| author | paulson |
| Fri, 20 Aug 2004 12:20:09 +0200 | |
| changeset 15150 | c7af682b9ee5 |
| parent 15140 | 322485b816ac |
| child 15169 | 2b5da07a0b89 |
| permissions | -rw-r--r-- |
| 10751 | 1 |
(* Title : HOL/Real/Hyperreal/HyperDef.thy |
2 |
ID : $Id$ |
|
3 |
Author : Jacques D. Fleuriot |
|
4 |
Copyright : 1998 University of Cambridge |
|
| 14468 | 5 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
| 13487 | 6 |
*) |
| 10751 | 7 |
|
| 14468 | 8 |
header{*Construction of Hyperreals Using Ultrafilters*}
|
9 |
||
| 15131 | 10 |
theory HyperDef |
| 15140 | 11 |
imports Filter "../Real/Real" |
| 15131 | 12 |
files ("fuf.ML") (*Warning: file fuf.ML refers to the name Hyperdef!*)
|
13 |
begin |
|
| 10751 | 14 |
|
15 |
constdefs |
|
| 14299 | 16 |
|
|
14361
ad2f5da643b4
* Support for raw latex output in control symbols: \<^raw...>
schirmer
parents:
14348
diff
changeset
|
17 |
FreeUltrafilterNat :: "nat set set" ("\<U>")
|
| 14299 | 18 |
"FreeUltrafilterNat == (SOME U. U \<in> FreeUltrafilter (UNIV:: nat set))" |
19 |
||
20 |
hyprel :: "((nat=>real)*(nat=>real)) set" |
|
21 |
"hyprel == {p. \<exists>X Y. p = ((X::nat=>real),Y) &
|
|
| 14705 | 22 |
{n::nat. X(n) = Y(n)} \<in> FreeUltrafilterNat}"
|
| 10751 | 23 |
|
| 14299 | 24 |
typedef hypreal = "UNIV//hyprel" |
25 |
by (auto simp add: quotient_def) |
|
| 10751 | 26 |
|
| 14691 | 27 |
instance hypreal :: "{ord, zero, one, plus, times, minus, inverse}" ..
|
| 10751 | 28 |
|
| 14299 | 29 |
defs (overloaded) |
30 |
||
31 |
hypreal_zero_def: |
|
| 14705 | 32 |
"0 == Abs_hypreal(hyprel``{%n. 0})"
|
| 10751 | 33 |
|
| 14299 | 34 |
hypreal_one_def: |
| 14705 | 35 |
"1 == Abs_hypreal(hyprel``{%n. 1})"
|
| 10751 | 36 |
|
| 14299 | 37 |
hypreal_minus_def: |
| 14705 | 38 |
"- P == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P). hyprel``{%n. - (X n)})"
|
| 10751 | 39 |
|
| 14299 | 40 |
hypreal_diff_def: |
| 10751 | 41 |
"x - y == x + -(y::hypreal)" |
42 |
||
| 14299 | 43 |
hypreal_inverse_def: |
44 |
"inverse P == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P). |
|
|
12018
ec054019c910
Numerals and simprocs for types real and hypreal. The abstract
paulson
parents:
11713
diff
changeset
|
45 |
hyprel``{%n. if X n = 0 then 0 else inverse (X n)})"
|
| 10751 | 46 |
|
| 14299 | 47 |
hypreal_divide_def: |
| 10751 | 48 |
"P / Q::hypreal == P * inverse Q" |
| 13487 | 49 |
|
| 10751 | 50 |
constdefs |
51 |
||
| 14299 | 52 |
hypreal_of_real :: "real => hypreal" |
| 14705 | 53 |
"hypreal_of_real r == Abs_hypreal(hyprel``{%n. r})"
|
| 10751 | 54 |
|
| 14691 | 55 |
omega :: hypreal -- {*an infinite number @{text "= [<1,2,3,...>]"} *}
|
| 14705 | 56 |
"omega == Abs_hypreal(hyprel``{%n. real (Suc n)})"
|
| 13487 | 57 |
|
| 14691 | 58 |
epsilon :: hypreal -- {*an infinitesimal number @{text "= [<1,1/2,1/3,...>]"} *}
|
| 14705 | 59 |
"epsilon == Abs_hypreal(hyprel``{%n. inverse (real (Suc n))})"
|
|
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
60 |
|
|
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
61 |
syntax (xsymbols) |
| 14299 | 62 |
omega :: hypreal ("\<omega>")
|
63 |
epsilon :: hypreal ("\<epsilon>")
|
|
|
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
64 |
|
| 14565 | 65 |
syntax (HTML output) |
66 |
omega :: hypreal ("\<omega>")
|
|
67 |
epsilon :: hypreal ("\<epsilon>")
|
|
68 |
||
| 10751 | 69 |
|
| 14370 | 70 |
defs (overloaded) |
| 13487 | 71 |
|
| 14299 | 72 |
hypreal_add_def: |
73 |
"P + Q == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P). \<Union>Y \<in> Rep_hypreal(Q). |
|
| 14705 | 74 |
hyprel``{%n. X n + Y n})"
|
| 10751 | 75 |
|
| 14299 | 76 |
hypreal_mult_def: |
77 |
"P * Q == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P). \<Union>Y \<in> Rep_hypreal(Q). |
|
| 14705 | 78 |
hyprel``{%n. X n * Y n})"
|
| 10751 | 79 |
|
| 14370 | 80 |
hypreal_le_def: |
81 |
"P \<le> (Q::hypreal) == \<exists>X Y. X \<in> Rep_hypreal(P) & |
|
| 14299 | 82 |
Y \<in> Rep_hypreal(Q) & |
| 14705 | 83 |
{n. X n \<le> Y n} \<in> FreeUltrafilterNat"
|
| 14370 | 84 |
|
85 |
hypreal_less_def: "(x < (y::hypreal)) == (x \<le> y & x \<noteq> y)" |
|
| 10751 | 86 |
|
| 14329 | 87 |
hrabs_def: "abs (r::hypreal) == (if 0 \<le> r then r else -r)" |
88 |
||
89 |
||
90 |
subsection{*The Set of Naturals is not Finite*}
|
|
| 14299 | 91 |
|
92 |
(*** based on James' proof that the set of naturals is not finite ***) |
|
| 14329 | 93 |
lemma finite_exhausts [rule_format]: |
94 |
"finite (A::nat set) --> (\<exists>n. \<forall>m. Suc (n + m) \<notin> A)" |
|
| 14299 | 95 |
apply (rule impI) |
| 14301 | 96 |
apply (erule_tac F = A in finite_induct) |
97 |
apply (blast, erule exE) |
|
| 14299 | 98 |
apply (rule_tac x = "n + x" in exI) |
| 14301 | 99 |
apply (rule allI, erule_tac x = "x + m" in allE) |
| 14299 | 100 |
apply (auto simp add: add_ac) |
101 |
done |
|
102 |
||
| 14329 | 103 |
lemma finite_not_covers [rule_format (no_asm)]: |
104 |
"finite (A :: nat set) --> (\<exists>n. n \<notin>A)" |
|
| 14301 | 105 |
by (rule impI, drule finite_exhausts, blast) |
| 14299 | 106 |
|
107 |
lemma not_finite_nat: "~ finite(UNIV:: nat set)" |
|
| 14301 | 108 |
by (fast dest!: finite_exhausts) |
| 14299 | 109 |
|
| 14329 | 110 |
|
111 |
subsection{*Existence of Free Ultrafilter over the Naturals*}
|
|
112 |
||
