| author | paulson | 
| Fri, 20 Aug 2004 12:20:09 +0200 | |
| changeset 15150 | c7af682b9ee5 | 
| parent 15140 | 322485b816ac | 
| child 15229 | 1eb23f805c06 | 
| permissions | -rw-r--r-- | 
| 10751 | 1 | (* Title : NSA.thy | 
| 2 | Author : Jacques D. Fleuriot | |
| 3 | Copyright : 1998 University of Cambridge | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 4 | |
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 5 | Converted to Isar and polished by lcp | 
| 14370 | 6 | *) | 
| 10751 | 7 | |
| 14370 | 8 | header{*Infinite Numbers, Infinitesimals, Infinitely Close Relation*}
 | 
| 9 | ||
| 15131 | 10 | theory NSA | 
| 15140 | 11 | imports HyperArith RComplete | 
| 15131 | 12 | begin | 
| 10751 | 13 | |
| 14 | constdefs | |
| 15 | ||
| 16 | Infinitesimal :: "hypreal set" | |
| 14370 | 17 |    "Infinitesimal == {x. \<forall>r \<in> Reals. 0 < r --> abs x < r}"
 | 
| 10751 | 18 | |
| 19 | HFinite :: "hypreal set" | |
| 14370 | 20 |    "HFinite == {x. \<exists>r \<in> Reals. abs x < r}"
 | 
| 10751 | 21 | |
| 22 | HInfinite :: "hypreal set" | |
| 14370 | 23 |    "HInfinite == {x. \<forall>r \<in> Reals. r < abs x}"
 | 
| 10751 | 24 | |
| 14653 | 25 | (* infinitely close *) | 
| 26 | approx :: "[hypreal, hypreal] => bool" (infixl "@=" 50) | |
| 27 | "x @= y == (x + -y) \<in> Infinitesimal" | |
| 28 | ||
| 10751 | 29 | (* standard part map *) | 
| 14370 | 30 | st :: "hypreal => hypreal" | 
| 31 | "st == (%x. @r. x \<in> HFinite & r \<in> Reals & r @= x)" | |
| 10751 | 32 | |
| 14370 | 33 | monad :: "hypreal => hypreal set" | 
| 10751 | 34 |    "monad x      == {y. x @= y}"
 | 
| 35 | ||
| 14370 | 36 | galaxy :: "hypreal => hypreal set" | 
| 37 |    "galaxy x     == {y. (x + -y) \<in> HFinite}"
 | |
| 38 | ||
| 39 | ||
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 40 | defs (overloaded) | 
| 14370 | 41 | |
| 42 | (*standard real numbers as a subset of the hyperreals*) | |
| 43 |    SReal_def:      "Reals == {x. \<exists>r. x = hypreal_of_real r}"
 | |
| 44 | ||
| 45 | syntax (xsymbols) | |
| 46 | approx :: "[hypreal, hypreal] => bool" (infixl "\<approx>" 50) | |
| 47 | ||
| 14565 | 48 | syntax (HTML output) | 
| 49 | approx :: "[hypreal, hypreal] => bool" (infixl "\<approx>" 50) | |
| 50 | ||
| 14370 | 51 | |
| 52 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 53 | subsection{*Closure Laws for  Standard Reals*}
 | 
| 14370 | 54 | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 55 | lemma SReal_add [simp]: | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 56 | "[| (x::hypreal) \<in> Reals; y \<in> Reals |] ==> x + y \<in> Reals" | 
| 14370 | 57 | apply (auto simp add: SReal_def) | 
| 58 | apply (rule_tac x = "r + ra" in exI, simp) | |
| 59 | done | |
| 60 | ||
| 61 | lemma SReal_mult: "[| (x::hypreal) \<in> Reals; y \<in> Reals |] ==> x * y \<in> Reals" | |
| 62 | apply (simp add: SReal_def, safe) | |
| 63 | apply (rule_tac x = "r * ra" in exI) | |
| 64 | apply (simp (no_asm) add: hypreal_of_real_mult) | |
| 65 | done | |
| 66 | ||
| 67 | lemma SReal_inverse: "(x::hypreal) \<in> Reals ==> inverse x \<in> Reals" | |
| 68 | apply (simp add: SReal_def) | |
| 69 | apply (blast intro: hypreal_of_real_inverse [symmetric]) | |
| 70 | done | |
| 71 | ||
| 72 | lemma SReal_divide: "[| (x::hypreal) \<in> Reals; y \<in> Reals |] ==> x/y \<in> Reals" | |
| 73 | apply (simp (no_asm_simp) add: SReal_mult SReal_inverse hypreal_divide_def) | |
| 74 | done | |
| 75 | ||
| 76 | lemma SReal_minus: "(x::hypreal) \<in> Reals ==> -x \<in> Reals" | |
| 77 | apply (simp add: SReal_def) | |
| 78 | apply (blast intro: hypreal_of_real_minus [symmetric]) | |
| 79 | done | |
| 80 | ||
| 81 | lemma SReal_minus_iff: "(-x \<in> Reals) = ((x::hypreal) \<in> Reals)" | |
| 82 | apply auto | |
| 83 | apply (erule_tac [2] SReal_minus) | |
| 84 | apply (drule SReal_minus, auto) | |
| 85 | done | |
| 86 | declare SReal_minus_iff [simp] | |
| 87 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 88 | lemma SReal_add_cancel: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 89 | "[| (x::hypreal) + y \<in> Reals; y \<in> Reals |] ==> x \<in> Reals" | 
| 14370 | 90 | apply (drule_tac x = y in SReal_minus) | 
| 91 | apply (drule SReal_add, assumption, auto) | |
| 92 | done | |
| 93 | ||
| 94 | lemma SReal_hrabs: "(x::hypreal) \<in> Reals ==> abs x \<in> Reals" | |
| 95 | apply (simp add: SReal_def) | |
| 96 | apply (auto simp add: hypreal_of_real_hrabs) | |
| 97 | done | |
| 98 | ||
| 99 | lemma SReal_hypreal_of_real: "hypreal_of_real x \<in> Reals" | |
| 100 | by (simp add: SReal_def) | |
| 101 | declare SReal_hypreal_of_real [simp] | |
| 102 | ||
| 103 | lemma SReal_number_of: "(number_of w ::hypreal) \<in> Reals" | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 104 | apply (simp only: hypreal_number_of [symmetric]) | 
