| 
1478
 | 
     1  | 
(*  Title:      ZF/Cardinal.thy
  | 
| 
435
 | 
     2  | 
    ID:         $Id$
  | 
| 
1478
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
435
 | 
     4  | 
    Copyright   1994  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Cardinals in Zermelo-Fraenkel Set Theory 
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
Cardinal = OrderType + Fixedpt + Nat + Sum + 
  | 
| 
 | 
    10  | 
consts
  | 
| 
1401
 | 
    11  | 
  Least            :: (i=>o) => i    (binder "LEAST " 10)
  | 
| 
832
 | 
    12  | 
  eqpoll, lepoll,
  | 
| 
1401
 | 
    13  | 
          lesspoll :: [i,i] => o     (infixl 50)
  | 
| 
 | 
    14  | 
  cardinal         :: i=>i           ("|_|")
 | 
| 
 | 
    15  | 
  Finite, Card     :: i=>o
  | 
| 
435
 | 
    16  | 
  | 
| 
753
 | 
    17  | 
defs
  | 
| 
435
 | 
    18  | 
  | 
| 
 | 
    19  | 
  (*least ordinal operator*)
  | 
| 
832
 | 
    20  | 
  Least_def     "Least(P) == THE i. Ord(i) & P(i) & (ALL j. j<i --> ~P(j))"
  | 
| 
435
 | 
    21  | 
  | 
| 
832
 | 
    22  | 
  eqpoll_def    "A eqpoll B == EX f. f: bij(A,B)"
  | 
| 
435
 | 
    23  | 
  | 
| 
832
 | 
    24  | 
  lepoll_def    "A lepoll B == EX f. f: inj(A,B)"
  | 
| 
435
 | 
    25  | 
  | 
| 
832
 | 
    26  | 
  lesspoll_def  "A lesspoll B == A lepoll B & ~(A eqpoll B)"
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
  Finite_def    "Finite(A) == EX n:nat. A eqpoll n"
  | 
| 
435
 | 
    29  | 
  | 
| 
832
 | 
    30  | 
  cardinal_def  "|A| == LEAST i. i eqpoll A"
  | 
| 
435
 | 
    31  | 
  | 
| 
832
 | 
    32  | 
  Card_def      "Card(i) == (i = |i|)"
  | 
| 
435
 | 
    33  | 
  | 
| 
9683
 | 
    34  | 
syntax (xsymbols)
  | 
| 
 | 
    35  | 
  "op eqpoll"      :: [i,i] => o     (infixl "\\<approx>" 50)
  | 
| 
 | 
    36  | 
  "op lepoll"      :: [i,i] => o     (infixl "\\<lesssim>" 50)
  | 
| 
 | 
    37  | 
  "op lesspoll"    :: [i,i] => o     (infixl "\\<prec>" 50)
  | 
| 
 | 
    38  | 
  | 
| 
435
 | 
    39  | 
end
  |