113 |
text{*Also, proof of various properties of @{term FreeUltrafilterNat}:
|
|
114 |
an arbitrary free ultrafilter*} |
|
| 14299 | 115 |
|
| 14705 | 116 |
lemma FreeUltrafilterNat_Ex: "\<exists>U. U \<in> FreeUltrafilter (UNIV::nat set)" |
| 14301 | 117 |
by (rule not_finite_nat [THEN FreeUltrafilter_Ex]) |
| 14299 | 118 |
|
| 14301 | 119 |
lemma FreeUltrafilterNat_mem [simp]: |
| 14705 | 120 |
"FreeUltrafilterNat \<in> FreeUltrafilter(UNIV:: nat set)" |
| 14299 | 121 |
apply (unfold FreeUltrafilterNat_def) |
122 |
apply (rule FreeUltrafilterNat_Ex [THEN exE]) |
|
| 14301 | 123 |
apply (rule someI2, assumption+) |
| 14299 | 124 |
done |
125 |
||
126 |
lemma FreeUltrafilterNat_finite: "finite x ==> x \<notin> FreeUltrafilterNat" |
|
127 |
apply (unfold FreeUltrafilterNat_def) |
|
128 |
apply (rule FreeUltrafilterNat_Ex [THEN exE]) |
|
| 14301 | 129 |
apply (rule someI2, assumption) |
| 14299 | 130 |
apply (blast dest: mem_FreeUltrafiltersetD1) |
131 |
done |
|
132 |
||
| 14705 | 133 |
lemma FreeUltrafilterNat_not_finite: "x \<in> FreeUltrafilterNat ==> ~ finite x" |
| 14301 | 134 |
by (blast dest: FreeUltrafilterNat_finite) |
| 14299 | 135 |
|
| 14301 | 136 |
lemma FreeUltrafilterNat_empty [simp]: "{} \<notin> FreeUltrafilterNat"
|
| 14299 | 137 |
apply (unfold FreeUltrafilterNat_def) |
138 |
apply (rule FreeUltrafilterNat_Ex [THEN exE]) |
|
| 14301 | 139 |
apply (rule someI2, assumption) |
140 |
apply (blast dest: FreeUltrafilter_Ultrafilter Ultrafilter_Filter |
|
141 |
Filter_empty_not_mem) |
|
| 14299 | 142 |
done |
143 |
||
| 14329 | 144 |
lemma FreeUltrafilterNat_Int: |
| 14705 | 145 |
"[| X \<in> FreeUltrafilterNat; Y \<in> FreeUltrafilterNat |] |
| 14299 | 146 |
==> X Int Y \<in> FreeUltrafilterNat" |
| 14705 | 147 |
apply (insert FreeUltrafilterNat_mem) |
| 14299 | 148 |
apply (blast dest: FreeUltrafilter_Ultrafilter Ultrafilter_Filter mem_FiltersetD1) |
149 |
done |
|
150 |
||
| 14329 | 151 |
lemma FreeUltrafilterNat_subset: |
| 14705 | 152 |
"[| X \<in> FreeUltrafilterNat; X \<subseteq> Y |] |
| 14299 | 153 |
==> Y \<in> FreeUltrafilterNat" |
| 14705 | 154 |
apply (insert FreeUltrafilterNat_mem) |
| 14299 | 155 |
apply (blast dest: FreeUltrafilter_Ultrafilter Ultrafilter_Filter mem_FiltersetD2) |
156 |
done |
|
157 |
||
| 14329 | 158 |
lemma FreeUltrafilterNat_Compl: |
| 14705 | 159 |
"X \<in> FreeUltrafilterNat ==> -X \<notin> FreeUltrafilterNat" |
160 |
proof |
|
161 |
assume "X \<in> \<U>" and "- X \<in> \<U>" |
|
162 |
hence "X Int - X \<in> \<U>" by (rule FreeUltrafilterNat_Int) |
|
163 |
thus False by force |
|
164 |
qed |
|
| 14299 | 165 |
|
| 14329 | 166 |
lemma FreeUltrafilterNat_Compl_mem: |
167 |
"X\<notin> FreeUltrafilterNat ==> -X \<in> FreeUltrafilterNat" |
|
| 14299 | 168 |
apply (cut_tac FreeUltrafilterNat_mem [THEN FreeUltrafilter_iff [THEN iffD1]]) |
| 14301 | 169 |
apply (safe, drule_tac x = X in bspec) |
| 14299 | 170 |
apply (auto simp add: UNIV_diff_Compl) |
171 |
done |
|
172 |
||
| 14329 | 173 |
lemma FreeUltrafilterNat_Compl_iff1: |
| 14705 | 174 |
"(X \<notin> FreeUltrafilterNat) = (-X \<in> FreeUltrafilterNat)" |
| 14301 | 175 |
by (blast dest: FreeUltrafilterNat_Compl FreeUltrafilterNat_Compl_mem) |
| 14299 | 176 |
|
| 14329 | 177 |
lemma FreeUltrafilterNat_Compl_iff2: |
| 14705 | 178 |
"(X \<in> FreeUltrafilterNat) = (-X \<notin> FreeUltrafilterNat)" |
| 14301 | 179 |
by (auto simp add: FreeUltrafilterNat_Compl_iff1 [symmetric]) |
| 14299 | 180 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
181 |
lemma cofinite_mem_FreeUltrafilterNat: "finite (-X) ==> X \<in> FreeUltrafilterNat" |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
182 |
apply (drule FreeUltrafilterNat_finite) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
183 |
apply (simp add: FreeUltrafilterNat_Compl_iff2 [symmetric]) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
184 |
done |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
185 |
|
| 14301 | 186 |
lemma FreeUltrafilterNat_UNIV [simp]: "(UNIV::nat set) \<in> FreeUltrafilterNat" |
187 |
by (rule FreeUltrafilterNat_mem [THEN FreeUltrafilter_Ultrafilter, THEN Ultrafilter_Filter, THEN mem_FiltersetD4]) |
|
| 14299 | 188 |
|
| 14301 | 189 |
lemma FreeUltrafilterNat_Nat_set [simp]: "UNIV \<in> FreeUltrafilterNat" |
190 |
by auto |
|
| 14299 | 191 |
|
| 14329 | 192 |
lemma FreeUltrafilterNat_Nat_set_refl [intro]: |
193 |
"{n. P(n) = P(n)} \<in> FreeUltrafilterNat"
|
|
| 14301 | 194 |
by simp |
| 14299 | 195 |
|
196 |
lemma FreeUltrafilterNat_P: "{n::nat. P} \<in> FreeUltrafilterNat ==> P"
|
|
| 14301 | 197 |
by (rule ccontr, simp) |
| 14299 | 198 |
|
199 |
lemma FreeUltrafilterNat_Ex_P: "{n. P(n)} \<in> FreeUltrafilterNat ==> \<exists>n. P(n)"
|
|
| 14301 | 200 |
by (rule ccontr, simp) |
| 14299 | 201 |
|
202 |
lemma FreeUltrafilterNat_all: "\<forall>n. P(n) ==> {n. P(n)} \<in> FreeUltrafilterNat"
|
|
| 14301 | 203 |
by (auto intro: FreeUltrafilterNat_Nat_set) |
| 14299 | 204 |
|
| 14329 | 205 |
|
206 |
text{*Define and use Ultrafilter tactics*}
|
|
| 14299 | 207 |
use "fuf.ML" |
208 |
||
209 |
method_setup fuf = {*
|
|
210 |
Method.ctxt_args (fn ctxt => |
|
211 |
Method.METHOD (fn facts => |
|
| 15032 | 212 |
fuf_tac (local_clasimpset_of ctxt) 1)) *} |
| 14299 | 213 |
"free ultrafilter tactic" |
