| author | paulson | 
| Wed, 08 Aug 2001 14:51:10 +0200 | |
| changeset 11481 | c77e5401f2ff | 
| parent 11316 | b4e71bd751e4 | 
| permissions | -rw-r--r-- | 
| 1461 | 1  | 
(* Title: ZF/ex/ramsey.ML  | 
| 0 | 2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 4  | 
Copyright 1992 University of Cambridge  | 
5  | 
||
6  | 
Ramsey's Theorem (finite exponent 2 version)  | 
|
7  | 
||
8  | 
Based upon the article  | 
|
9  | 
D Basin and M Kaufmann,  | 
|
10  | 
The Boyer-Moore Prover and Nuprl: An Experimental Comparison.  | 
|
11  | 
In G Huet and G Plotkin, editors, Logical Frameworks.  | 
|
12  | 
(CUP, 1991), pages 89--119  | 
|
13  | 
||
14  | 
See also  | 
|
15  | 
M Kaufmann,  | 
|
16  | 
An example in NQTHM: Ramsey's Theorem  | 
|
17  | 
Internal Note, Computational Logic, Inc., Austin, Texas 78703  | 
|
18  | 
Available from the author: kaufmann@cli.com  | 
|
19  | 
*)  | 
|
20  | 
||
21  | 
(*** Cliques and Independent sets ***)  | 
|
22  | 
||
| 5068 | 23  | 
Goalw [Clique_def] "Clique(0,V,E)";  | 
| 2469 | 24  | 
by (Fast_tac 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
25  | 
qed "Clique0";  | 
| 0 | 26  | 
|
| 6070 | 27  | 
Goalw [Clique_def] "[| Clique(C,V',E); V'<=V |] ==> Clique(C,V,E)";  | 
| 2469 | 28  | 
by (Fast_tac 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
29  | 
qed "Clique_superset";  | 
| 0 | 30  | 
|
| 5068 | 31  | 
Goalw [Indept_def] "Indept(0,V,E)";  | 
| 2469 | 32  | 
by (Fast_tac 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
33  | 
qed "Indept0";  | 
| 0 | 34  | 
|
| 
5147
 
825877190618
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5137 
diff
changeset
 | 
35  | 
Goalw [Indept_def] "[| Indept(I,V',E); V'<=V |] ==> Indept(I,V,E)";  | 
| 2469 | 36  | 
by (Fast_tac 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
37  | 
qed "Indept_superset";  | 
| 0 | 38  | 
|
39  | 
(*** Atleast ***)  | 
|
40  | 
||
| 5068 | 41  | 
Goalw [Atleast_def, inj_def, Pi_def, function_def] "Atleast(0,A)";  | 
| 2469 | 42  | 
by (Fast_tac 1);  | 
| 760 | 43  | 
qed "Atleast0";  | 
| 0 | 44  | 
|
| 5068 | 45  | 
Goalw [Atleast_def]  | 
| 11316 | 46  | 
    "Atleast(succ(m),A) ==> \\<exists>x \\<in> A. Atleast(m, A-{x})";
 | 
| 4091 | 47  | 
by (fast_tac (claset() addEs [inj_is_fun RS apply_type, inj_succ_restrict]) 1);  | 
| 760 | 48  | 
qed "Atleast_succD";  | 
| 0 | 49  | 
|
| 5068 | 50  | 
Goalw [Atleast_def]  | 
| 11316 | 51  | 
"[| Atleast(n,A); A \\<subseteq> B |] ==> Atleast(n,B)";  | 
| 4091 | 52  | 
by (fast_tac (claset() addEs [inj_weaken_type]) 1);  | 
| 760 | 53  | 
qed "Atleast_superset";  | 
| 0 | 54  | 
|
| 5068 | 55  | 
Goalw [Atleast_def,succ_def]  | 
| 11316 | 56  | 
