow> x \<in> Pi I (B(i := b)) \<longleftrightarrow> x \<in> Pi I B" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
148 |
by (auto simp: Pi_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
149 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
150 |
lemma Pi_cancel_fupd[simp]: "i \<notin> I \<Longrightarrow> x(i := a) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
151 |
by (auto simp: Pi_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
152 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
153 |
lemma Pi_fupd_iff: "i \<in> I \<Longrightarrow> f \<in> Pi I (B(i := A)) \<longleftrightarrow> f \<in> Pi (I - {i}) B \<and> f i \<in> A" |
78248
740b23f1138a
EXPERIMENTAL replacement of f ` A <= B by f : A -> B in Analysis
paulson <lp15@cam.ac.uk>
parents:
75663
diff
changeset
|
154 |
using mk_disjoint_insert by fastforce |
740b23f1138a
EXPERIMENTAL replacement of f ` A <= B by f : A -> B in Analysis
paulson <lp15@cam.ac.uk>
parents:
75663
diff
changeset
|
155 |
|
740b23f1138a
EXPERIMENTAL replacement of f ` A <= B by f : A -> B in Analysis
paulson <lp15@cam.ac.uk>
parents:
75663
diff
changeset
|
156 |
lemma fst_Pi: "fst \<in> A \<times> B \<rightarrow> A" and snd_Pi: "snd \<in> A \<times> B \<rightarrow> B" |
740b23f1138a
EXPERIMENTAL replacement of f ` A <= B by f : A -> B in Analysis
paulson <lp15@cam.ac.uk>
parents:
75663
diff
changeset
|
157 |
by auto |
13586 | 158 |
|
58783 | 159 |
|
69593 | 160 |
subsection \<open>Composition With a Restricted Domain: \<^term>\<open>compose\<close>\<close> |
13586 | 161 |
|
58783 | 162 |
lemma funcset_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> g \<in> B \<rightarrow> C \<Longrightarrow> compose A g f \<in> A \<rightarrow> C" |
163 |
by (simp add: Pi_def compose_def restrict_def) |
|
13586 | 164 |
|
165 |
lemma compose_assoc: |
|
58783 | 166 |
assumes "f \<in> A \<rightarrow> B" |
167 |
shows "compose A h (compose A g f) = compose A (compose B h g) f" |
|
168 |
using assms by (simp add: fun_eq_iff Pi_def compose_def restrict_def) |
|
13586 | 169 |
|
58783 | 170 |
lemma compose_eq: "x \<in> A \<Longrightarrow> compose A g f x = g (f x)" |
171 |
by (simp add: compose_def restrict_def) |
|
13586 | 172 |
|
58783 | 173 |
lemma surj_compose: "f ` A = B \<Longrightarrow> g ` B = C \<Longrightarrow> compose A g f ` A = C" |
14706 | 174 |
by (auto simp add: image_def compose_eq) |
13586 | 175 |
|
176 |
||
69593 | 177 |
subsection \<open>Bounded Abstraction: \<^term>\<open>restrict\<close>\<close> |
13586 | 178 |
|
61359
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
hoelzl
parents:
59425
diff
changeset
|
179 |
lemma restrict_cong: "I = J \<Longrightarrow> (\<And>i. i \<in> J =simp=> f i = g i) \<Longrightarrow> restrict f I = restrict g J" |
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
hoelzl
parents:
59425
diff
changeset
|
180 |
by (auto simp: restrict_def fun_eq_iff simp_implies_def) |
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
hoelzl
parents:
59425
diff
changeset
|
181 |
|
54417 | 182 |
lemma restrictI[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> Pi A B" |
14706 | 183 |
by (simp add: Pi_def restrict_def) |
13586 | 184 |
|
54417 | 185 |
lemma restrict_apply[simp]: "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)" |
14706 | 186 |
by (simp add: restrict_def) |
13586 | 187 |
|
54417 | 188 |
lemma restrict_apply': "x \<in> A \<Longrightarrow> (\<lambda>y\<in>A. f y) x = f x" |
189 |
by simp |
|
190 |
||
58783 | 191 |
lemma restrict_ext: "(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
192 |
by (simp add: fun_eq_iff Pi_def restrict_def) |
13586 | 193 |
|
58606 | 194 |
lemma restrict_UNIV: "restrict f UNIV = f" |
195 |
by (simp add: restrict_def) |
|
196 |
||
75078
ec86cb2418e1
an assortment of new or stronger lemmas
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
197 |
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A \<longleftrightarrow> inj_on f A" |
14706 | 198 |
by (simp add: inj_on_def restrict_def) |
13586 | 199 |
|
75078
ec86cb2418e1
an assortment of new or stronger lemmas
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
200 |
lemma inj_on_restrict_iff: "A \<subseteq> B \<Longrightarrow> inj_on (restrict f B) A \<longleftrightarrow> inj_on f A" |
ec86cb2418e1
an assortment of new or stronger lemmas
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
201 |
by (metis inj_on_cong restrict_def subset_iff) |
ec86cb2418e1
an assortment of new or stronger lemmas
paulson <lp15@cam.ac.uk>
parents:
73932
diff
changeset
|
202 |
|
58783 | 203 |
lemma Id_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> f \<in> extensional A \<Longrightarrow> compose A (\<lambda>y\<in>B. y) f = f" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
204 |
by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) |
13586 | 205 |
|
58783 | 206 |
lemma compose_Id: "g \<in> A \<rightarrow> B \<Longrightarrow> g \<in> extensional A \<Longrightarrow> compose A g (\<lambda>x\<in>A. x) = g" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
207 |
by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) |
13586 | 208 |
|
14853 | 209 |
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" |
19736 | 210 |
by (auto simp add: restrict_def) |
13586 | 211 |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
212 |
lemma restrict_restrict[simp]: "restrict (restrict f A) B = restrict f (A \<inter> B)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
213 |
unfolding restrict_def by (simp add: fun_eq_iff) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
214 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
215 |
lemma restrict_fupd[simp]: "i \<notin> I \<Longrightarrow> restrict (f (i := x)) I = restrict f I" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
216 |
by (auto simp: restrict_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
217 |
|
58783 | 218 |
lemma restrict_upd[simp]: "i \<notin> I \<Longrightarrow> (restrict f I)(i := y) = restrict (f(i := y)) (insert i I)" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
219 |
by (auto simp: fun_eq_iff) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
220 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
221 |