214 |
||
215 |
method_setup ultra = {*
|
|
216 |
Method.ctxt_args (fn ctxt => |
|
217 |
Method.METHOD (fn facts => |
|
| 15032 | 218 |
ultra_tac (local_clasimpset_of ctxt) 1)) *} |
| 14299 | 219 |
"ultrafilter tactic" |
220 |
||
221 |
||
| 14329 | 222 |
text{*One further property of our free ultrafilter*}
|
223 |
lemma FreeUltrafilterNat_Un: |
|
| 14705 | 224 |
"X Un Y \<in> FreeUltrafilterNat |
225 |
==> X \<in> FreeUltrafilterNat | Y \<in> FreeUltrafilterNat" |
|
226 |
by (auto, ultra) |
|
| 14299 | 227 |
|
228 |
||
| 14329 | 229 |
subsection{*Properties of @{term hyprel}*}
|
230 |
||
231 |
text{*Proving that @{term hyprel} is an equivalence relation*}
|
|
| 14299 | 232 |
|
| 14705 | 233 |
lemma hyprel_iff: "((X,Y) \<in> hyprel) = ({n. X n = Y n} \<in> FreeUltrafilterNat)"
|
| 14468 | 234 |
by (simp add: hyprel_def) |
| 14299 | 235 |
|
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
236 |
lemma hyprel_refl: "(x,x) \<in> hyprel" |
| 14468 | 237 |
by (simp add: hyprel_def) |
| 14299 | 238 |
|
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
239 |
lemma hyprel_sym [rule_format (no_asm)]: "(x,y) \<in> hyprel --> (y,x) \<in> hyprel" |
| 14301 | 240 |
by (simp add: hyprel_def eq_commute) |
| 14299 | 241 |
|
242 |
lemma hyprel_trans: |
|
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
243 |
"[|(x,y) \<in> hyprel; (y,z) \<in> hyprel|] ==> (x,z) \<in> hyprel" |
| 14468 | 244 |
by (simp add: hyprel_def, ultra) |
| 14299 | 245 |
|
246 |
lemma equiv_hyprel: "equiv UNIV hyprel" |
|
247 |
apply (simp add: equiv_def refl_def sym_def trans_def hyprel_refl) |
|
248 |
apply (blast intro: hyprel_sym hyprel_trans) |
|
249 |
done |
|
250 |
||
251 |
(* (hyprel `` {x} = hyprel `` {y}) = ((x,y) \<in> hyprel) *)
|
|
252 |
lemmas equiv_hyprel_iff = |
|
253 |
eq_equiv_class_iff [OF equiv_hyprel UNIV_I UNIV_I, simp] |
|
254 |
||
| 14301 | 255 |
lemma hyprel_in_hypreal [simp]: "hyprel``{x}:hypreal"
|
| 14468 | 256 |
by (simp add: hypreal_def hyprel_def quotient_def, blast) |
| 14299 | 257 |
|
258 |
lemma inj_on_Abs_hypreal: "inj_on Abs_hypreal hypreal" |
|
259 |
apply (rule inj_on_inverseI) |
|
260 |
apply (erule Abs_hypreal_inverse) |
|
261 |
done |
|
262 |
||
263 |
declare inj_on_Abs_hypreal [THEN inj_on_iff, simp] |
|
| 14301 | 264 |
Abs_hypreal_inverse [simp] |
| 14299 | 265 |
|
266 |
declare equiv_hyprel [THEN eq_equiv_class_iff, simp] |
|
267 |
||
268 |
declare hyprel_iff [iff] |
|
269 |
||
270 |
lemmas eq_hyprelD = eq_equiv_class [OF _ equiv_hyprel] |
|
271 |
||
272 |
lemma inj_Rep_hypreal: "inj(Rep_hypreal)" |
|
273 |
apply (rule inj_on_inverseI) |
|
274 |
apply (rule Rep_hypreal_inverse) |
|
275 |
done |
|
276 |
||
| 14301 | 277 |
lemma lemma_hyprel_refl [simp]: "x \<in> hyprel `` {x}"
|
| 14468 | 278 |
by (simp add: hyprel_def) |
| 14299 | 279 |
|
| 14301 | 280 |
lemma hypreal_empty_not_mem [simp]: "{} \<notin> hypreal"
|
| 14468 | 281 |
apply (simp add: hypreal_def) |
| 14299 | 282 |
apply (auto elim!: quotientE equalityCE) |
283 |
done |
|
284 |
||
| 14301 | 285 |
lemma Rep_hypreal_nonempty [simp]: "Rep_hypreal x \<noteq> {}"
|
| 14705 | 286 |
by (insert Rep_hypreal [of x], auto) |
| 14299 | 287 |
|
288 |
||
| 14329 | 289 |
subsection{*@{term hypreal_of_real}:
|
290 |
the Injection from @{typ real} to @{typ hypreal}*}
|
|
| 14299 | 291 |
|
292 |
lemma inj_hypreal_of_real: "inj(hypreal_of_real)" |
|
293 |
apply (rule inj_onI) |
|
| 14468 | 294 |
apply (simp add: hypreal_of_real_def split: split_if_asm) |
| 14299 | 295 |
done |
296 |
||
297 |
lemma eq_Abs_hypreal: |
|
| 14468 | 298 |
"(!!x. z = Abs_hypreal(hyprel``{x}) ==> P) ==> P"
|
| 14299 | 299 |
apply (rule_tac x1=z in Rep_hypreal [unfolded hypreal_def, THEN quotientE]) |
| 14301 | 300 |
apply (drule_tac f = Abs_hypreal in arg_cong) |
| 14299 | 301 |
apply (force simp add: Rep_hypreal_inverse) |
302 |
done |
|
303 |
||
| 14468 | 304 |
theorem hypreal_cases [case_names Abs_hypreal, cases type: hypreal]: |
305 |
"(!!x. z = Abs_hypreal(hyprel``{x}) ==> P) ==> P"
|
|
306 |
by (rule eq_Abs_hypreal [of z], blast) |
|
307 |
||
| 14329 | 308 |
|
309 |
subsection{*Hyperreal Addition*}
|
|
310 |
||
311 |
lemma hypreal_add_congruent2: |
|
| 14658 | 312 |
"congruent2 hyprel hyprel (%X Y. hyprel``{%n. X n + Y n})"
|
| 14705 | 313 |
by (simp add: congruent2_def, auto, ultra) |
| 14329 | 314 |
|
315 |
lemma hypreal_add: |
|
316 |
"Abs_hypreal(hyprel``{%n. X n}) + Abs_hypreal(hyprel``{%n. Y n}) =
|
|
317 |
Abs_hypreal(hyprel``{%n. X n + Y n})"
|
|
| 14658 | 318 |
by (simp add: hypreal_add_def |
319 |
UN_equiv_class2 [OF equiv_hyprel equiv_hyprel hypreal_add_congruent2]) |
|
| 14329 | 320 |
|
321 |
lemma hypreal_add_commute: "(z::hypreal) + w = w + z" |
|
| 14468 | 322 |
apply (cases z, cases w) |
| 14334 | 323 |
apply (simp add: add_ac hypreal_add) |
| 14329 | 324 |
done |
325 |
||
326 |
lemma hypreal_add_assoc: "((z1::hypreal) + z2) + z3 = z1 + (z2 + z3)" |
|
| 14468 | 327 |
apply (cases z1, cases z2, cases z3) |
| 14329 | 328 |
apply (simp add: hypreal_add real_add_assoc) |
329 |
done |
|
330 |
||
| 14331 | 331 |
lemma hypreal_add_zero_left: "(0::hypreal) + z = z" |
| 14468 | 332 |
by (cases z, simp add: hypreal_zero_def hypreal_add) |
| 14329 | 333 |
|
| 14738 | 334 |
instance hypreal :: comm_monoid_add |