"[| Atleast(m,B); b\\<notin> B |] ==> Atleast(succ(m), cons(b,B))";  | 
| 0 | 57  | 
by (etac exE 1);  | 
58  | 
by (rtac exI 1);  | 
|
59  | 
by (etac inj_extend 1);  | 
|
60  | 
by (rtac mem_not_refl 1);  | 
|
61  | 
by (assume_tac 1);  | 
|
| 760 | 62  | 
qed "Atleast_succI";  | 
| 0 | 63  | 
|
| 11316 | 64  | 
Goal "[| Atleast(m, B-{x});  x \\<in> B |] ==> Atleast(succ(m), B)";
 | 
| 0 | 65  | 
by (etac (Atleast_succI RS Atleast_superset) 1);  | 
| 2469 | 66  | 
by (Fast_tac 1);  | 
67  | 
by (Fast_tac 1);  | 
|
| 760 | 68  | 
qed "Atleast_Diff_succI";  | 
| 0 | 69  | 
|
70  | 
(*** Main Cardinality Lemma ***)  | 
|
71  | 
||
72  | 
(*The #-succ(0) strengthens the original theorem statement, but precisely  | 
|
73  | 
the same proof could be used!!*)  | 
|
| 11316 | 74  | 
Goal "m \\<in> nat ==> \  | 
75  | 
\ \\<forall>n \\<in> nat. \\<forall>A B. Atleast((m#+n) #- succ(0), A Un B) --> \  | 
|
| 6070 | 76  | 
\ Atleast(m,A) | Atleast(n,B)";  | 
77  | 
by (induct_tac "m" 1);  | 
|
| 4091 | 78  | 
by (fast_tac (claset() addSIs [Atleast0]) 1);  | 
| 2469 | 79  | 
by (Asm_simp_tac 1);  | 
| 0 | 80  | 
by (rtac ballI 1);  | 
| 6070 | 81  | 
by (rename_tac "m' n" 1); (*simplifier does NOT preserve bound names!*)  | 
82  | 
by (induct_tac "n" 1);  | 
|
| 4091 | 83  | 
by (fast_tac (claset() addSIs [Atleast0]) 1);  | 
| 6070 | 84  | 
by (Asm_simp_tac 1);  | 
| 4152 | 85  | 
by Safe_tac;  | 
| 0 | 86  | 
by (etac (Atleast_succD RS bexE) 1);  | 
| 6070 | 87  | 
by (rename_tac "n' A B z" 1);  | 
| 0 | 88  | 
by (etac UnE 1);  | 
| 11316 | 89  | 
(**case z \\<in> B. Instantiate the '\\<forall>A B' induction hypothesis. **)  | 
| 6070 | 90  | 
by (dres_inst_tac [("x1","A"), ("x","B-{z}")] (spec RS spec) 2);
 | 
| 0 | 91  | 
by (etac (mp RS disjE) 2);  | 
| 6070 | 92  | 
(*cases Atleast(succ(m1),A) and Atleast(succ(k),B)*)  | 
| 0 | 93  | 
by (REPEAT (eresolve_tac [asm_rl, notE, Atleast_Diff_succI] 3));  | 
94  | 
(*proving the condition*)  | 
|
| 2469 | 95  | 
by (etac Atleast_superset 2 THEN Fast_tac 2);  | 
| 11316 | 96  | 
(**case z \\<in> A. Instantiate the '\\<forall>n \\<in> nat. \\<forall>A B' induction hypothesis. **)  | 
| 6070 | 97  | 
by (dres_inst_tac [("x2","succ(n')"), ("x1","A-{z}"), ("x","B")] 
 | 
| 0 | 98  | 
(bspec RS spec RS spec) 1);  | 
99  | 
by (etac nat_succI 1);  | 
|
100  | 
by (etac (mp RS disjE) 1);  | 
|
| 6070 | 101  | 
(*cases Atleast(succ(m1),A) and Atleast(succ(k),B)*)  | 
| 0 | 102  | 
by (REPEAT (eresolve_tac [asm_rl, Atleast_Diff_succI, notE] 2));  | 
103  | 
(*proving the condition*)  | 
|
| 6070 | 104  | 
by (Asm_simp_tac 1);  | 
| 2469 | 105  | 
by (etac Atleast_superset 1 THEN Fast_tac 1);  | 
| 6112 | 106  | 
qed_spec_mp "pigeon2";  | 