lemma restrict_Pi_cancel: "restrict x I \<in> Pi I A \<longleftrightarrow> x \<in> Pi I A" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
222 |
by (auto simp: restrict_def Pi_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
223 |
|
70063 | 224 |
lemma sum_restrict' [simp]: "sum' (\<lambda>i\<in>I. g i) I = sum' (\<lambda>i. g i) I" |
225 |
by (simp add: sum.G_def conj_commute cong: conj_cong) |
|
226 |
||
227 |
lemma prod_restrict' [simp]: "prod' (\<lambda>i\<in>I. g i) I = prod' (\<lambda>i. g i) I" |
|
228 |
by (simp add: prod.G_def conj_commute cong: conj_cong) |
|
229 |
||
14745 | 230 |
|
58783 | 231 |
subsection \<open>Bijections Between Sets\<close> |
14762 | 232 |
|
69593 | 233 |
text \<open>The definition of \<^const>\<open>bij_betw\<close> is in \<open>Fun.thy\<close>, but most of |
234 |
the theorems belong here, or need at least \<^term>\<open>Hilbert_Choice\<close>.\<close> |
|
14762 | 235 |
|
39595 | 236 |
lemma bij_betwI: |
58783 | 237 |
assumes "f \<in> A \<rightarrow> B" |
238 |
and "g \<in> B \<rightarrow> A" |
|
239 |
and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x" |
|
240 |
and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y" |
|
241 |
shows "bij_betw f A B" |
|
242 |
unfolding bij_betw_def |
|
39595 | 243 |
proof |
58783 | 244 |
show "inj_on f A" |
245 |
by (metis g_f inj_on_def) |
|
246 |
have "f ` A \<subseteq> B" |
|
247 |
using \<open>f \<in> A \<rightarrow> B\<close> by auto |
|
39595 | 248 |
moreover |
58783 | 249 |
have "B \<subseteq> f ` A" |
250 |
by auto (metis Pi_mem \<open>g \<in> B \<rightarrow> A\<close> f_g image_iff) |
|
251 |
ultimately show "f ` A = B" |
|
252 |
by blast |
|
39595 | 253 |
qed |
254 |
||
14762 | 255 |
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" |
58783 | 256 |
by (auto simp add: bij_betw_def) |
14762 | 257 |
|
58783 | 258 |
lemma inj_on_compose: "bij_betw f A B \<Longrightarrow> inj_on g B \<Longrightarrow> inj_on (compose A g f) A" |
259 |
by (auto simp add: bij_betw_def inj_on_def compose_eq) |
|
14853 | 260 |
|
58783 | 261 |
lemma bij_betw_compose: "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (compose A g f) A C" |
262 |
apply (simp add: bij_betw_def compose_eq inj_on_compose) |
|
263 |
apply (auto simp add: compose_def image_def) |
|
264 |
done |
|
14762 | 265 |
|
58783 | 266 |
lemma bij_betw_restrict_eq [simp]: "bij_betw (restrict f A) A B = bij_betw f A B" |
267 |
by (simp add: bij_betw_def) |
|
14853 | 268 |
|
269 |
||
58783 | 270 |
subsection \<open>Extensionality\<close> |
14853 | 271 |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
272 |
lemma extensional_empty[simp]: "extensional {} = {\<lambda>x. undefined}" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
273 |
unfolding extensional_def by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
274 |
|
58783 | 275 |
lemma extensional_arb: "f \<in> extensional A \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = undefined" |
276 |
by (simp add: extensional_def) |
|
14853 | 277 |
|
278 |
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" |
|
58783 | 279 |
by (simp add: restrict_def extensional_def) |
14853 | 280 |
|
281 |
lemma compose_extensional [simp]: "compose A f g \<in> extensional A" |
|
58783 | 282 |
by (simp add: compose_def) |
14853 | 283 |
|
284 |
lemma extensionalityI: |
|
58783 | 285 |
assumes "f \<in> extensional A" |
286 |
and "g \<in> extensional A" |
|
287 |
and "\<And>x. x \<in> A \<Longrightarrow> f x = g x" |
|
288 |
shows "f = g" |
|
289 |
using assms by (force simp add: fun_eq_iff extensional_def) |
|
14853 | 290 |
|
39595 | 291 |
lemma extensional_restrict: "f \<in> extensional A \<Longrightarrow> restrict f A = f" |
58783 | 292 |
by (rule extensionalityI[OF restrict_extensional]) auto |
39595 | 293 |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
294 |
lemma extensional_subset: "f \<in> extensional A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f \<in> extensional B" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
295 |
unfolding extensional_def by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
296 |
|
58783 | 297 |
lemma inv_into_funcset: "f ` A = B \<Longrightarrow> (\<lambda>x\<in>B. inv_into A f x) \<in> B \<rightarrow> A" |
298 |
by (unfold inv_into_def) (fast intro: someI2) |
|
14853 | 299 |
|
58783 | 300 |
lemma compose_inv_into_id: "bij_betw f A B \<Longrightarrow> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)" |
301 |
apply (simp add: bij_betw_def compose_def) |
|
302 |
apply (rule restrict_ext, auto) |
|
303 |
done |
|
14853 | 304 |
|
58783 | 305 |
lemma compose_id_inv_into: "f ` A = B \<Longrightarrow> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)" |
306 |
apply (simp add: compose_def) |
|
307 |
apply (rule restrict_ext) |
|
308 |
apply (simp add: f_inv_into_f) |
|
309 |
done |
|
14853 | 310 |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
311 |
lemma extensional_insert[intro, simp]: |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
312 |
assumes "a \<in> extensional (insert i I)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
313 |
shows "a(i := b) \<in> extensional (insert i I)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
314 |
using assms unfolding extensional_def by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
315 |
|
58783 | 316 |
lemma extensional_Int[simp]: "extensional I \<inter> extensional I' = extensional (I \<inter> I')" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
317 |
unfolding extensional_def by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
318 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
319 |
lemma extensional_UNIV[simp]: "extensional UNIV = UNIV" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
320 |
by (auto simp: extensional_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
321 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
322 |
lemma restrict_extensional_sub[intro]: "A \<subseteq> B \<Longrightarrow> restrict f A \<in> extensional B" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
323 |
unfolding restrict_def extensional_def by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
324 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
325 |