| 14370 | 105 | apply (rule SReal_hypreal_of_real) | 
| 106 | done | |
| 107 | declare SReal_number_of [simp] | |
| 108 | ||
| 109 | (** As always with numerals, 0 and 1 are special cases **) | |
| 110 | ||
| 111 | lemma Reals_0: "(0::hypreal) \<in> Reals" | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 112 | apply (subst numeral_0_eq_0 [symmetric]) | 
| 14370 | 113 | apply (rule SReal_number_of) | 
| 114 | done | |
| 115 | declare Reals_0 [simp] | |
| 116 | ||
| 117 | lemma Reals_1: "(1::hypreal) \<in> Reals" | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 118 | apply (subst numeral_1_eq_1 [symmetric]) | 
| 14370 | 119 | apply (rule SReal_number_of) | 
| 120 | done | |
| 121 | declare Reals_1 [simp] | |
| 122 | ||
| 123 | lemma SReal_divide_number_of: "r \<in> Reals ==> r/(number_of w::hypreal) \<in> Reals" | |
| 124 | apply (unfold hypreal_divide_def) | |
| 125 | apply (blast intro!: SReal_number_of SReal_mult SReal_inverse) | |
| 126 | done | |
| 127 | ||
| 128 | (* Infinitesimal epsilon not in Reals *) | |
| 129 | ||
| 130 | lemma SReal_epsilon_not_mem: "epsilon \<notin> Reals" | |
| 131 | apply (simp add: SReal_def) | |
| 132 | apply (auto simp add: hypreal_of_real_not_eq_epsilon [THEN not_sym]) | |
| 133 | done | |
| 134 | ||
| 135 | lemma SReal_omega_not_mem: "omega \<notin> Reals" | |
| 136 | apply (simp add: SReal_def) | |
| 137 | apply (auto simp add: hypreal_of_real_not_eq_omega [THEN not_sym]) | |
| 138 | done | |
| 139 | ||
| 140 | lemma SReal_UNIV_real: "{x. hypreal_of_real x \<in> Reals} = (UNIV::real set)"
 | |
| 141 | by (simp add: SReal_def) | |
| 142 | ||
| 143 | lemma SReal_iff: "(x \<in> Reals) = (\<exists>y. x = hypreal_of_real y)" | |
| 144 | by (simp add: SReal_def) | |
| 145 | ||
| 146 | lemma hypreal_of_real_image: "hypreal_of_real `(UNIV::real set) = Reals" | |
| 147 | by (auto simp add: SReal_def) | |
| 148 | ||
| 149 | lemma inv_hypreal_of_real_image: "inv hypreal_of_real ` Reals = UNIV" | |
| 150 | apply (auto simp add: SReal_def) | |
| 151 | apply (rule inj_hypreal_of_real [THEN inv_f_f, THEN subst], blast) | |
| 152 | done | |
| 153 | ||
| 154 | lemma SReal_hypreal_of_real_image: | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 155 | "[| \<exists>x. x: P; P \<subseteq> Reals |] ==> \<exists>Q. P = hypreal_of_real ` Q" | 
| 14370 | 156 | apply (simp add: SReal_def, blast) | 
| 157 | done | |
| 158 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 159 | lemma SReal_dense: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 160 | "[| (x::hypreal) \<in> Reals; y \<in> Reals; x<y |] ==> \<exists>r \<in> Reals. x<r & r<y" | 
| 14370 | 161 | apply (auto simp add: SReal_iff) | 
| 14477 | 162 | apply (drule dense, safe) | 
| 14370 | 163 | apply (rule_tac x = "hypreal_of_real r" in bexI, auto) | 
| 164 | done | |
| 165 | ||
| 166 | (*------------------------------------------------------------------ | |
| 167 | Completeness of Reals | |
| 168 | ------------------------------------------------------------------*) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 169 | lemma SReal_sup_lemma: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 170 | "P \<subseteq> Reals ==> ((\<exists>x \<in> P. y < x) = | 
| 14370 | 171 | (\<exists>X. hypreal_of_real X \<in> P & y < hypreal_of_real X))" | 
| 172 | by (blast dest!: SReal_iff [THEN iffD1]) | |
| 173 | ||
| 174 | lemma SReal_sup_lemma2: | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 175 | "[| P \<subseteq> Reals; \<exists>x. x \<in> P; \<exists>y \<in> Reals. \<forall>x \<in> P. x < y |] | 
| 14370 | 176 |       ==> (\<exists>X. X \<in> {w. hypreal_of_real w \<in> P}) &
 | 
| 177 |           (\<exists>Y. \<forall>X \<in> {w. hypreal_of_real w \<in> P}. X < Y)"
 | |
| 178 | apply (rule conjI) | |
| 179 | apply (fast dest!: SReal_iff [THEN iffD1]) | |
| 180 | apply (auto, frule subsetD, assumption) | |
| 181 | apply (drule SReal_iff [THEN iffD1]) | |
| 182 | apply (auto, rule_tac x = ya in exI, auto) | |
| 183 | done | |
| 184 | ||
| 185 | (*------------------------------------------------------ | |
| 186 | lifting of ub and property of lub | |
| 187 | -------------------------------------------------------*) | |
| 188 | lemma hypreal_of_real_isUb_iff: | |
| 189 | "(isUb (Reals) (hypreal_of_real ` Q) (hypreal_of_real Y)) = | |
| 190 | (isUb (UNIV :: real set) Q Y)" | |
| 191 | apply (simp add: isUb_def setle_def) | |
| 192 | done | |
| 193 | ||
| 194 | lemma hypreal_of_real_isLub1: | |
| 195 | "isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y) | |
| 196 | ==> isLub (UNIV :: real set) Q Y" | |
| 197 | apply (simp add: isLub_def leastP_def) | |
| 198 | apply (auto intro: hypreal_of_real_isUb_iff [THEN iffD2] | |
| 199 | simp add: hypreal_of_real_isUb_iff setge_def) | |