| 14691 | 335 |
by intro_classes |
336 |
(assumption | |
|
337 |
rule hypreal_add_commute hypreal_add_assoc hypreal_add_zero_left)+ |
|
| 14329 | 338 |
|
339 |
lemma hypreal_add_zero_right [simp]: "z + (0::hypreal) = z" |
|
340 |
by (simp add: hypreal_add_zero_left hypreal_add_commute) |
|
341 |
||
342 |
||
343 |
subsection{*Additive inverse on @{typ hypreal}*}
|
|
| 14299 | 344 |
|
345 |
lemma hypreal_minus_congruent: |
|
346 |
"congruent hyprel (%X. hyprel``{%n. - (X n)})"
|
|
347 |
by (force simp add: congruent_def) |
|
348 |
||
349 |
lemma hypreal_minus: |
|
350 |
"- (Abs_hypreal(hyprel``{%n. X n})) = Abs_hypreal(hyprel `` {%n. -(X n)})"
|
|
| 14705 | 351 |
by (simp add: hypreal_minus_def Abs_hypreal_inject |
352 |
hyprel_in_hypreal [THEN Abs_hypreal_inverse] |
|
353 |
UN_equiv_class [OF equiv_hyprel hypreal_minus_congruent]) |
|
| 14299 | 354 |
|
| 14329 | 355 |
lemma hypreal_diff: |
356 |
"Abs_hypreal(hyprel``{%n. X n}) - Abs_hypreal(hyprel``{%n. Y n}) =
|
|
| 14299 | 357 |
Abs_hypreal(hyprel``{%n. X n - Y n})"
|
| 14705 | 358 |
by (simp add: hypreal_diff_def hypreal_minus hypreal_add) |
| 14299 | 359 |
|
| 14301 | 360 |
lemma hypreal_add_minus [simp]: "z + -z = (0::hypreal)" |
| 14705 | 361 |
by (cases z, simp add: hypreal_zero_def hypreal_minus hypreal_add) |
| 14299 | 362 |
|
| 14331 | 363 |
lemma hypreal_add_minus_left: "-z + z = (0::hypreal)" |
| 14301 | 364 |
by (simp add: hypreal_add_commute hypreal_add_minus) |
| 14299 | 365 |
|
| 14329 | 366 |
|
367 |
subsection{*Hyperreal Multiplication*}
|
|
| 14299 | 368 |
|
369 |
lemma hypreal_mult_congruent2: |
|
| 14658 | 370 |
"congruent2 hyprel hyprel (%X Y. hyprel``{%n. X n * Y n})"
|
371 |
by (simp add: congruent2_def, auto, ultra) |
|
| 14299 | 372 |
|
373 |
lemma hypreal_mult: |
|
374 |
"Abs_hypreal(hyprel``{%n. X n}) * Abs_hypreal(hyprel``{%n. Y n}) =
|
|
375 |
Abs_hypreal(hyprel``{%n. X n * Y n})"
|
|
| 14658 | 376 |
by (simp add: hypreal_mult_def |
377 |
UN_equiv_class2 [OF equiv_hyprel equiv_hyprel hypreal_mult_congruent2]) |
|
| 14299 | 378 |
|
379 |
lemma hypreal_mult_commute: "(z::hypreal) * w = w * z" |
|
| 14705 | 380 |
by (cases z, cases w, simp add: hypreal_mult mult_ac) |
| 14299 | 381 |
|
382 |
lemma hypreal_mult_assoc: "((z1::hypreal) * z2) * z3 = z1 * (z2 * z3)" |
|
| 14705 | 383 |
by (cases z1, cases z2, cases z3, simp add: hypreal_mult mult_assoc) |
| 14299 | 384 |
|
| 14331 | 385 |
lemma hypreal_mult_1: "(1::hypreal) * z = z" |
| 14705 | 386 |
by (cases z, simp add: hypreal_one_def hypreal_mult) |
| 14301 | 387 |
|
| 14329 | 388 |
lemma hypreal_add_mult_distrib: |
389 |
"((z1::hypreal) + z2) * w = (z1 * w) + (z2 * w)" |
|
| 14705 | 390 |
by (cases z1, cases z2, cases w, simp add: hypreal_mult hypreal_add left_distrib) |
| 14299 | 391 |
|
| 14331 | 392 |
text{*one and zero are distinct*}
|
| 14299 | 393 |
lemma hypreal_zero_not_eq_one: "0 \<noteq> (1::hypreal)" |
| 14468 | 394 |
by (simp add: hypreal_zero_def hypreal_one_def) |
| 14299 | 395 |
|
396 |
||
| 14329 | 397 |
subsection{*Multiplicative Inverse on @{typ hypreal} *}
|
| 14299 | 398 |
|
399 |
lemma hypreal_inverse_congruent: |
|
400 |
"congruent hyprel (%X. hyprel``{%n. if X n = 0 then 0 else inverse(X n)})"
|
|
| 14705 | 401 |
by (auto simp add: congruent_def, ultra) |
| 14299 | 402 |
|
403 |
lemma hypreal_inverse: |
|
404 |
"inverse (Abs_hypreal(hyprel``{%n. X n})) =
|
|
405 |
Abs_hypreal(hyprel `` {%n. if X n = 0 then 0 else inverse(X n)})"
|
|
| 14705 | 406 |
by (simp add: hypreal_inverse_def Abs_hypreal_inject |
407 |
hyprel_in_hypreal [THEN Abs_hypreal_inverse] |
|
408 |
UN_equiv_class [OF equiv_hyprel hypreal_inverse_congruent]) |
|
| 14299 | 409 |
|
| 14331 | 410 |
lemma hypreal_mult_inverse: |
| 14299 | 411 |
"x \<noteq> 0 ==> x*inverse(x) = (1::hypreal)" |
| 14468 | 412 |
apply (cases x) |
| 14705 | 413 |
apply (simp add: hypreal_one_def hypreal_zero_def hypreal_inverse hypreal_mult) |
| 14299 | 414 |
apply (drule FreeUltrafilterNat_Compl_mem) |
| 14334 | 415 |
apply (blast intro!: right_inverse FreeUltrafilterNat_subset) |
| 14299 | 416 |
done |
417 |
||
| 14331 | 418 |
lemma hypreal_mult_inverse_left: |
| 14329 | 419 |
"x \<noteq> 0 ==> inverse(x)*x = (1::hypreal)" |
| 14301 | 420 |
by (simp add: hypreal_mult_inverse hypreal_mult_commute) |
| 14299 | 421 |
|
| 14331 | 422 |
instance hypreal :: field |
423 |
proof |
|
424 |
fix x y z :: hypreal |
|
425 |
show "- x + x = 0" by (simp add: hypreal_add_minus_left) |
|
426 |
show "x - y = x + (-y)" by (simp add: hypreal_diff_def) |
|
427 |
show "(x * y) * z = x * (y * z)" by (rule hypreal_mult_assoc) |
|
428 |
show "x * y = y * x" by (rule hypreal_mult_commute) |
|
429 |
show "1 * x = x" by (simp add: hypreal_mult_1) |
|
430 |
show "(x + y) * z = x * z + y * z" by (simp add: hypreal_add_mult_distrib) |
|
431 |
show "0 \<noteq> (1::hypreal)" by (rule hypreal_zero_not_eq_one) |
|
432 |
show "x \<noteq> 0 ==> inverse x * x = 1" by (simp add: hypreal_mult_inverse_left) |
|
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14421
diff
changeset
|
433 |
show "x / y = x * inverse y" by (simp add: hypreal_divide_def) |
| 14331 | 434 |
qed |
435 |
||
436 |
||
437 |
instance hypreal :: division_by_zero |
|
438 |
proof |
|
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14421