lemma extensional_insert_undefined[intro, simp]: |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
326 |
"a \<in> extensional (insert i I) \<Longrightarrow> a(i := undefined) \<in> extensional I" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
327 |
unfolding extensional_def by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
328 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
329 |
lemma extensional_insert_cancel[intro, simp]: |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
330 |
"a \<in> extensional I \<Longrightarrow> a \<in> extensional (insert i I)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
331 |
unfolding extensional_def by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
332 |
|
14762 | 333 |
|
58783 | 334 |
subsection \<open>Cardinality\<close> |
14745 | 335 |
|
58783 | 336 |
lemma card_inj: "f \<in> A \<rightarrow> B \<Longrightarrow> inj_on f A \<Longrightarrow> finite B \<Longrightarrow> card A \<le> card B" |
337 |
by (rule card_inj_on_le) auto |
|
14745 | 338 |
|
339 |
lemma card_bij: |
|
58783 | 340 |
assumes "f \<in> A \<rightarrow> B" "inj_on f A" |
341 |
and "g \<in> B \<rightarrow> A" "inj_on g B" |
|
342 |
and "finite A" "finite B" |
|
343 |
shows "card A = card B" |
|
344 |
using assms by (blast intro: card_inj order_antisym) |
|
14745 | 345 |
|
58783 | 346 |
|
347 |
subsection \<open>Extensional Function Spaces\<close> |
|
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
348 |
|
58783 | 349 |
definition PiE :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set" |
350 |
where "PiE S T = Pi S T \<inter> extensional S" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
351 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50123
diff
changeset
|
352 |
abbreviation "Pi\<^sub>E A B \<equiv> PiE A B" |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
353 |
|
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61585
diff
changeset
|
354 |
syntax |
58783 | 355 |
"_PiE" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" ("(3\<Pi>\<^sub>E _\<in>_./ _)" 10) |
80768 | 356 |
syntax_consts |
357 |
"_PiE" \<rightleftharpoons> Pi\<^sub>E |
|
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61585
diff
changeset
|
358 |
translations |
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
61585
diff
changeset
|
359 |
"\<Pi>\<^sub>E x\<in>A. B" \<rightleftharpoons> "CONST Pi\<^sub>E A (\<lambda>x. B)" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
360 |
|
61384 | 361 |
abbreviation extensional_funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>\<^sub>E" 60) |
362 |
where "A \<rightarrow>\<^sub>E B \<equiv> (\<Pi>\<^sub>E i\<in>A. B)" |
|
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
363 |
|
58783 | 364 |
lemma extensional_funcset_def: "extensional_funcset S T = (S \<rightarrow> T) \<inter> extensional S" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
365 |
by (simp add: PiE_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
366 |
|
64910 | 367 |
lemma PiE_empty_domain[simp]: "Pi\<^sub>E {} T = {\<lambda>x. undefined}" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
368 |
unfolding PiE_def by simp |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
369 |
|
64910 | 370 |
lemma PiE_UNIV_domain: "Pi\<^sub>E UNIV T = Pi UNIV T" |
54417 | 371 |
unfolding PiE_def by simp |
372 |
||
58783 | 373 |
lemma PiE_empty_range[simp]: "i \<in> I \<Longrightarrow> F i = {} \<Longrightarrow> (\<Pi>\<^sub>E i\<in>I. F i) = {}" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
374 |
unfolding PiE_def by auto |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
375 |
|
58783 | 376 |
lemma PiE_eq_empty_iff: "Pi\<^sub>E I F = {} \<longleftrightarrow> (\<exists>i\<in>I. F i = {})" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
377 |
proof |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50123
diff
changeset
|
378 |
assume "Pi\<^sub>E I F = {}" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
379 |
show "\<exists>i\<in>I. F i = {}" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
380 |
proof (rule ccontr) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
381 |
assume "\<not> ?thesis" |
58783 | 382 |
then have "\<forall>i. \<exists>y. (i \<in> I \<longrightarrow> y \<in> F i) \<and> (i \<notin> I \<longrightarrow> y = undefined)" |
383 |
by auto |
|
53381 | 384 |
from choice[OF this] |
385 |
obtain f where " \<forall>x. (x \<in> I \<longrightarrow> f x \<in> F x) \<and> (x \<notin> I \<longrightarrow> f x = undefined)" .. |
|
58783 | 386 |
then have "f \<in> Pi\<^sub>E I F" |
387 |
by (auto simp: extensional_def PiE_def) |
|
388 |
with \<open>Pi\<^sub>E I F = {}\<close> show False |
|
389 |
by auto |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
390 |
qed |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
391 |
qed (auto simp: PiE_def) |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
392 |
|
64910 | 393 |
lemma PiE_arb: "f \<in> Pi\<^sub>E S T \<Longrightarrow> x \<notin> S \<Longrightarrow> f x = undefined" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
394 |
unfolding PiE_def by auto (auto dest!: extensional_arb) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
395 |
|
64910 | 396 |
lemma PiE_mem: "f \<in> Pi\<^sub>E S T \<Longrightarrow> x \<in> S \<Longrightarrow> f x \<in> T x" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
397 |
unfolding PiE_def by auto |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
398 |
|
64910 | 399 |
lemma PiE_fun_upd: "y \<in> T x \<Longrightarrow> f \<in> Pi\<^sub>E S T \<Longrightarrow> f(x := y) \<in> Pi\<^sub>E (insert x S) T" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
400 |
unfolding PiE_def extensional_def by auto |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
401 |
|
64910 | 402 |
lemma fun_upd_in_PiE: "x \<notin> S \<Longrightarrow> f \<in> Pi\<^sub>E (insert x S) T \<Longrightarrow> f(x := undefined) \<in> Pi\<^sub>E S T" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
403 |
unfolding PiE_def extensional_def by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
404 |
|
64910 | 405 |
lemma PiE_insert_eq: "Pi\<^sub>E (insert x S) T = (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)" |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