| 200 | done | |
| 201 | ||
| 202 | lemma hypreal_of_real_isLub2: | |
| 203 | "isLub (UNIV :: real set) Q Y | |
| 204 | ==> isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y)" | |
| 205 | apply (simp add: isLub_def leastP_def) | |
| 206 | apply (auto simp add: hypreal_of_real_isUb_iff setge_def) | |
| 207 | apply (frule_tac x2 = x in isUbD2a [THEN SReal_iff [THEN iffD1], THEN exE]) | |
| 208 | prefer 2 apply assumption | |
| 209 | apply (drule_tac x = xa in spec) | |
| 210 | apply (auto simp add: hypreal_of_real_isUb_iff) | |
| 211 | done | |
| 212 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 213 | lemma hypreal_of_real_isLub_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 214 | "(isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y)) = | 
| 14370 | 215 | (isLub (UNIV :: real set) Q Y)" | 
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 216 | by (blast intro: hypreal_of_real_isLub1 hypreal_of_real_isLub2) | 
| 14370 | 217 | |
| 218 | (* lemmas *) | |
| 219 | lemma lemma_isUb_hypreal_of_real: | |
| 220 | "isUb Reals P Y ==> \<exists>Yo. isUb Reals P (hypreal_of_real Yo)" | |
| 221 | by (auto simp add: SReal_iff isUb_def) | |
| 222 | ||
| 223 | lemma lemma_isLub_hypreal_of_real: | |
| 224 | "isLub Reals P Y ==> \<exists>Yo. isLub Reals P (hypreal_of_real Yo)" | |
| 225 | by (auto simp add: isLub_def leastP_def isUb_def SReal_iff) | |
| 226 | ||
| 227 | lemma lemma_isLub_hypreal_of_real2: | |
| 228 | "\<exists>Yo. isLub Reals P (hypreal_of_real Yo) ==> \<exists>Y. isLub Reals P Y" | |
| 229 | by (auto simp add: isLub_def leastP_def isUb_def) | |
| 230 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 231 | lemma SReal_complete: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 232 | "[| P \<subseteq> Reals; \<exists>x. x \<in> P; \<exists>Y. isUb Reals P Y |] | 
| 14370 | 233 | ==> \<exists>t::hypreal. isLub Reals P t" | 
| 234 | apply (frule SReal_hypreal_of_real_image) | |
| 235 | apply (auto, drule lemma_isUb_hypreal_of_real) | |
| 236 | apply (auto intro!: reals_complete lemma_isLub_hypreal_of_real2 simp add: hypreal_of_real_isLub_iff hypreal_of_real_isUb_iff) | |
| 237 | done | |
| 238 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 239 | |
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 240 | subsection{* Set of Finite Elements is a Subring of the Extended Reals*}
 | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 241 | |
| 14370 | 242 | lemma HFinite_add: "[|x \<in> HFinite; y \<in> HFinite|] ==> (x+y) \<in> HFinite" | 
| 243 | apply (simp add: HFinite_def) | |
| 244 | apply (blast intro!: SReal_add hrabs_add_less) | |
| 245 | done | |
| 246 | ||
| 247 | lemma HFinite_mult: "[|x \<in> HFinite; y \<in> HFinite|] ==> x*y \<in> HFinite" | |
| 248 | apply (simp add: HFinite_def) | |
| 249 | apply (blast intro!: SReal_mult abs_mult_less) | |
| 250 | done | |
| 251 | ||
| 252 | lemma HFinite_minus_iff: "(-x \<in> HFinite) = (x \<in> HFinite)" | |
| 253 | by (simp add: HFinite_def) | |
| 254 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 255 | lemma SReal_subset_HFinite: "Reals \<subseteq> HFinite" | 
| 14370 | 256 | apply (auto simp add: SReal_def HFinite_def) | 
| 257 | apply (rule_tac x = "1 + abs (hypreal_of_real r) " in exI) | |
| 258 | apply (auto simp add: hypreal_of_real_hrabs) | |
| 259 | apply (rule_tac x = "1 + abs r" in exI, simp) | |
| 260 | done | |
| 261 | ||
| 262 | lemma HFinite_hypreal_of_real [simp]: "hypreal_of_real x \<in> HFinite" | |
| 263 | by (auto intro: SReal_subset_HFinite [THEN subsetD]) | |
| 264 | ||
| 265 | lemma HFiniteD: "x \<in> HFinite ==> \<exists>t \<in> Reals. abs x < t" | |
| 266 | by (simp add: HFinite_def) | |
| 267 | ||
| 268 | lemma HFinite_hrabs_iff: "(abs x \<in> HFinite) = (x \<in> HFinite)" | |
| 269 | by (simp add: HFinite_def) | |
| 270 | declare HFinite_hrabs_iff [iff] | |
| 271 | ||
| 272 | lemma HFinite_number_of: "number_of w \<in> HFinite" | |
| 273 | by (rule SReal_number_of [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 274 | declare HFinite_number_of [simp] | |
| 275 | ||
| 276 | (** As always with numerals, 0 and 1 are special cases **) | |
| 277 | ||
| 278 | lemma HFinite_0: "0 \<in> HFinite" | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 279 | apply (subst numeral_0_eq_0 [symmetric]) | 
| 14370 | 280 | apply (rule HFinite_number_of) | 
| 281 | done | |
| 282 | declare HFinite_0 [simp] | |
| 283 | ||
| 284 | lemma HFinite_1: "1 \<in> HFinite" | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 285 | apply (subst numeral_1_eq_1 [symmetric]) | 
| 14370 | 286 | apply (rule HFinite_number_of) | 
| 287 | done | |
| 288 | declare HFinite_1 [simp] | |