| 0 | 107  | 
|
108  | 
||
109  | 
(**** Ramsey's Theorem ****)  | 
|
110  | 
||
111  | 
(** Base cases of induction; they now admit ANY Ramsey number **)  | 
|
112  | 
||
| 5068 | 113  | 
Goalw [Ramsey_def] "Ramsey(n,0,j)";  | 
| 4091 | 114  | 
by (fast_tac (claset() addIs [Clique0,Atleast0]) 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
115  | 
qed "Ramsey0j";  | 
| 0 | 116  | 
|
| 5068 | 117  | 
Goalw [Ramsey_def] "Ramsey(n,i,0)";  | 
| 4091 | 118  | 
by (fast_tac (claset() addIs [Indept0,Atleast0]) 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
119  | 
qed "Ramseyi0";  | 
| 0 | 120  | 
|
121  | 
(** Lemmas for induction step **)  | 
|
122  | 
||
123  | 
(*The use of succ(m) here, rather than #-succ(0), simplifies the proof of  | 
|
124  | 
Ramsey_step_lemma.*)  | 
|
| 11316 | 125  | 
Goal "[| Atleast(m #+ n, A); m \\<in> nat; n \\<in> nat |] \  | 
126  | 
\     ==> Atleast(succ(m), {x \\<in> A. ~P(x)}) | Atleast(n, {x \\<in> A. P(x)})";
 | 
|
| 0 | 127  | 
by (rtac (nat_succI RS pigeon2) 1);  | 
| 6070 | 128  | 
by (Asm_simp_tac 3);  | 
| 0 | 129  | 
by (rtac Atleast_superset 3);  | 
| 6070 | 130  | 
by Auto_tac;  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
131  | 
qed "Atleast_partition";  | 
| 0 | 132  | 
|
| 11316 | 133  | 
(*For the Atleast part, proves ~(a \\<in> I) from the second premise!*)  | 
| 6070 | 134  | 
Goalw [Symmetric_def,Indept_def]  | 
| 11316 | 135  | 
    "[| Symmetric(E);  Indept(I, {z \\<in> V-{a}. <a,z> \\<notin> E}, E);  a \\<in> V;  \
 | 
| 0 | 136  | 
\ Atleast(j,I) |] ==> \  | 
137  | 
\ Indept(cons(a,I), V, E) & Atleast(succ(j), cons(a,I))";  | 
|
| 6070 | 138  | 
by (blast_tac (claset() addSIs [Atleast_succI]) 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
139  | 
qed "Indept_succ";  | 
| 0 | 140  | 
|
| 6070 | 141  | 
Goalw [Symmetric_def,Clique_def]  | 
| 11316 | 142  | 
    "[| Symmetric(E);  Clique(C, {z \\<in> V-{a}. <a,z>:E}, E);  a \\<in> V;  \
 | 
| 0 | 143  | 
\ Atleast(j,C) |] ==> \  | 
144  | 
\ Clique(cons(a,C), V, E) & Atleast(succ(j), cons(a,C))";  | 
|
| 6070 | 145  | 
by (blast_tac (claset() addSIs [Atleast_succI]) 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
146  | 
qed "Clique_succ";  | 
| 0 | 147  | 
|
148  | 
(** Induction step **)  | 
|
149  | 
||
150  | 
(*Published proofs gloss over the need for Ramsey numbers to be POSITIVE.*)  | 
|
151  | 
val ram1::ram2::prems = goalw Ramsey.thy [Ramsey_def]  | 
|
152  | 
"[| Ramsey(succ(m), succ(i), j); Ramsey(n, i, succ(j)); \  | 
|
| 11316 | 153  | 
\ m \\<in> nat; n \\<in> nat |] ==> \  | 
| 0 | 154  | 
\ Ramsey(succ(m#+n), succ(i), succ(j))";  | 
| 4152 | 155  | 
by Safe_tac;  | 
| 0 | 156  | 