406 |
proof - |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
407 |
{ |
64910 | 408 |
fix f assume "f \<in> Pi\<^sub>E (insert x S) T" "x \<notin> S" |
409 |
then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
410 |
by (auto intro!: image_eqI[where x="(f x, f(x := undefined))"] intro: fun_upd_in_PiE PiE_mem) |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
411 |
} |
59425 | 412 |
moreover |
413 |
{ |
|
64910 | 414 |
fix f assume "f \<in> Pi\<^sub>E (insert x S) T" "x \<in> S" |
415 |
then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)" |
|
59425 | 416 |
by (auto intro!: image_eqI[where x="(f x, f)"] intro: fun_upd_in_PiE PiE_mem simp: insert_absorb) |
417 |
} |
|
418 |
ultimately show ?thesis |
|
63092 | 419 |
by (auto intro: PiE_fun_upd) |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
420 |
qed |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
421 |
|
58783 | 422 |
lemma PiE_Int: "Pi\<^sub>E I A \<inter> Pi\<^sub>E I B = Pi\<^sub>E I (\<lambda>x. A x \<inter> B x)" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
423 |
by (auto simp: PiE_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
424 |
|
58783 | 425 |
lemma PiE_cong: "(\<And>i. i\<in>I \<Longrightarrow> A i = B i) \<Longrightarrow> Pi\<^sub>E I A = Pi\<^sub>E I B" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
426 |
unfolding PiE_def by (auto simp: Pi_cong) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
427 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
428 |
lemma PiE_E [elim]: |
64910 | 429 |
assumes "f \<in> Pi\<^sub>E A B" |
58783 | 430 |
obtains "x \<in> A" and "f x \<in> B x" |
431 |
| "x \<notin> A" and "f x = undefined" |
|
432 |
using assms by (auto simp: Pi_def PiE_def extensional_def) |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
433 |
|
58783 | 434 |
lemma PiE_I[intro!]: |
64910 | 435 |
"(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<And>x. x \<notin> A \<Longrightarrow> f x = undefined) \<Longrightarrow> f \<in> Pi\<^sub>E A B" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
436 |
by (simp add: PiE_def extensional_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
437 |
|
64910 | 438 |
lemma PiE_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi\<^sub>E A B \<subseteq> Pi\<^sub>E A C" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
439 |
by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
440 |
|
64910 | 441 |
lemma PiE_iff: "f \<in> Pi\<^sub>E I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i) \<and> f \<in> extensional I" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
442 |
by (simp add: PiE_def Pi_iff) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
443 |
|
73348
65c45cba3f54
reverted simprule status on a new lemma
paulson <lp15@cam.ac.uk>
parents:
73346
diff
changeset
|
444 |
lemma restrict_PiE_iff: "restrict f I \<in> Pi\<^sub>E I X \<longleftrightarrow> (\<forall>i \<in> I. f i \<in> X i)" |
73346 | 445 |
by (simp add: PiE_iff) |
446 |
||
71258
d67924987c34
a few new and tidier proofs (mostly about finite sets)
paulson <lp15@cam.ac.uk>
parents:
70063
diff
changeset
|
447 |
lemma ext_funcset_to_sing_iff [simp]: "A \<rightarrow>\<^sub>E {a} = {\<lambda>x\<in>A. a}" |
d67924987c34
a few new and tidier proofs (mostly about finite sets)
paulson <lp15@cam.ac.uk>
parents:
70063
diff
changeset
|
448 |
by (auto simp: PiE_def Pi_iff extensionalityI) |
d67924987c34
a few new and tidier proofs (mostly about finite sets)
paulson <lp15@cam.ac.uk>
parents:
70063
diff
changeset
|
449 |
|
64910 | 450 |
lemma PiE_restrict[simp]: "f \<in> Pi\<^sub>E A B \<Longrightarrow> restrict f A = f" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
451 |
by (simp add: extensional_restrict PiE_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
452 |
|
64910 | 453 |
lemma restrict_PiE[simp]: "restrict f I \<in> Pi\<^sub>E I S \<longleftrightarrow> f \<in> Pi I S" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
454 |
by (auto simp: PiE_iff) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
455 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
456 |
lemma PiE_eq_subset: |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
457 |
assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}" |
58783 | 458 |
and eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" |
459 |
and "i \<in> I" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
460 |
shows "F i \<subseteq> F' i" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
461 |
proof |
58783 | 462 |
fix x |
463 |
assume "x \<in> F i" |
|
464 |
with ne have "\<forall>j. \<exists>y. (j \<in> I \<longrightarrow> y \<in> F j \<and> (i = j \<longrightarrow> x = y)) \<and> (j \<notin> I \<longrightarrow> y = undefined)" |
|
53381 | 465 |
by auto |
466 |
from choice[OF this] obtain f |
|
467 |
where f: " \<forall>j. (j \<in> I \<longrightarrow> f j \<in> F j \<and> (i = j \<longrightarrow> x = f j)) \<and> (j \<notin> I \<longrightarrow> f j = undefined)" .. |
|
58783 | 468 |
then have "f \<in> Pi\<^sub>E I F" |
469 |
by (auto simp: extensional_def PiE_def) |
|
470 |
then have "f \<in> Pi\<^sub>E I F'" |
|
471 |
using assms by simp |
|
472 |
then show "x \<in> F' i" |
|
473 |
using f \<open>i \<in> I\<close> by (auto simp: PiE_def) |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
474 |
qed |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
475 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
476 |
lemma PiE_eq_iff_not_empty: |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
477 |
assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50123
diff
changeset
|
478 |
shows "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i)" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
479 |
proof (intro iffI ballI) |
58783 | 480 |
fix i |
481 |
assume eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" |
|
482 |
assume i: "i \<in> I" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
483 |
show "F i = F' i" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
484 |
using PiE_eq_subset[of I F F', OF ne eq i] |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
485 |
using PiE_eq_subset[of I F' F, OF ne(2,1) eq[symmetric] i] |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