| 289 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 290 | lemma HFinite_bounded: "[|x \<in> HFinite; y \<le> x; 0 \<le> y |] ==> y \<in> HFinite" | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 291 | apply (case_tac "x \<le> 0") | 
| 14370 | 292 | apply (drule_tac y = x in order_trans) | 
| 293 | apply (drule_tac [2] hypreal_le_anti_sym) | |
| 294 | apply (auto simp add: linorder_not_le) | |
| 295 | apply (auto intro: order_le_less_trans simp add: abs_if HFinite_def) | |
| 296 | done | |
| 297 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 298 | |
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 299 | subsection{* Set of Infinitesimals is a Subring of the Hyperreals*}
 | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 300 | |
| 14370 | 301 | lemma InfinitesimalD: | 
| 302 | "x \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> abs x < r" | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 303 | by (simp add: Infinitesimal_def) | 
| 14370 | 304 | |
| 305 | lemma Infinitesimal_zero: "0 \<in> Infinitesimal" | |
| 306 | by (simp add: Infinitesimal_def) | |
| 307 | declare Infinitesimal_zero [iff] | |
| 308 | ||
| 309 | lemma hypreal_sum_of_halves: "x/(2::hypreal) + x/(2::hypreal) = x" | |
| 310 | by auto | |
| 311 | ||
| 312 | lemma Infinitesimal_add: | |
| 313 | "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> (x+y) \<in> Infinitesimal" | |
| 314 | apply (auto simp add: Infinitesimal_def) | |
| 315 | apply (rule hypreal_sum_of_halves [THEN subst]) | |
| 14477 | 316 | apply (drule half_gt_zero) | 
| 14370 | 317 | apply (blast intro: hrabs_add_less hrabs_add_less SReal_divide_number_of) | 
| 318 | done | |
| 319 | ||
| 320 | lemma Infinitesimal_minus_iff: "(-x:Infinitesimal) = (x:Infinitesimal)" | |
| 321 | by (simp add: Infinitesimal_def) | |
| 322 | declare Infinitesimal_minus_iff [simp] | |
| 323 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 324 | lemma Infinitesimal_diff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 325 | "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> x-y \<in> Infinitesimal" | 
| 14370 | 326 | by (simp add: hypreal_diff_def Infinitesimal_add) | 
| 327 | ||
| 328 | lemma Infinitesimal_mult: | |
| 329 | "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> (x * y) \<in> Infinitesimal" | |
| 330 | apply (auto simp add: Infinitesimal_def) | |
| 331 | apply (case_tac "y=0") | |
| 332 | apply (cut_tac [2] a = "abs x" and b = 1 and c = "abs y" and d = r in mult_strict_mono, auto) | |
| 333 | done | |
| 334 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 335 | lemma Infinitesimal_HFinite_mult: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 336 | "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (x * y) \<in> Infinitesimal" | 
| 14370 | 337 | apply (auto dest!: HFiniteD simp add: Infinitesimal_def) | 
| 338 | apply (frule hrabs_less_gt_zero) | |
| 339 | apply (drule_tac x = "r/t" in bspec) | |
| 340 | apply (blast intro: SReal_divide) | |
| 341 | apply (simp add: zero_less_divide_iff) | |
| 342 | apply (case_tac "x=0 | y=0") | |
| 343 | apply (cut_tac [2] a = "abs x" and b = "r/t" and c = "abs y" in mult_strict_mono) | |
| 344 | apply (auto simp add: zero_less_divide_iff) | |
| 345 | done | |
| 346 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 347 | lemma Infinitesimal_HFinite_mult2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 348 | "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (y * x) \<in> Infinitesimal" | 
| 14370 | 349 | by (auto dest: Infinitesimal_HFinite_mult simp add: hypreal_mult_commute) | 
| 350 | ||
| 351 | (*** rather long proof ***) | |
| 352 | lemma HInfinite_inverse_Infinitesimal: | |
| 353 | "x \<in> HInfinite ==> inverse x: Infinitesimal" | |
| 354 | apply (auto simp add: HInfinite_def Infinitesimal_def) | |
| 355 | apply (erule_tac x = "inverse r" in ballE) | |
| 356 | apply (frule_tac a1 = r and z = "abs x" in positive_imp_inverse_positive [THEN order_less_trans], assumption) | |
| 357 | apply (drule inverse_inverse_eq [symmetric, THEN subst]) | |
| 358 | apply (rule inverse_less_iff_less [THEN iffD1]) | |
| 359 | apply (auto simp add: SReal_inverse) | |
| 360 | done | |
| 361 | ||
| 362 | lemma HInfinite_mult: "[|x \<in> HInfinite;y \<in> HInfinite|] ==> (x*y) \<in> HInfinite" | |
| 363 | apply (simp add: HInfinite_def, auto) | |
| 364 | apply (erule_tac x = 1 in ballE) | |
| 365 | apply (erule_tac x = r in ballE) | |
| 366 | apply (case_tac "y=0") | |
| 367 | apply (cut_tac [2] c = 1 and d = "abs x" and a = r and b = "abs y" in mult_strict_mono) | |
| 368 | apply (auto simp add: mult_ac) | |
| 369 | done | |
| 370 | ||
| 371 | lemma HInfinite_add_ge_zero: | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 372 | "[|x \<in> HInfinite; 0 \<le> y; 0 \<le> x|] ==> (x + y): HInfinite" | 
| 14370 | 373 | by (auto intro!: hypreal_add_zero_less_le_mono | 