diff
changeset
|
439 |
show "inverse 0 = (0::hypreal)" |
|
14421
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents:
14387
diff
changeset
|
440 |
by (simp add: hypreal_inverse hypreal_zero_def) |
| 14331 | 441 |
qed |
442 |
||
| 14329 | 443 |
|
444 |
subsection{*Properties of The @{text "\<le>"} Relation*}
|
|
| 14299 | 445 |
|
446 |
lemma hypreal_le: |
|
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
447 |
"(Abs_hypreal(hyprel``{%n. X n}) \<le> Abs_hypreal(hyprel``{%n. Y n})) =
|
|
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
448 |
({n. X n \<le> Y n} \<in> FreeUltrafilterNat)"
|
| 14468 | 449 |
apply (simp add: hypreal_le_def) |
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
450 |
apply (auto intro!: lemma_hyprel_refl, ultra) |
| 14299 | 451 |
done |
452 |
||
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
453 |
lemma hypreal_le_refl: "w \<le> (w::hypreal)" |
| 14705 | 454 |
by (cases w, simp add: hypreal_le) |
| 14299 | 455 |
|
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
456 |
lemma hypreal_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::hypreal)" |
| 14705 | 457 |
by (cases i, cases j, cases k, simp add: hypreal_le, ultra) |
| 14299 | 458 |
|
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
459 |
lemma hypreal_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::hypreal)" |
| 14705 | 460 |
by (cases z, cases w, simp add: hypreal_le, ultra) |
| 14299 | 461 |
|
462 |
(* Axiom 'order_less_le' of class 'order': *) |
|
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
463 |
lemma hypreal_less_le: "((w::hypreal) < z) = (w \<le> z & w \<noteq> z)" |
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
464 |
by (simp add: hypreal_less_def) |
| 14299 | 465 |
|
| 14329 | 466 |
instance hypreal :: order |
| 14691 | 467 |
by intro_classes |
468 |
(assumption | |
|
469 |
rule hypreal_le_refl hypreal_le_trans hypreal_le_anti_sym hypreal_less_le)+ |
|
| 14370 | 470 |
|
471 |
||
472 |
(* Axiom 'linorder_linear' of class 'linorder': *) |
|
473 |
lemma hypreal_le_linear: "(z::hypreal) \<le> w | w \<le> z" |
|
| 14468 | 474 |
apply (cases z, cases w) |
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
475 |
apply (auto simp add: hypreal_le, ultra) |
| 14370 | 476 |
done |
| 14329 | 477 |
|
478 |
instance hypreal :: linorder |
|
| 14691 | 479 |
by intro_classes (rule hypreal_le_linear) |
| 14329 | 480 |
|
| 14370 | 481 |
lemma hypreal_not_refl2: "!!(x::hypreal). x < y ==> x \<noteq> y" |
482 |
by (auto simp add: order_less_irrefl) |
|
| 14329 | 483 |
|
| 14370 | 484 |
lemma hypreal_add_left_mono: "x \<le> y ==> z + x \<le> z + (y::hypreal)" |
| 14468 | 485 |
apply (cases x, cases y, cases z) |
| 14370 | 486 |
apply (auto simp add: hypreal_le hypreal_add) |
| 14329 | 487 |
done |
488 |
||
489 |
lemma hypreal_mult_less_mono2: "[| (0::hypreal)<z; x<y |] ==> z*x<z*y" |
|
| 14468 | 490 |
apply (cases x, cases y, cases z) |
| 14370 | 491 |
apply (auto simp add: hypreal_zero_def hypreal_le hypreal_mult |
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
492 |
linorder_not_le [symmetric], ultra) |
| 14329 | 493 |
done |
494 |
||
| 14370 | 495 |
|
| 14329 | 496 |
subsection{*The Hyperreals Form an Ordered Field*}
|
497 |
||
498 |
instance hypreal :: ordered_field |
|
499 |
proof |
|
500 |
fix x y z :: hypreal |
|
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
501 |
show "x \<le> y ==> z + x \<le> z + y" |
| 14370 | 502 |
by (rule hypreal_add_left_mono) |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
503 |
show "x < y ==> 0 < z ==> z * x < z * y" |
|
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
504 |
by (simp add: hypreal_mult_less_mono2) |
| 14329 | 505 |
show "\<bar>x\<bar> = (if x < 0 then -x else x)" |
506 |
by (auto dest: order_le_less_trans simp add: hrabs_def linorder_not_le) |
|
507 |
qed |
|
508 |
||
| 14331 | 509 |
lemma hypreal_eq_minus_iff: "((x::hypreal) = y) = (x + - y = 0)" |
510 |
apply auto |
|
| 14738 | 511 |
apply (rule OrderedGroup.add_right_cancel [of _ "-y", THEN iffD1], auto) |
| 14331 | 512 |
done |
513 |
||
| 14329 | 514 |
lemma hypreal_mult_left_cancel: "(c::hypreal) \<noteq> 0 ==> (c*a=c*b) = (a=b)" |
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
515 |
by auto |
| 14329 | 516 |
|
517 |
lemma hypreal_mult_right_cancel: "(c::hypreal) \<noteq> 0 ==> (a*c=b*c) = (a=b)" |
|
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
518 |
by auto |
| 14329 | 519 |
|
520 |
||
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
521 |
subsection{*The Embedding @{term hypreal_of_real} Preserves Field and
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
522 |
Order Properties*} |
| 14329 | 523 |
|
| 14301 | 524 |
lemma hypreal_of_real_add [simp]: |
| 14369 | 525 |
"hypreal_of_real (w + z) = hypreal_of_real w + hypreal_of_real z" |
| 14705 | 526 |
by (simp add: hypreal_of_real_def, simp add: hypreal_add left_distrib) |
| 14299 | 527 |
|
| 15013 | 528 |
lemma hypreal_of_real_minus [simp]: |
529 |
"hypreal_of_real (-r) = - hypreal_of_real r" |
|
530 |
by (auto simp add: hypreal_of_real_def hypreal_minus) |
|
531 |
||
532 |
lemma hypreal_of_real_diff [simp]: |
|
533 |
"hypreal_of_real (w - z) = hypreal_of_real w - hypreal_of_real z" |
|
534 |
by (simp add: diff_minus) |