486 |
by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
487 |
qed (auto simp: PiE_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
488 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
489 |
lemma PiE_eq_iff: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50123
diff
changeset
|
490 |
"Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i) \<or> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
491 |
proof (intro iffI disjCI) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50123
diff
changeset
|
492 |
assume eq[simp]: "Pi\<^sub>E I F = Pi\<^sub>E I F'" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
493 |
assume "\<not> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
494 |
then have "(\<forall>i\<in>I. F i \<noteq> {}) \<and> (\<forall>i\<in>I. F' i \<noteq> {})" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
495 |
using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by auto |
58783 | 496 |
with PiE_eq_iff_not_empty[of I F F'] show "\<forall>i\<in>I. F i = F' i" |
497 |
by auto |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
498 |
next |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
499 |
assume "(\<forall>i\<in>I. F i = F' i) \<or> (\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {})" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50123
diff
changeset
|
500 |
then show "Pi\<^sub>E I F = Pi\<^sub>E I F'" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
501 |
using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by (auto simp: PiE_def) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
502 |
qed |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
503 |
|
58783 | 504 |
lemma extensional_funcset_fun_upd_restricts_rangeI: |
505 |
"\<forall>y \<in> S. f x \<noteq> f y \<Longrightarrow> f \<in> (insert x S) \<rightarrow>\<^sub>E T \<Longrightarrow> f(x := undefined) \<in> S \<rightarrow>\<^sub>E (T - {f x})" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
506 |
unfolding extensional_funcset_def extensional_def |
73346 | 507 |
by (auto split: if_split_asm) |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
508 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
509 |
lemma extensional_funcset_fun_upd_extends_rangeI: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50123
diff
changeset
|
510 |
assumes "a \<in> T" "f \<in> S \<rightarrow>\<^sub>E (T - {a})" |
58783 | 511 |
shows "f(x := a) \<in> insert x S \<rightarrow>\<^sub>E T" |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
512 |
using assms unfolding extensional_funcset_def extensional_def by auto |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
513 |
|
69000 | 514 |
lemma subset_PiE: |
515 |
"PiE I S \<subseteq> PiE I T \<longleftrightarrow> PiE I S = {} \<or> (\<forall>i \<in> I. S i \<subseteq> T i)" (is "?lhs \<longleftrightarrow> _ \<or> ?rhs") |
|
516 |
proof (cases "PiE I S = {}") |
|
517 |
case False |
|
518 |
moreover have "?lhs = ?rhs" |
|
519 |
proof |
|
520 |
assume L: ?lhs |
|
521 |
have "\<And>i. i\<in>I \<Longrightarrow> S i \<noteq> {}" |
|
522 |
using False PiE_eq_empty_iff by blast |
|
523 |
with L show ?rhs |
|
524 |
by (simp add: PiE_Int PiE_eq_iff inf.absorb_iff2) |
|
525 |
qed auto |
|
526 |
ultimately show ?thesis |
|
527 |
by simp |
|
528 |
qed simp |
|
529 |
||
530 |
lemma PiE_eq: |
|
531 |
"PiE I S = PiE I T \<longleftrightarrow> PiE I S = {} \<and> PiE I T = {} \<or> (\<forall>i \<in> I. S i = T i)" |
|
532 |
by (auto simp: PiE_eq_iff PiE_eq_empty_iff) |
|
533 |
||
534 |
lemma PiE_UNIV [simp]: "PiE UNIV (\<lambda>i. UNIV) = UNIV" |
|
535 |
by blast |
|
536 |
||
537 |
lemma image_projection_PiE: |
|
538 |
"(\<lambda>f. f i) ` (PiE I S) = (if PiE I S = {} then {} else if i \<in> I then S i else {undefined})" |
|
539 |
proof - |
|
540 |
have "(\<lambda>f. f i) ` Pi\<^sub>E I S = S i" if "i \<in> I" "f \<in> PiE I S" for f |
|
541 |
using that apply auto |
|
542 |
by (rule_tac x="(\<lambda>k. if k=i then x else f k)" in image_eqI) auto |
|
543 |
moreover have "(\<lambda>f. f i) ` Pi\<^sub>E I S = {undefined}" if "f \<in> PiE I S" "i \<notin> I" for f |
|
544 |
using that by (blast intro: PiE_arb [OF that, symmetric]) |
|
545 |
ultimately show ?thesis |
|
546 |
by auto |
|
547 |
qed |
|
548 |
||
73348
65c45cba3f54
reverted simprule status on a new lemma
paulson <lp15@cam.ac.uk>
parents:
73346
diff
changeset
|
549 |
lemma PiE_singleton: |
69710
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
550 |
assumes "f \<in> extensional A" |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
551 |
shows "PiE A (\<lambda>x. {f x}) = {f}" |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
552 |
proof - |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
553 |
{ |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
554 |
fix g assume "g \<in> PiE A (\<lambda>x. {f x})" |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
555 |
hence "g x = f x" for x |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
556 |
using assms by (cases "x \<in> A") (auto simp: extensional_def) |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
557 |
hence "g = f" by (simp add: fun_eq_iff) |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
558 |
} |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
559 |
thus ?thesis using assms by (auto simp: extensional_def) |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
560 |
qed |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
561 |
|
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
562 |
lemma PiE_eq_singleton: "(\<Pi>\<^sub>E i\<in>I. S i) = {\<lambda>i\<in>I. f i} \<longleftrightarrow> (\<forall>i\<in>I. S i = {f i})" |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
563 |
by (metis (mono_tags, lifting) PiE_eq PiE_singleton insert_not_empty restrict_apply' restrict_extensional) |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
564 |
|
69939
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
paulson <lp15@cam.ac.uk>
parents:
69710
diff
changeset
|
565 |
lemma PiE_over_singleton_iff: "(\<Pi>\<^sub>E x\<in>{a}. B x) = (\<Union>b \<in> B a. {\<lambda>x \<in> {a}. b})" |
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
paulson <lp15@cam.ac.uk>