| 374 | simp add: abs_if hypreal_add_commute hypreal_le_add_order HInfinite_def) | |
| 375 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 376 | lemma HInfinite_add_ge_zero2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 377 | "[|x \<in> HInfinite; 0 \<le> y; 0 \<le> x|] ==> (y + x): HInfinite" | 
| 14370 | 378 | by (auto intro!: HInfinite_add_ge_zero simp add: hypreal_add_commute) | 
| 379 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 380 | lemma HInfinite_add_gt_zero: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 381 | "[|x \<in> HInfinite; 0 < y; 0 < x|] ==> (x + y): HInfinite" | 
| 14370 | 382 | by (blast intro: HInfinite_add_ge_zero order_less_imp_le) | 
| 383 | ||
| 384 | lemma HInfinite_minus_iff: "(-x \<in> HInfinite) = (x \<in> HInfinite)" | |
| 385 | by (simp add: HInfinite_def) | |
| 386 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 387 | lemma HInfinite_add_le_zero: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 388 | "[|x \<in> HInfinite; y \<le> 0; x \<le> 0|] ==> (x + y): HInfinite" | 
| 14370 | 389 | apply (drule HInfinite_minus_iff [THEN iffD2]) | 
| 390 | apply (rule HInfinite_minus_iff [THEN iffD1]) | |
| 391 | apply (auto intro: HInfinite_add_ge_zero) | |
| 392 | done | |
| 393 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 394 | lemma HInfinite_add_lt_zero: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 395 | "[|x \<in> HInfinite; y < 0; x < 0|] ==> (x + y): HInfinite" | 
| 14370 | 396 | by (blast intro: HInfinite_add_le_zero order_less_imp_le) | 
| 397 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 398 | lemma HFinite_sum_squares: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 399 | "[|a: HFinite; b: HFinite; c: HFinite|] | 
| 14370 | 400 | ==> a*a + b*b + c*c \<in> HFinite" | 
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 401 | by (auto intro: HFinite_mult HFinite_add) | 
| 14370 | 402 | |
| 403 | lemma not_Infinitesimal_not_zero: "x \<notin> Infinitesimal ==> x \<noteq> 0" | |
| 404 | by auto | |
| 405 | ||
| 406 | lemma not_Infinitesimal_not_zero2: "x \<in> HFinite - Infinitesimal ==> x \<noteq> 0" | |
| 407 | by auto | |
| 408 | ||
| 409 | lemma Infinitesimal_hrabs_iff: "(abs x \<in> Infinitesimal) = (x \<in> Infinitesimal)" | |
| 15003 | 410 | by (auto simp add: abs_if) | 
| 14370 | 411 | declare Infinitesimal_hrabs_iff [iff] | 
| 412 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 413 | lemma HFinite_diff_Infinitesimal_hrabs: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 414 | "x \<in> HFinite - Infinitesimal ==> abs x \<in> HFinite - Infinitesimal" | 
| 14370 | 415 | by blast | 
| 416 | ||
| 417 | lemma hrabs_less_Infinitesimal: | |
| 418 | "[| e \<in> Infinitesimal; abs x < e |] ==> x \<in> Infinitesimal" | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 419 | by (auto simp add: Infinitesimal_def abs_less_iff) | 
| 14370 | 420 | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 421 | lemma hrabs_le_Infinitesimal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 422 | "[| e \<in> Infinitesimal; abs x \<le> e |] ==> x \<in> Infinitesimal" | 
| 14370 | 423 | by (blast dest: order_le_imp_less_or_eq intro: hrabs_less_Infinitesimal) | 
| 424 | ||
| 425 | lemma Infinitesimal_interval: | |
| 426 | "[| e \<in> Infinitesimal; e' \<in> Infinitesimal; e' < x ; x < e |] | |
| 427 | ==> x \<in> Infinitesimal" | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 428 | by (auto simp add: Infinitesimal_def abs_less_iff) | 
| 14370 | 429 | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 430 | lemma Infinitesimal_interval2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 431 | "[| e \<in> Infinitesimal; e' \<in> Infinitesimal; | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 432 | e' \<le> x ; x \<le> e |] ==> x \<in> Infinitesimal" | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 433 | by (auto intro: Infinitesimal_interval simp add: order_le_less) | 
| 14370 | 434 | |
| 435 | lemma not_Infinitesimal_mult: | |
| 436 | "[| x \<notin> Infinitesimal; y \<notin> Infinitesimal|] ==> (x*y) \<notin>Infinitesimal" | |
| 437 | apply (unfold Infinitesimal_def, clarify) | |
| 438 | apply (simp add: linorder_not_less) | |
| 439 | apply (erule_tac x = "r*ra" in ballE) | |
| 440 | prefer 2 apply (fast intro: SReal_mult) | |
| 441 | apply (auto simp add: zero_less_mult_iff) | |
| 442 | apply (cut_tac c = ra and d = "abs y" and a = r and b = "abs x" in mult_mono, auto) | |
| 443 | done | |
| 444 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 445 | lemma Infinitesimal_mult_disj: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 446 | "x*y \<in> Infinitesimal ==> x \<in> Infinitesimal | y \<in> Infinitesimal" | 