|
535 |
||
| 14301 | 536 |
lemma hypreal_of_real_mult [simp]: |
| 14369 | 537 |
"hypreal_of_real (w * z) = hypreal_of_real w * hypreal_of_real z" |
| 14705 | 538 |
by (simp add: hypreal_of_real_def, simp add: hypreal_mult right_distrib) |
| 14299 | 539 |
|
| 14301 | 540 |
lemma hypreal_of_real_one [simp]: "hypreal_of_real 1 = (1::hypreal)" |
| 14468 | 541 |
by (simp add: hypreal_of_real_def hypreal_one_def) |
| 14299 | 542 |
|
| 14301 | 543 |
lemma hypreal_of_real_zero [simp]: "hypreal_of_real 0 = 0" |
| 14468 | 544 |
by (simp add: hypreal_of_real_def hypreal_zero_def) |
| 14299 | 545 |
|
| 14370 | 546 |
lemma hypreal_of_real_le_iff [simp]: |
547 |
"(hypreal_of_real w \<le> hypreal_of_real z) = (w \<le> z)" |
|
| 14468 | 548 |
apply (simp add: hypreal_le_def hypreal_of_real_def, auto) |
| 14369 | 549 |
apply (rule_tac [2] x = "%n. w" in exI, safe) |
550 |
apply (rule_tac [3] x = "%n. z" in exI, auto) |
|
551 |
apply (rule FreeUltrafilterNat_P, ultra) |
|
552 |
done |
|
553 |
||
| 14370 | 554 |
lemma hypreal_of_real_less_iff [simp]: |
555 |
"(hypreal_of_real w < hypreal_of_real z) = (w < z)" |
|
556 |
by (simp add: linorder_not_le [symmetric]) |
|
| 14369 | 557 |
|
558 |
lemma hypreal_of_real_eq_iff [simp]: |
|
559 |
"(hypreal_of_real w = hypreal_of_real z) = (w = z)" |
|
560 |
by (force intro: order_antisym hypreal_of_real_le_iff [THEN iffD1]) |
|
561 |
||
562 |
text{*As above, for 0*}
|
|
563 |
||
564 |
declare hypreal_of_real_less_iff [of 0, simplified, simp] |
|
565 |
declare hypreal_of_real_le_iff [of 0, simplified, simp] |
|
566 |
declare hypreal_of_real_eq_iff [of 0, simplified, simp] |
|
567 |
||
568 |
declare hypreal_of_real_less_iff [of _ 0, simplified, simp] |
|
569 |
declare hypreal_of_real_le_iff [of _ 0, simplified, simp] |
|
570 |
declare hypreal_of_real_eq_iff [of _ 0, simplified, simp] |
|
571 |
||
572 |
text{*As above, for 1*}
|
|
573 |
||
574 |
declare hypreal_of_real_less_iff [of 1, simplified, simp] |
|
575 |
declare hypreal_of_real_le_iff [of 1, simplified, simp] |
|
576 |
declare hypreal_of_real_eq_iff [of 1, simplified, simp] |
|
577 |
||
578 |
declare hypreal_of_real_less_iff [of _ 1, simplified, simp] |
|
579 |
declare hypreal_of_real_le_iff [of _ 1, simplified, simp] |
|
580 |
declare hypreal_of_real_eq_iff [of _ 1, simplified, simp] |
|
581 |
||
| 14329 | 582 |
lemma hypreal_of_real_inverse [simp]: |
583 |
"hypreal_of_real (inverse r) = inverse (hypreal_of_real r)" |
|
| 14370 | 584 |
apply (case_tac "r=0", simp) |
| 14299 | 585 |
apply (rule_tac c1 = "hypreal_of_real r" in hypreal_mult_left_cancel [THEN iffD1]) |
| 14369 | 586 |
apply (auto simp add: hypreal_of_real_mult [symmetric]) |
| 14299 | 587 |
done |
588 |
||
| 14329 | 589 |
lemma hypreal_of_real_divide [simp]: |
| 14369 | 590 |
"hypreal_of_real (w / z) = hypreal_of_real w / hypreal_of_real z" |
| 14301 | 591 |
by (simp add: hypreal_divide_def real_divide_def) |
| 14299 | 592 |
|
| 15013 | 593 |
lemma hypreal_of_real_of_nat [simp]: "hypreal_of_real (of_nat n) = of_nat n" |
594 |
by (induct n, simp_all) |
|
595 |
||
596 |
lemma hypreal_of_real_of_int [simp]: "hypreal_of_real (of_int z) = of_int z" |
|
597 |
proof (cases z) |
|
598 |
case (1 n) |
|
599 |
thus ?thesis by simp |
|
600 |
next |
|
601 |
case (2 n) |
|
602 |
thus ?thesis |
|
603 |
by (simp only: of_int_minus hypreal_of_real_minus, simp) |
|
604 |
qed |
|
605 |
||
| 14299 | 606 |
|
| 14329 | 607 |
subsection{*Misc Others*}
|
| 14299 | 608 |
|
| 14370 | 609 |
lemma hypreal_less: |
610 |
"(Abs_hypreal(hyprel``{%n. X n}) < Abs_hypreal(hyprel``{%n. Y n})) =
|
|
611 |
({n. X n < Y n} \<in> FreeUltrafilterNat)"
|
|
| 14705 | 612 |
by (auto simp add: hypreal_le linorder_not_le [symmetric], ultra+) |
| 14370 | 613 |
|
| 14299 | 614 |
lemma hypreal_zero_num: "0 = Abs_hypreal (hyprel `` {%n. 0})"
|
| 14301 | 615 |
by (simp add: hypreal_zero_def [THEN meta_eq_to_obj_eq, symmetric]) |
| 14299 | 616 |
|
617 |
lemma hypreal_one_num: "1 = Abs_hypreal (hyprel `` {%n. 1})"
|
|
| 14301 | 618 |
by (simp add: hypreal_one_def [THEN meta_eq_to_obj_eq, symmetric]) |
| 14299 | 619 |
|
| 14301 | 620 |
lemma hypreal_omega_gt_zero [simp]: "0 < omega" |
| 14705 | 621 |
by (auto simp add: omega_def hypreal_less hypreal_zero_num) |
| 14299 | 622 |
|
| 14329 | 623 |
lemma hypreal_hrabs: |
624 |
"abs (Abs_hypreal (hyprel `` {X})) =
|
|
625 |
Abs_hypreal(hyprel `` {%n. abs (X n)})"
|
|
626 |
apply (auto simp add: hrabs_def hypreal_zero_def hypreal_le hypreal_minus) |
|
627 |
apply (ultra, arith)+ |
|
628 |
done |
|
629 |
||
| 14370 | 630 |
|
631 |
||
632 |
lemma hypreal_add_zero_less_le_mono: "[|r < x; (0::hypreal) \<le> y|] ==> r < x+y" |
|
633 |
by (auto dest: add_less_le_mono) |
|
634 |
||
635 |
text{*The precondition could be weakened to @{term "0\<le>x"}*}
|
|
636 |
lemma hypreal_mult_less_mono: |
|
637 |
"[| u<v; x<y; (0::hypreal) < v; 0 < x |] ==> u*x < v* y" |
|
638 |
by (simp add: Ring_and_Field.mult_strict_mono order_less_imp_le) |
|
639 |
||
640 |
||
641 |
subsection{*Existence of Infinite Hyperreal Number*}
|
|
642 |
||
643 |
lemma Rep_hypreal_omega: "Rep_hypreal(omega) \<in> hypreal" |
|
| 14468 | 644 |
by (simp add: omega_def) |
| 14370 | 645 |
|
646 |
text{*Existence of infinite number not corresponding to any real number.