parents:
69710
diff
changeset
|
566 |
apply (auto simp: PiE_iff split: if_split_asm) |
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
paulson <lp15@cam.ac.uk>
parents:
69710
diff
changeset
|
567 |
apply (metis (no_types, lifting) extensionalityI restrict_apply' restrict_extensional singletonD) |
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
paulson <lp15@cam.ac.uk>
parents:
69710
diff
changeset
|
568 |
done |
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
paulson <lp15@cam.ac.uk>
parents:
69710
diff
changeset
|
569 |
|
69710
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
570 |
lemma all_PiE_elements: |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
571 |
"(\<forall>z \<in> PiE I S. \<forall>i \<in> I. P i (z i)) \<longleftrightarrow> PiE I S = {} \<or> (\<forall>i \<in> I. \<forall>x \<in> S i. P i x)" (is "?lhs = ?rhs") |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
572 |
proof (cases "PiE I S = {}") |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
573 |
case False |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
574 |
then obtain f where f: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> S i" |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
575 |
by fastforce |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
576 |
show ?thesis |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
577 |
proof |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
578 |
assume L: ?lhs |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
579 |
have "P i x" |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
580 |
if "i \<in> I" "x \<in> S i" for i x |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
581 |
proof - |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
582 |
have "(\<lambda>j \<in> I. if j=i then x else f j) \<in> PiE I S" |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
583 |
by (simp add: f that(2)) |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
584 |
then have "P i ((\<lambda>j \<in> I. if j=i then x else f j) i)" |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
585 |
using L that(1) by blast |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
586 |
with that show ?thesis |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
587 |
by simp |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
588 |
qed |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
589 |
then show ?rhs |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
590 |
by (simp add: False) |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
591 |
qed fastforce |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
592 |
qed simp |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
593 |
|
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
594 |
lemma PiE_ext: "\<lbrakk>x \<in> PiE k s; y \<in> PiE k s; \<And>i. i \<in> k \<Longrightarrow> x i = y i\<rbrakk> \<Longrightarrow> x = y" |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
595 |
by (metis ext PiE_E) |
61372780515b
some renamings and a bit of new material
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
596 |
|
58783 | 597 |
|
598 |
subsubsection \<open>Injective Extensional Function Spaces\<close> |
|
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
599 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
600 |
lemma extensional_funcset_fun_upd_inj_onI: |
58783 | 601 |
assumes "f \<in> S \<rightarrow>\<^sub>E (T - {a})" |
602 |
and "inj_on f S" |
|
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
603 |
shows "inj_on (f(x := a)) S" |
58783 | 604 |
using assms |
605 |
unfolding extensional_funcset_def by (auto intro!: inj_on_fun_updI) |
|
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
606 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
607 |
lemma extensional_funcset_extend_domain_inj_on_eq: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
608 |
assumes "x \<notin> S" |
58783 | 609 |
shows "{f. f \<in> (insert x S) \<rightarrow>\<^sub>E T \<and> inj_on f (insert x S)} = |
610 |
(\<lambda>(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}" |
|
611 |
using assms |
|
612 |
apply (auto del: PiE_I PiE_E) |
|
613 |
apply (auto intro: extensional_funcset_fun_upd_inj_onI |
|
614 |
extensional_funcset_fun_upd_extends_rangeI del: PiE_I PiE_E) |
|
615 |
apply (auto simp add: image_iff inj_on_def) |
|
616 |
apply (rule_tac x="xa x" in exI) |
|
617 |
apply (auto intro: PiE_mem del: PiE_I PiE_E) |
|
618 |
apply (rule_tac x="xa(x := undefined)" in exI) |
|
619 |
apply (auto intro!: extensional_funcset_fun_upd_restricts_rangeI) |
|
62390 | 620 |
apply (auto dest!: PiE_mem split: if_split_asm) |
58783 | 621 |
done |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
622 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
623 |
lemma extensional_funcset_extend_domain_inj_onI: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
624 |
assumes "x \<notin> S" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50123
diff
changeset
|
625 |
shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}" |
58783 | 626 |
using assms |
627 |
apply (auto intro!: inj_onI) |
|
628 |
apply (metis fun_upd_same) |
|
629 |
apply (metis assms PiE_arb fun_upd_triv fun_upd_upd) |
|
630 |
done |
|
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
631 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
632 |
|
69144
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
633 |
subsubsection \<open>Misc properties of functions, composition and restriction from HOL Light\<close> |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
634 |
|
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
635 |
lemma function_factors_left_gen: |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
636 |
"(\<forall>x y. P x \<and> P y \<and> g x = g y \<longrightarrow> f x = f y) \<longleftrightarrow> (\<exists>h. \<forall>x. P x \<longrightarrow> f x = h(g x))" |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
637 |
(is "?lhs = ?rhs") |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
638 |
proof |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
639 |
assume L: ?lhs |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
640 |