by (etac (Atleast_succD RS bexE) 1);  | 
157  | 
by (eres_inst_tac [("P1","%z.<x,z>:E")] (Atleast_partition RS disjE) 1);
 | 
|
158  | 
by (REPEAT (resolve_tac prems 1));  | 
|
159  | 
(*case m*)  | 
|
160  | 
by (rtac (ram1 RS spec RS spec RS mp RS disjE) 1);  | 
|
| 2469 | 161  | 
by (Fast_tac 1);  | 
| 4091 | 162  | 
by (fast_tac (claset() addEs [Clique_superset]) 1); (*easy -- given a Clique*)  | 
| 4152 | 163  | 
by Safe_tac;  | 
| 11316 | 164  | 
by (eresolve_tac (swapify [exI]) 1); (*ignore main \\<exists>quantifier*)  | 
| 1461 | 165  | 
by (REPEAT (ares_tac [Indept_succ] 1)); (*make a bigger Indept*)  | 
| 0 | 166  | 
(*case n*)  | 
167  | 
by (rtac (ram2 RS spec RS spec RS mp RS disjE) 1);  | 
|
| 2469 | 168  | 
by (Fast_tac 1);  | 
| 4152 | 169  | 
by Safe_tac;  | 
| 0 | 170  | 
by (rtac exI 1);  | 
| 1461 | 171  | 
by (REPEAT (ares_tac [Clique_succ] 1)); (*make a bigger Clique*)  | 
| 4091 | 172  | 
by (fast_tac (claset() addEs [Indept_superset]) 1); (*easy -- given an Indept*)  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
173  | 
qed "Ramsey_step_lemma";  | 
| 0 | 174  | 
|
175  | 
||
176  | 
(** The actual proof **)  | 
|
177  | 
||
178  | 
(*Again, the induction requires Ramsey numbers to be positive.*)  | 
|
| 11316 | 179  | 
Goal "i \\<in> nat ==> \\<forall>j \\<in> nat. \\<exists>n \\<in> nat. Ramsey(succ(n), i, j)";  | 
| 6070 | 180  | 
by (induct_tac "i" 1);  | 
| 4091 | 181  | 
by (fast_tac (claset() addSIs [Ramsey0j]) 1);  | 
| 0 | 182  | 
by (rtac ballI 1);  | 
| 6070 | 183  | 
by (induct_tac "j" 1);  | 
| 4091 | 184  | 
by (fast_tac (claset() addSIs [Ramseyi0]) 1);  | 
185  | 
by (fast_tac (claset() addSDs [bspec]  | 
|
| 5137 | 186  | 
addSIs [add_type,Ramsey_step_lemma]) 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
187  | 
qed "ramsey_lemma";  | 
| 0 | 188  | 
|
189  | 
(*Final statement in a tidy form, without succ(...) *)  | 
|
| 11316 | 190  | 
Goal "[| i \\<in> nat; j \\<in> nat |] ==> \\<exists>n \\<in> nat. Ramsey(n,i,j)";  | 
| 5137 | 191  | 
by (best_tac (claset() addDs [ramsey_lemma]) 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
760 
diff
changeset
 | 
192  | 
qed "ramsey";  | 
| 0 | 193  | 
|
| 438 | 194  | 
(*Compute Ramsey numbers according to proof above -- which, actually,  | 
| 0 | 195  | 
does not constrain the base case values at all!*)  | 
196  | 
fun ram 0 j = 1  | 
|
197  | 
| ram i 0 = 1  | 
|
198  | 
| ram i j = ram (i-1) j + ram i (j-1);  | 
|
199  | 
||
200  | 
(*Previous proof gave the following Ramsey numbers, which are smaller than  | 
|
201  | 
those above by one!*)  | 
|
202  | 
fun ram' 0 j = 0  | 
|
203  | 
| ram' i 0 = 0  | 
|
204  | 
| ram' i j = ram' (i-1) j + ram' i (j-1) + 1;  |