|
|
647 |
Use assumption that member @{term FreeUltrafilterNat} is not finite.*}
|
|
648 |
||
649 |
||
650 |
text{*A few lemmas first*}
|
|
651 |
||
652 |
lemma lemma_omega_empty_singleton_disj: "{n::nat. x = real n} = {} |
|
|
653 |
(\<exists>y. {n::nat. x = real n} = {y})"
|
|
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
654 |
by force |
| 14370 | 655 |
|
656 |
lemma lemma_finite_omega_set: "finite {n::nat. x = real n}"
|
|
657 |
by (cut_tac x = x in lemma_omega_empty_singleton_disj, auto) |
|
658 |
||
659 |
lemma not_ex_hypreal_of_real_eq_omega: |
|
660 |
"~ (\<exists>x. hypreal_of_real x = omega)" |
|
| 14468 | 661 |
apply (simp add: omega_def hypreal_of_real_def) |
| 14370 | 662 |
apply (auto simp add: real_of_nat_Suc diff_eq_eq [symmetric] |
663 |
lemma_finite_omega_set [THEN FreeUltrafilterNat_finite]) |
|
664 |
done |
|
665 |
||
666 |
lemma hypreal_of_real_not_eq_omega: "hypreal_of_real x \<noteq> omega" |
|
| 14705 | 667 |
by (insert not_ex_hypreal_of_real_eq_omega, auto) |
| 14370 | 668 |
|
669 |
text{*Existence of infinitesimal number also not corresponding to any
|
|
670 |
real number*} |
|
671 |
||
672 |
lemma lemma_epsilon_empty_singleton_disj: |
|
673 |
"{n::nat. x = inverse(real(Suc n))} = {} |
|
|
674 |
(\<exists>y. {n::nat. x = inverse(real(Suc n))} = {y})"
|
|
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
675 |
by auto |
| 14370 | 676 |
|
677 |
lemma lemma_finite_epsilon_set: "finite {n. x = inverse(real(Suc n))}"
|
|
678 |
by (cut_tac x = x in lemma_epsilon_empty_singleton_disj, auto) |
|
679 |
||
| 14705 | 680 |
lemma not_ex_hypreal_of_real_eq_epsilon: "~ (\<exists>x. hypreal_of_real x = epsilon)" |
681 |
by (auto simp add: epsilon_def hypreal_of_real_def |
|
682 |
lemma_finite_epsilon_set [THEN FreeUltrafilterNat_finite]) |
|
| 14370 | 683 |
|
684 |
lemma hypreal_of_real_not_eq_epsilon: "hypreal_of_real x \<noteq> epsilon" |
|
| 14705 | 685 |
by (insert not_ex_hypreal_of_real_eq_epsilon, auto) |
| 14370 | 686 |
|
687 |
lemma hypreal_epsilon_not_zero: "epsilon \<noteq> 0" |
|
| 14468 | 688 |
by (simp add: epsilon_def hypreal_zero_def) |
| 14370 | 689 |
|
690 |
lemma hypreal_epsilon_inverse_omega: "epsilon = inverse(omega)" |
|
691 |
by (simp add: hypreal_inverse omega_def epsilon_def) |
|
692 |
||
693 |
||
| 14299 | 694 |
ML |
695 |
{*
|
|
| 14329 | 696 |
val hrabs_def = thm "hrabs_def"; |
697 |
val hypreal_hrabs = thm "hypreal_hrabs"; |
|
698 |
||
| 14299 | 699 |
val hypreal_zero_def = thm "hypreal_zero_def"; |
700 |
val hypreal_one_def = thm "hypreal_one_def"; |
|
701 |
val hypreal_minus_def = thm "hypreal_minus_def"; |
|
702 |
val hypreal_diff_def = thm "hypreal_diff_def"; |
|
703 |
val hypreal_inverse_def = thm "hypreal_inverse_def"; |
|
704 |
val hypreal_divide_def = thm "hypreal_divide_def"; |
|
705 |
val hypreal_of_real_def = thm "hypreal_of_real_def"; |
|
706 |
val omega_def = thm "omega_def"; |
|
707 |
val epsilon_def = thm "epsilon_def"; |
|
708 |
val hypreal_add_def = thm "hypreal_add_def"; |
|
709 |
val hypreal_mult_def = thm "hypreal_mult_def"; |
|
710 |
val hypreal_less_def = thm "hypreal_less_def"; |
|
711 |
val hypreal_le_def = thm "hypreal_le_def"; |
|
712 |
||
713 |
val finite_exhausts = thm "finite_exhausts"; |
|
714 |
val finite_not_covers = thm "finite_not_covers"; |
|
715 |
val not_finite_nat = thm "not_finite_nat"; |
|
716 |
val FreeUltrafilterNat_Ex = thm "FreeUltrafilterNat_Ex"; |
|
717 |
val FreeUltrafilterNat_mem = thm "FreeUltrafilterNat_mem"; |
|
718 |
val FreeUltrafilterNat_finite = thm "FreeUltrafilterNat_finite"; |
|
719 |
val FreeUltrafilterNat_not_finite = thm "FreeUltrafilterNat_not_finite"; |
|
720 |
val FreeUltrafilterNat_empty = thm "FreeUltrafilterNat_empty"; |
|
721 |
val FreeUltrafilterNat_Int = thm "FreeUltrafilterNat_Int"; |
|
722 |
val FreeUltrafilterNat_subset = thm "FreeUltrafilterNat_subset"; |
|
723 |
val FreeUltrafilterNat_Compl = thm "FreeUltrafilterNat_Compl"; |
|
724 |
val FreeUltrafilterNat_Compl_mem = thm "FreeUltrafilterNat_Compl_mem"; |
|
725 |
val FreeUltrafilterNat_Compl_iff1 = thm "FreeUltrafilterNat_Compl_iff1"; |
|
726 |
val FreeUltrafilterNat_Compl_iff2 = thm "FreeUltrafilterNat_Compl_iff2"; |
|
727 |
val FreeUltrafilterNat_UNIV = thm "FreeUltrafilterNat_UNIV"; |
|
728 |
val FreeUltrafilterNat_Nat_set = thm "FreeUltrafilterNat_Nat_set"; |
|
729 |
val FreeUltrafilterNat_Nat_set_refl = thm "FreeUltrafilterNat_Nat_set_refl"; |
