| author | nipkow | 
| Thu, 04 Dec 1997 12:50:02 +0100 | |
| changeset 4361 | c77a484e4f95 | 
| parent 2603 | 4988dda71c0b | 
| child 4440 | 9ed4098074bc | 
| permissions | -rw-r--r-- | 
| 1463 | 1  | 
(* Title: FOLP/int-prover.ML  | 
| 0 | 2  | 
ID: $Id$  | 
| 1459 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 4  | 
Copyright 1992 University of Cambridge  | 
5  | 
||
6  | 
A naive prover for intuitionistic logic  | 
|
7  | 
||
| 
2603
 
4988dda71c0b
Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
 
paulson 
parents: 
2572 
diff
changeset
 | 
8  | 
BEWARE OF NAME CLASHES WITH CLASSICAL TACTICS -- use IntPr.fast_tac ...  | 
| 0 | 9  | 
|
10  | 
Completeness (for propositional logic) is proved in  | 
|
11  | 
||
12  | 
Roy Dyckhoff.  | 
|
| 
2603
 
4988dda71c0b
Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
 
paulson 
parents: 
2572 
diff
changeset
 | 
13  | 
Contraction-Free Sequent Calculi for IntPruitionistic Logic.  | 
| 0 | 14  | 
J. Symbolic Logic (in press)  | 
15  | 
*)  | 
|
16  | 
||
17  | 
signature INT_PROVER =  | 
|
18  | 
sig  | 
|
19  | 
val best_tac: int -> tactic  | 
|
20  | 
val fast_tac: int -> tactic  | 
|
21  | 
val inst_step_tac: int -> tactic  | 
|
22  | 
val safe_step_tac: int -> tactic  | 
|
23  | 
val safe_brls: (bool * thm) list  | 
|
24  | 
val safe_tac: tactic  | 
|
25  | 
val step_tac: int -> tactic  | 
|
26  | 
val haz_brls: (bool * thm) list  | 
|
27  | 
end;  | 
|
28  | 
||
29  | 
||
| 
2603
 
4988dda71c0b
Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
 
paulson 
parents: 
2572 
diff
changeset
 | 
30  | 
structure IntPr : INT_PROVER =  | 
| 0 | 31  | 
struct  | 
32  | 
||
33  | 
(*Negation is treated as a primitive symbol, with rules notI (introduction),  | 
|
34  | 
not_to_imp (converts the assumption ~P to P-->False), and not_impE  | 
|
35  | 
(handles double negations). Could instead rewrite by not_def as the first  | 
|
36  | 
step of an intuitionistic proof.  | 
|
37  | 
*)  | 
|
38  | 
val safe_brls = sort lessb  | 
|
39  | 
[ (true,FalseE), (false,TrueI), (false,refl),  | 
|
40  | 
(false,impI), (false,notI), (false,allI),  | 
|
41  | 
(true,conjE), (true,exE),  | 
|
42  | 
(false,conjI), (true,conj_impE),  | 
|
| 2572 | 43  | 
(true,disj_impE), (true,disjE),  | 
44  | 
(false,iffI), (true,iffE), (true,not_to_imp) ];  | 
|
| 0 | 45  | 
|
46  | 
val haz_brls =  | 
|
47  | 
[ (false,disjI1), (false,disjI2), (false,exI),  | 
|
48  | 
(true,allE), (true,not_impE), (true,imp_impE), (true,iff_impE),  | 
|
| 2572 | 49  | 
(true,all_impE), (true,ex_impE), (true,impE) ];  | 
| 0 | 50  | 
|
51  | 
(*0 subgoals vs 1 or more: the p in safep is for positive*)  | 
|
52  | 
val (safe0_brls, safep_brls) =  | 
|
53  | 
partition (apl(0,op=) o subgoals_of_brl) safe_brls;  | 
|
54  | 
||
55  | 
(*Attack subgoals using safe inferences*)  | 
|
56  | 
val safe_step_tac = FIRST' [uniq_assume_tac,  | 
|
| 1459 | 57  | 
IFOLP_Lemmas.uniq_mp_tac,  | 
58  | 
biresolve_tac safe0_brls,  | 
|
59  | 
hyp_subst_tac,  | 
|
60  | 
biresolve_tac safep_brls] ;  | 
|
| 0 | 61  | 
|
62  | 
(*Repeatedly attack subgoals using safe inferences*)  | 
|
63  | 
val safe_tac = DETERM (REPEAT_FIRST safe_step_tac);  | 
|
64  | 
||
65  | 
(*These steps could instantiate variables and are therefore unsafe.*)  | 
|
66  | 
val inst_step_tac = assume_tac APPEND' mp_tac;  | 
|
67  | 
||
68  | 
(*One safe or unsafe step. *)  | 
|
69  | 
fun step_tac i = FIRST [safe_tac, inst_step_tac i, biresolve_tac haz_brls i];  | 
|
70  | 
||
71  | 
(*Dumb but fast*)  | 
|
72  | 
val fast_tac = SELECT_GOAL (DEPTH_SOLVE (step_tac 1));  | 
|
73  | 
||
74  | 
(*Slower but smarter than fast_tac*)  | 
|
75  | 
val best_tac =  | 
|
76  | 
SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, size_of_thm) (step_tac 1));  | 
|
77  | 
||
78  | 
end;  | 
|
79  |