then show ?rhs |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
641 |
apply (rule_tac x="f \<circ> inv_into (Collect P) g" in exI) |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
642 |
unfolding o_def |
73932
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents:
73348
diff
changeset
|
643 |
by (metis (mono_tags, opaque_lifting) f_inv_into_f imageI inv_into_into mem_Collect_eq) |
69144
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
644 |
qed auto |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
645 |
|
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
646 |
lemma function_factors_left: |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
647 |
"(\<forall>x y. (g x = g y) \<longrightarrow> (f x = f y)) \<longleftrightarrow> (\<exists>h. f = h \<circ> g)" |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
648 |
using function_factors_left_gen [of "\<lambda>x. True" g f] unfolding o_def by blast |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
649 |
|
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
650 |
lemma function_factors_right_gen: |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
651 |
"(\<forall>x. P x \<longrightarrow> (\<exists>y. g y = f x)) \<longleftrightarrow> (\<exists>h. \<forall>x. P x \<longrightarrow> f x = g(h x))" |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
652 |
by metis |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
653 |
|
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
654 |
lemma function_factors_right: |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
655 |
"(\<forall>x. \<exists>y. g y = f x) \<longleftrightarrow> (\<exists>h. f = g \<circ> h)" |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
656 |
unfolding o_def by metis |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
657 |
|
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
658 |
lemma restrict_compose_right: |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
659 |
"restrict (g \<circ> restrict f S) S = restrict (g \<circ> f) S" |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
660 |
by auto |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
661 |
|
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
662 |
lemma restrict_compose_left: |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
663 |
"f ` S \<subseteq> T \<Longrightarrow> restrict (restrict g T \<circ> f) S = restrict (g \<circ> f) S" |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
664 |
by fastforce |
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
665 |
|
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
paulson <lp15@cam.ac.uk>
parents:
69000
diff
changeset
|
666 |
|
58783 | 667 |
subsubsection \<open>Cardinality\<close> |
668 |
||
669 |
lemma finite_PiE: "finite S \<Longrightarrow> (\<And>i. i \<in> S \<Longrightarrow> finite (T i)) \<Longrightarrow> finite (\<Pi>\<^sub>E i \<in> S. T i)" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
670 |
by (induct S arbitrary: T rule: finite_induct) (simp_all add: PiE_insert_eq) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
671 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50123
diff
changeset
|
672 |
lemma inj_combinator: "x \<notin> S \<Longrightarrow> inj_on (\<lambda>(y, g). g(x := y)) (T x \<times> Pi\<^sub>E S T)" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
673 |
proof (safe intro!: inj_onI ext) |
58783 | 674 |
fix f y g z |
675 |
assume "x \<notin> S" |
|
676 |
assume fg: "f \<in> Pi\<^sub>E S T" "g \<in> Pi\<^sub>E S T" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
677 |
assume "f(x := y) = g(x := z)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
678 |
then have *: "\<And>i. (f(x := y)) i = (g(x := z)) i" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
679 |
unfolding fun_eq_iff by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
680 |
from this[of x] show "y = z" by simp |
58783 | 681 |
fix i from *[of i] \<open>x \<notin> S\<close> fg show "f i = g i" |
62390 | 682 |
by (auto split: if_split_asm simp: PiE_def extensional_def) |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
683 |
qed |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
684 |
|
58783 | 685 |
lemma card_PiE: "finite S \<Longrightarrow> card (\<Pi>\<^sub>E i \<in> S. T i) = (\<Prod> i\<in>S. card (T i))" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
686 |
proof (induct rule: finite_induct) |
58783 | 687 |
case empty |
688 |
then show ?case by auto |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
689 |
next |
58783 | 690 |
case (insert x S) |
691 |
then show ?case |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
692 |
by (simp add: PiE_insert_eq inj_combinator card_image card_cartesian_product) |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
693 |
qed |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
694 |
|
75663 | 695 |
lemma card_funcsetE: "finite A \<Longrightarrow> card (A \<rightarrow>\<^sub>E B) = card B ^ card A" |
696 |
by (subst card_PiE, auto) |
|
697 |
||
698 |
lemma card_inj_on_subset_funcset: assumes finB: "finite B" |
|
699 |
and finC: "finite C" |
|
700 |
and AB: "A \<subseteq> B" |
|
701 |
shows "card {f \<in> B \<rightarrow>\<^sub>E C. inj_on f A} = |
|
702 |
card C^(card B - card A) * prod ((-) (card C)) {0 ..< card A}" |
|
703 |
proof - |
|
704 |
define D where "D = B - A" |
|
705 |
from AB have B: "B = A \<union> D" and disj: "A \<inter> D = {}" unfolding D_def by auto |
|
706 |
have sub: "card B - card A = card D" unfolding D_def using finB AB |
|
707 |
by (metis card_Diff_subset finite_subset) |
|
708 |
have "finite A" "finite D" using finB unfolding B by auto |
|
709 |
thus ?thesis unfolding sub unfolding B using disj |
|
710 |
proof (induct A rule: finite_induct) |
|
711 |
case empty |
|
712 |
from card_funcsetE[OF this(1), of C] show ?case by auto |
|
713 |
next |
|
714 |
case (insert a A) |
|
715 |
have "{f. f \<in> insert a A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f (insert a A)} |
|
716 |
= {f(a := c) | f c. f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A \<and> c \<in> C - f ` A}" |
|
717 |
(is "?l = ?r") |
|
718 |
proof |
|
719 |
show "?r \<subseteq> ?l" |
|
720 |
by (auto intro: inj_on_fun_updI split: if_splits) |