|
730 |
val FreeUltrafilterNat_P = thm "FreeUltrafilterNat_P"; |
|
731 |
val FreeUltrafilterNat_Ex_P = thm "FreeUltrafilterNat_Ex_P"; |
|
732 |
val FreeUltrafilterNat_all = thm "FreeUltrafilterNat_all"; |
|
733 |
val FreeUltrafilterNat_Un = thm "FreeUltrafilterNat_Un"; |
|
734 |
val hyprel_iff = thm "hyprel_iff"; |
|
735 |
val hyprel_in_hypreal = thm "hyprel_in_hypreal"; |
|
736 |
val Abs_hypreal_inverse = thm "Abs_hypreal_inverse"; |
|
737 |
val inj_on_Abs_hypreal = thm "inj_on_Abs_hypreal"; |
|
738 |
val inj_Rep_hypreal = thm "inj_Rep_hypreal"; |
|
739 |
val lemma_hyprel_refl = thm "lemma_hyprel_refl"; |
|
740 |
val hypreal_empty_not_mem = thm "hypreal_empty_not_mem"; |
|
741 |
val Rep_hypreal_nonempty = thm "Rep_hypreal_nonempty"; |
|
742 |
val inj_hypreal_of_real = thm "inj_hypreal_of_real"; |
|
743 |
val eq_Abs_hypreal = thm "eq_Abs_hypreal"; |
|
744 |
val hypreal_minus_congruent = thm "hypreal_minus_congruent"; |
|
745 |
val hypreal_minus = thm "hypreal_minus"; |
|
746 |
val hypreal_add = thm "hypreal_add"; |
|
747 |
val hypreal_diff = thm "hypreal_diff"; |
|
748 |
val hypreal_add_commute = thm "hypreal_add_commute"; |
|
749 |
val hypreal_add_assoc = thm "hypreal_add_assoc"; |
|
750 |
val hypreal_add_zero_left = thm "hypreal_add_zero_left"; |
|
751 |
val hypreal_add_zero_right = thm "hypreal_add_zero_right"; |
|
752 |
val hypreal_add_minus = thm "hypreal_add_minus"; |
|
753 |
val hypreal_add_minus_left = thm "hypreal_add_minus_left"; |
|
754 |
val hypreal_mult = thm "hypreal_mult"; |
|
755 |
val hypreal_mult_commute = thm "hypreal_mult_commute"; |
|
756 |
val hypreal_mult_assoc = thm "hypreal_mult_assoc"; |
|
757 |
val hypreal_mult_1 = thm "hypreal_mult_1"; |
|
758 |
val hypreal_zero_not_eq_one = thm "hypreal_zero_not_eq_one"; |
|
759 |
val hypreal_inverse_congruent = thm "hypreal_inverse_congruent"; |
|
760 |
val hypreal_inverse = thm "hypreal_inverse"; |
|
761 |
val hypreal_mult_inverse = thm "hypreal_mult_inverse"; |
|
762 |
val hypreal_mult_inverse_left = thm "hypreal_mult_inverse_left"; |
|
763 |
val hypreal_mult_left_cancel = thm "hypreal_mult_left_cancel"; |
|
764 |
val hypreal_mult_right_cancel = thm "hypreal_mult_right_cancel"; |
|
765 |
val hypreal_not_refl2 = thm "hypreal_not_refl2"; |
|
766 |
val hypreal_less = thm "hypreal_less"; |
|
767 |
val hypreal_eq_minus_iff = thm "hypreal_eq_minus_iff"; |
|
768 |
val hypreal_le = thm "hypreal_le"; |
|
769 |
val hypreal_le_refl = thm "hypreal_le_refl"; |
|
770 |
val hypreal_le_linear = thm "hypreal_le_linear"; |
|
771 |
val hypreal_le_trans = thm "hypreal_le_trans"; |
|
772 |
val hypreal_le_anti_sym = thm "hypreal_le_anti_sym"; |
|
773 |
val hypreal_less_le = thm "hypreal_less_le"; |
|
774 |
val hypreal_of_real_add = thm "hypreal_of_real_add"; |
|
775 |
val hypreal_of_real_mult = thm "hypreal_of_real_mult"; |
|
776 |
val hypreal_of_real_less_iff = thm "hypreal_of_real_less_iff"; |
|
777 |
val hypreal_of_real_le_iff = thm "hypreal_of_real_le_iff"; |
|
778 |
val hypreal_of_real_eq_iff = thm "hypreal_of_real_eq_iff"; |
|
779 |
val hypreal_of_real_minus = thm "hypreal_of_real_minus"; |
|
780 |
val hypreal_of_real_one = thm "hypreal_of_real_one"; |
|
781 |
val hypreal_of_real_zero = thm "hypreal_of_real_zero"; |
|
782 |
val hypreal_of_real_inverse = thm "hypreal_of_real_inverse"; |
|
783 |
val hypreal_of_real_divide = thm "hypreal_of_real_divide"; |
|
784 |
val hypreal_zero_num = thm "hypreal_zero_num"; |
|
785 |
val hypreal_one_num = thm "hypreal_one_num"; |
|
786 |
val hypreal_omega_gt_zero = thm "hypreal_omega_gt_zero"; |
|
| 14370 | 787 |
|
788 |
val hypreal_add_zero_less_le_mono = thm"hypreal_add_zero_less_le_mono"; |
|
789 |
val Rep_hypreal_omega = thm"Rep_hypreal_omega"; |
|
790 |
val lemma_omega_empty_singleton_disj = thm"lemma_omega_empty_singleton_disj"; |
|
791 |
val lemma_finite_omega_set = thm"lemma_finite_omega_set"; |
|
792 |
val not_ex_hypreal_of_real_eq_omega = thm"not_ex_hypreal_of_real_eq_omega"; |
|
793 |
val hypreal_of_real_not_eq_omega = thm"hypreal_of_real_not_eq_omega"; |
|
794 |
val not_ex_hypreal_of_real_eq_epsilon = thm"not_ex_hypreal_of_real_eq_epsilon"; |
|
795 |
val hypreal_of_real_not_eq_epsilon = thm"hypreal_of_real_not_eq_epsilon"; |
|
796 |
val hypreal_epsilon_not_zero = thm"hypreal_epsilon_not_zero"; |
|
797 |
val hypreal_epsilon_inverse_omega = thm"hypreal_epsilon_inverse_omega"; |
|
| 14299 | 798 |
*} |
799 |
||
| 10751 | 800 |
end |