| 14370 | 447 | apply (rule ccontr) | 
| 448 | apply (drule de_Morgan_disj [THEN iffD1]) | |
| 449 | apply (fast dest: not_Infinitesimal_mult) | |
| 450 | done | |
| 451 | ||
| 452 | lemma HFinite_Infinitesimal_not_zero: "x \<in> HFinite-Infinitesimal ==> x \<noteq> 0" | |
| 453 | by blast | |
| 454 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 455 | lemma HFinite_Infinitesimal_diff_mult: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 456 | "[| x \<in> HFinite - Infinitesimal; | 
| 14370 | 457 | y \<in> HFinite - Infinitesimal | 
| 458 | |] ==> (x*y) \<in> HFinite - Infinitesimal" | |
| 459 | apply clarify | |
| 460 | apply (blast dest: HFinite_mult not_Infinitesimal_mult) | |
| 461 | done | |
| 462 | ||
| 463 | lemma Infinitesimal_subset_HFinite: | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 464 | "Infinitesimal \<subseteq> HFinite" | 
| 14370 | 465 | apply (simp add: Infinitesimal_def HFinite_def, auto) | 
| 466 | apply (rule_tac x = 1 in bexI, auto) | |
| 467 | done | |
| 468 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 469 | lemma Infinitesimal_hypreal_of_real_mult: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 470 | "x \<in> Infinitesimal ==> x * hypreal_of_real r \<in> Infinitesimal" | 
| 14370 | 471 | by (erule HFinite_hypreal_of_real [THEN [2] Infinitesimal_HFinite_mult]) | 
| 472 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 473 | lemma Infinitesimal_hypreal_of_real_mult2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 474 | "x \<in> Infinitesimal ==> hypreal_of_real r * x \<in> Infinitesimal" | 
| 14370 | 475 | by (erule HFinite_hypreal_of_real [THEN [2] Infinitesimal_HFinite_mult2]) | 
| 476 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 477 | |
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 478 | subsection{*The Infinitely Close Relation*}
 | 
| 14370 | 479 | |
| 480 | lemma mem_infmal_iff: "(x \<in> Infinitesimal) = (x @= 0)" | |
| 481 | by (simp add: Infinitesimal_def approx_def) | |
| 482 | ||
| 483 | lemma approx_minus_iff: " (x @= y) = (x + -y @= 0)" | |
| 484 | by (simp add: approx_def) | |
| 485 | ||
| 486 | lemma approx_minus_iff2: " (x @= y) = (-y + x @= 0)" | |
| 487 | by (simp add: approx_def hypreal_add_commute) | |
| 488 | ||
| 489 | lemma approx_refl: "x @= x" | |
| 490 | by (simp add: approx_def Infinitesimal_def) | |
| 491 | declare approx_refl [iff] | |
| 492 | ||
| 14477 | 493 | lemma hypreal_minus_distrib1: "-(y + -(x::hypreal)) = x + -y" | 
| 494 | by (simp add: hypreal_add_commute) | |
| 495 | ||
| 14370 | 496 | lemma approx_sym: "x @= y ==> y @= x" | 
| 497 | apply (simp add: approx_def) | |
| 498 | apply (rule hypreal_minus_distrib1 [THEN subst]) | |
| 499 | apply (erule Infinitesimal_minus_iff [THEN iffD2]) | |
| 500 | done | |
| 501 | ||
| 502 | lemma approx_trans: "[| x @= y; y @= z |] ==> x @= z" | |
| 503 | apply (simp add: approx_def) | |
| 504 | apply (drule Infinitesimal_add, assumption, auto) | |
| 505 | done | |
| 506 | ||
| 507 | lemma approx_trans2: "[| r @= x; s @= x |] ==> r @= s" | |
| 508 | by (blast intro: approx_sym approx_trans) | |
| 509 | ||
| 510 | lemma approx_trans3: "[| x @= r; x @= s|] ==> r @= s" | |
| 511 | by (blast intro: approx_sym approx_trans) | |
| 512 | ||
| 513 | lemma number_of_approx_reorient: "(number_of w @= x) = (x @= number_of w)" | |
| 514 | by (blast intro: approx_sym) | |
| 515 | ||
| 516 | lemma zero_approx_reorient: "(0 @= x) = (x @= 0)" | |
| 517 | by (blast intro: approx_sym) | |
| 518 | ||
| 519 | lemma one_approx_reorient: "(1 @= x) = (x @= 1)" | |
| 520 | by (blast intro: approx_sym) | |
| 10751 | 521 | |
| 522 | ||
| 14370 | 523 | ML | 
| 524 | {*
 | |
| 525 | val SReal_add = thm "SReal_add"; | |
| 526 | val SReal_mult = thm "SReal_mult"; | |
| 527 | val SReal_inverse = thm "SReal_inverse"; | |
| 528 | val SReal_divide = thm "SReal_divide"; | |
| 529 | val SReal_minus = thm "SReal_minus"; | |
| 530 | val SReal_minus_iff = thm "SReal_minus_iff"; | |
| 531 | val SReal_add_cancel = thm "SReal_add_cancel"; | |
| 532 | val SReal_hrabs = thm "SReal_hrabs"; | |
| 533 | val SReal_hypreal_of_real = thm "SReal_hypreal_of_real"; | |
| 534 | val SReal_number_of = thm "SReal_number_of"; | |
| 535 | val Reals_0 = thm "Reals_0"; | |
| 536 | val Reals_1 = thm "Reals_1"; | |
| 537 | val SReal_divide_number_of = thm "SReal_divide_number_of"; | |
| 538 | val SReal_epsilon_not_mem = thm "SReal_epsilon_not_mem"; | |
| 539 | val SReal_omega_not_mem = thm "SReal_omega_not_mem"; | |
| 540 | val SReal_UNIV_real = thm "SReal_UNIV_real"; | |
| 541 | val SReal_iff = thm "SReal_iff"; | |
| 542 | val hypreal_of_real_image = thm "hypreal_of_real_image"; | |
| 543 | val inv_hypreal_of_real_image = thm "inv_hypreal_of_real_image"; | |
| 544 | val SReal_hypreal_of_real_image = thm "SReal_hypreal_of_real_image"; | |