|
721 |
{ |
|
722 |
fix f |
|
723 |
assume f: "f \<in> ?l" |
|
724 |
let ?g = "f(a := undefined)" |
|
725 |
let ?h = "?g(a := f a)" |
|
726 |
have mem: "f a \<in> C - ?g ` A" using insert(1,2,4,5) f by auto |
|
727 |
from f have f: "f \<in> insert a A \<union> D \<rightarrow>\<^sub>E C" "inj_on f (insert a A)" by auto |
|
728 |
hence "?g \<in> A \<union> D \<rightarrow>\<^sub>E C" "inj_on ?g A" using \<open>a \<notin> A\<close> \<open>insert a A \<inter> D = {}\<close> |
|
729 |
by (auto split: if_splits simp: inj_on_def) |
|
730 |
with mem have "?h \<in> ?r" by blast |
|
731 |
also have "?h = f" by auto |
|
732 |
finally have "f \<in> ?r" . |
|
733 |
} |
|
734 |
thus "?l \<subseteq> ?r" by auto |
|
735 |
qed |
|
736 |
also have "\<dots> = (\<lambda> (f, c). f (a := c)) ` |
|
737 |
(Sigma {f . f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A} (\<lambda> f. C - f ` A))" |
|
738 |
by auto |
|
739 |
also have "card (...) = card (Sigma {f . f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A} (\<lambda> f. C - f ` A))" |
|
740 |
proof (rule card_image, intro inj_onI, clarsimp, goal_cases) |
|
741 |
case (1 f c g d) |
|
742 |
let ?f = "f(a := c, a := undefined)" |
|
743 |
let ?g = "g(a := d, a := undefined)" |
|
744 |
from 1 have id: "f(a := c) = g(a := d)" by auto |
|
745 |
from fun_upd_eqD[OF id] |
|
746 |
have cd: "c = d" by auto |
|
747 |
from id have "?f = ?g" by auto |
|
748 |
also have "?f = f" using `f \<in> A \<union> D \<rightarrow>\<^sub>E C` insert(1,2,4,5) |
|
749 |
by (intro ext, auto) |
|
750 |
also have "?g = g" using `g \<in> A \<union> D \<rightarrow>\<^sub>E C` insert(1,2,4,5) |
|
751 |
by (intro ext, auto) |
|
752 |
finally show "f = g \<and> c = d" using cd by auto |
|
753 |
qed |
|
754 |
also have "\<dots> = (\<Sum>f\<in>{f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}. card (C - f ` A))" |
|
755 |
by (rule card_SigmaI, rule finite_subset[of _ "A \<union> D \<rightarrow>\<^sub>E C"], |
|
756 |
insert \<open>finite C\<close> \<open>finite D\<close> \<open>finite A\<close>, auto intro!: finite_PiE) |
|
757 |
also have "\<dots> = (\<Sum>f\<in>{f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}. card C - card A)" |
|
758 |
by (rule sum.cong[OF refl], subst card_Diff_subset, insert \<open>finite A\<close>, auto simp: card_image) |
|
759 |
also have "\<dots> = (card C - card A) * card {f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}" |
|
760 |
by simp |
|
761 |
also have "\<dots> = card C ^ card D * ((card C - card A) * prod ((-) (card C)) {0..<card A})" |
|
762 |
using insert by (auto simp: ac_simps) |
|
763 |
also have "(card C - card A) * prod ((-) (card C)) {0..<card A} = |
|
764 |
prod ((-) (card C)) {0..<Suc (card A)}" by simp |
|
765 |
also have "Suc (card A) = card (insert a A)" using insert by auto |
|
766 |
finally show ?case . |
|
767 |
qed |
|
768 |
qed |
|
769 |
||
770 |
||
71838
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
771 |
subsection \<open>The pigeonhole principle\<close> |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
772 |
|
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
773 |
text \<open> |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
774 |
An alternative formulation of this is that for a function mapping a finite set \<open>A\<close> of |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
775 |
cardinality \<open>m\<close> to a finite set \<open>B\<close> of cardinality \<open>n\<close>, there exists an element \<open>y \<in> B\<close> that |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
776 |
is hit at least $\lceil \frac{m}{n}\rceil$ times. However, since we do not have real numbers |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
777 |
or rounding yet, we state it in the following equivalent form: |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
778 |
\<close> |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
779 |
lemma pigeonhole_card: |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
780 |
assumes "f \<in> A \<rightarrow> B" "finite A" "finite B" "B \<noteq> {}" |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
781 |
shows "\<exists>y\<in>B. card (f -` {y} \<inter> A) * card B \<ge> card A" |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
782 |
proof - |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
783 |
from assms have "card B > 0" |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
784 |
by auto |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
785 |
define M where "M = Max ((\<lambda>y. card (f -` {y} \<inter> A)) ` B)" |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
786 |
have "A = (\<Union>y\<in>B. f -` {y} \<inter> A)" |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
787 |
using assms by auto |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
788 |
also have "card \<dots> = (\<Sum>i\<in>B. card (f -` {i} \<inter> A))" |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
789 |
using assms by (subst card_UN_disjoint) auto |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
790 |
also have "\<dots> \<le> (\<Sum>i\<in>B. M)" |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
791 |
unfolding M_def using assms by (intro sum_mono Max.coboundedI) auto |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
792 |
also have "\<dots> = card B * M" |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
793 |
by simp |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
794 |
finally have "M * card B \<ge> card A" |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
795 |
by (simp add: mult_ac) |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
796 |
moreover have "M \<in> (\<lambda>y. card (f -` {y} \<inter> A)) ` B" |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
797 |
unfolding M_def using assms \<open>B \<noteq> {}\<close> by (intro Max_in) auto |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
798 |
ultimately show ?thesis |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
799 |
by blast |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
800 |
qed |
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
Manuel Eberl <eberlm@in.tum.de>
parents:
71258
diff
changeset
|
801 |
|
13586 | 802 |
end |