| 545 | val SReal_dense = thm "SReal_dense"; | |
| 546 | val SReal_sup_lemma = thm "SReal_sup_lemma"; | |
| 547 | val SReal_sup_lemma2 = thm "SReal_sup_lemma2"; | |
| 548 | val hypreal_of_real_isUb_iff = thm "hypreal_of_real_isUb_iff"; | |
| 549 | val hypreal_of_real_isLub1 = thm "hypreal_of_real_isLub1"; | |
| 550 | val hypreal_of_real_isLub2 = thm "hypreal_of_real_isLub2"; | |
| 551 | val hypreal_of_real_isLub_iff = thm "hypreal_of_real_isLub_iff"; | |
| 552 | val lemma_isUb_hypreal_of_real = thm "lemma_isUb_hypreal_of_real"; | |
| 553 | val lemma_isLub_hypreal_of_real = thm "lemma_isLub_hypreal_of_real"; | |
| 554 | val lemma_isLub_hypreal_of_real2 = thm "lemma_isLub_hypreal_of_real2"; | |
| 555 | val SReal_complete = thm "SReal_complete"; | |
| 556 | val HFinite_add = thm "HFinite_add"; | |
| 557 | val HFinite_mult = thm "HFinite_mult"; | |
| 558 | val HFinite_minus_iff = thm "HFinite_minus_iff"; | |
| 559 | val SReal_subset_HFinite = thm "SReal_subset_HFinite"; | |
| 560 | val HFinite_hypreal_of_real = thm "HFinite_hypreal_of_real"; | |
| 561 | val HFiniteD = thm "HFiniteD"; | |
| 562 | val HFinite_hrabs_iff = thm "HFinite_hrabs_iff"; | |
| 563 | val HFinite_number_of = thm "HFinite_number_of"; | |
| 564 | val HFinite_0 = thm "HFinite_0"; | |
| 565 | val HFinite_1 = thm "HFinite_1"; | |
| 566 | val HFinite_bounded = thm "HFinite_bounded"; | |
| 567 | val InfinitesimalD = thm "InfinitesimalD"; | |
| 568 | val Infinitesimal_zero = thm "Infinitesimal_zero"; | |
| 569 | val hypreal_sum_of_halves = thm "hypreal_sum_of_halves"; | |
| 570 | val Infinitesimal_add = thm "Infinitesimal_add"; | |
| 571 | val Infinitesimal_minus_iff = thm "Infinitesimal_minus_iff"; | |
| 572 | val Infinitesimal_diff = thm "Infinitesimal_diff"; | |
| 573 | val Infinitesimal_mult = thm "Infinitesimal_mult"; | |
| 574 | val Infinitesimal_HFinite_mult = thm "Infinitesimal_HFinite_mult"; | |
| 575 | val Infinitesimal_HFinite_mult2 = thm "Infinitesimal_HFinite_mult2"; | |
| 576 | val HInfinite_inverse_Infinitesimal = thm "HInfinite_inverse_Infinitesimal"; | |
| 577 | val HInfinite_mult = thm "HInfinite_mult"; | |
| 578 | val HInfinite_add_ge_zero = thm "HInfinite_add_ge_zero"; | |
| 579 | val HInfinite_add_ge_zero2 = thm "HInfinite_add_ge_zero2"; | |
| 580 | val HInfinite_add_gt_zero = thm "HInfinite_add_gt_zero"; | |
| 581 | val HInfinite_minus_iff = thm "HInfinite_minus_iff"; | |
| 582 | val HInfinite_add_le_zero = thm "HInfinite_add_le_zero"; | |
| 583 | val HInfinite_add_lt_zero = thm "HInfinite_add_lt_zero"; | |
| 584 | val HFinite_sum_squares = thm "HFinite_sum_squares"; | |
| 585 | val not_Infinitesimal_not_zero = thm "not_Infinitesimal_not_zero"; | |
| 586 | val not_Infinitesimal_not_zero2 = thm "not_Infinitesimal_not_zero2"; | |
| 587 | val Infinitesimal_hrabs_iff = thm "Infinitesimal_hrabs_iff"; | |
| 588 | val HFinite_diff_Infinitesimal_hrabs = thm "HFinite_diff_Infinitesimal_hrabs"; | |
| 589 | val hrabs_less_Infinitesimal = thm "hrabs_less_Infinitesimal"; | |
| 590 | val hrabs_le_Infinitesimal = thm "hrabs_le_Infinitesimal"; | |
| 591 | val Infinitesimal_interval = thm "Infinitesimal_interval"; | |
| 592 | val Infinitesimal_interval2 = thm "Infinitesimal_interval2"; | |
| 593 | val not_Infinitesimal_mult = thm "not_Infinitesimal_mult"; | |
| 594 | val Infinitesimal_mult_disj = thm "Infinitesimal_mult_disj"; | |
| 595 | val HFinite_Infinitesimal_not_zero = thm "HFinite_Infinitesimal_not_zero"; | |
| 596 | val HFinite_Infinitesimal_diff_mult = thm "HFinite_Infinitesimal_diff_mult"; | |
| 597 | val Infinitesimal_subset_HFinite = thm "Infinitesimal_subset_HFinite"; | |
| 598 | val Infinitesimal_hypreal_of_real_mult = thm "Infinitesimal_hypreal_of_real_mult"; | |
| 599 | val Infinitesimal_hypreal_of_real_mult2 = thm "Infinitesimal_hypreal_of_real_mult2"; | |
| 600 | val mem_infmal_iff = thm "mem_infmal_iff"; | |
| 601 | val approx_minus_iff = thm "approx_minus_iff"; | |
| 602 | val approx_minus_iff2 = thm "approx_minus_iff2"; | |
| 603 | val approx_refl = thm "approx_refl"; | |
| 604 | val approx_sym = thm "approx_sym"; | |
| 605 | val approx_trans = thm "approx_trans"; | |
| 606 | val approx_trans2 = thm "approx_trans2"; | |
| 607 | val approx_trans3 = thm "approx_trans3"; | |
| 608 | val number_of_approx_reorient = thm "number_of_approx_reorient"; | |
| 609 | val zero_approx_reorient = thm "zero_approx_reorient"; | |
| 610 | val one_approx_reorient = thm "one_approx_reorient"; | |
| 611 | ||
| 612 | (*** re-orientation, following HOL/Integ/Bin.ML | |
| 613 | We re-orient x @=y where x is 0, 1 or a numeral, unless y is as well! | |
| 614 | ***) | |
| 615 | ||
| 616 | (*reorientation simprules using ==, for the following simproc*) | |
| 617 | val meta_zero_approx_reorient = zero_approx_reorient RS eq_reflection; | |
| 618 | val meta_one_approx_reorient = one_approx_reorient RS eq_reflection; | |
| 619 | val meta_number_of_approx_reorient = number_of_approx_reorient RS eq_reflection | |
| 620 | ||
| 621 | (*reorientation simplification procedure: reorients (polymorphic) | |
| 622 | 0 = x, 1 = x, nnn = x provided x isn't 0, 1 or a numeral.*) | |
| 623 | fun reorient_proc sg _ (_ $ t $ u) = | |
| 624 | case u of | |
| 625 |       Const("0", _) => None
 | |
| 626 |     | Const("1", _) => None
 | |
| 627 |     | Const("Numeral.number_of", _) $ _ => None
 | |
| 628 | | _ => Some (case t of | |
| 629 |                 Const("0", _) => meta_zero_approx_reorient
 | |
| 630 |               | Const("1", _) => meta_one_approx_reorient
 | |
| 631 |               | Const("Numeral.number_of", _) $ _ =>
 | |
| 632 | meta_number_of_approx_reorient); | |
| 633 | ||
| 634 | val approx_reorient_simproc = | |
| 635 | Bin_Simprocs.prep_simproc | |
| 636 |     ("reorient_simproc", ["0@=x", "1@=x", "number_of w @= x"], reorient_proc);
 | |
| 637 | ||
| 638 | Addsimprocs [approx_reorient_simproc]; | |
| 639 | *} | |
| 640 | ||
| 641 | lemma Infinitesimal_approx_minus: "(x-y \<in> Infinitesimal) = (x @= y)" | |
| 642 | by (auto simp add: hypreal_diff_def approx_minus_iff [symmetric] mem_infmal_iff) | |
| 643 | ||
| 644 | lemma approx_monad_iff: "(x @= y) = (monad(x)=monad(y))" | |
| 645 | apply (simp add: monad_def) | |
| 646 | apply (auto dest: approx_sym elim!: approx_trans equalityCE) | |
| 647 | done | |
| 648 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 649 | lemma Infinitesimal_approx: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 650 | "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> x @= y" | 
| 14370 | 651 | apply (simp add: mem_infmal_iff) | 
| 652 | apply (blast intro: approx_trans approx_sym) | |
| 653 | done | |
| 654 | ||
| 655 | lemma approx_add: "[| a @= b; c @= d |] ==> a+c @= b+d" | |
| 656 | proof (unfold approx_def) | |
| 657 | assume inf: "a + - b \<in> Infinitesimal" "c + - d \<in> Infinitesimal" | |
| 658 | have "a + c + - (b + d) = (a + - b) + (c + - d)" by arith | |
| 659 | also have "... \<in> Infinitesimal" using inf by (rule Infinitesimal_add) | |
| 660 | finally show "a + c + - (b + d) \<in> Infinitesimal" . | |
| 661 | qed | |
| 662 | ||
| 663 | lemma approx_minus: "a @= b ==> -a @= -b" | |
| 664 | apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym]) | |
| 665 | apply (drule approx_minus_iff [THEN iffD1]) | |
| 666 | apply (simp (no_asm) add: hypreal_add_commute) | |
| 667 | done | |
| 668 | ||
| 669 | lemma approx_minus2: "-a @= -b ==> a @= b" | |
| 670 | by (auto dest: approx_minus) | |
| 671 | ||
| 672 | lemma approx_minus_cancel: "(-a @= -b) = (a @= b)" | |
| 673 | by (blast intro: approx_minus approx_minus2) | |
| 674 | ||
| 675 | declare approx_minus_cancel [simp] | |
| 676 | ||
| 677 | lemma approx_add_minus: "[| a @= b; c @= d |] ==> a + -c @= b + -d" | |
| 678 | by (blast intro!: approx_add approx_minus) | |
| 679 | ||
| 680 | lemma approx_mult1: "[| a @= b; c: HFinite|] ==> a*c @= b*c" | |
| 681 | by (simp add: approx_def Infinitesimal_HFinite_mult minus_mult_left | |
| 682 | left_distrib [symmetric] | |
| 683 | del: minus_mult_left [symmetric]) | |
| 684 | ||
| 685 | lemma approx_mult2: "[|a @= b; c: HFinite|] ==> c*a @= c*b" | |
| 686 | apply (simp (no_asm_simp) add: approx_mult1 hypreal_mult_commute) | |
| 687 | done | |
| 688 | ||
| 689 | lemma approx_mult_subst: "[|u @= v*x; x @= y; v \<in> HFinite|] ==> u @= v*y" | |
| 690 | by (blast intro: approx_mult2 approx_trans) | |
| 691 | ||
| 692 | lemma approx_mult_subst2: "[| u @= x*v; x @= y; v \<in> HFinite |] ==> u @= y*v" | |
| 693 | by (blast intro: approx_mult1 approx_trans) | |
| 694 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 695 | lemma approx_mult_subst_SReal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 696 | "[| u @= x*hypreal_of_real v; x @= y |] ==> u @= y*hypreal_of_real v" | 
| 14370 | 697 | by (auto intro: approx_mult_subst2) | 
| 698 | ||
| 699 | lemma approx_eq_imp: "a = b ==> a @= b" | |
| 700 | by (simp add: approx_def) | |
| 701 | ||
| 702 | lemma Infinitesimal_minus_approx: "x \<in> Infinitesimal ==> -x @= x" | |
| 703 | by (blast intro: Infinitesimal_minus_iff [THEN iffD2] | |
| 704 | mem_infmal_iff [THEN iffD1] approx_trans2) | |
| 705 | ||
| 706 | lemma bex_Infinitesimal_iff: "(\<exists>y \<in> Infinitesimal. x + -z = y) = (x @= z)" | |
| 707 | by (simp add: approx_def) | |
| 708 | ||
| 709 | lemma bex_Infinitesimal_iff2: "(\<exists>y \<in> Infinitesimal. x = z + y) = (x @= z)" | |
| 710 | by (force simp add: bex_Infinitesimal_iff [symmetric]) | |
| 711 | ||
| 712 | lemma Infinitesimal_add_approx: "[| y \<in> Infinitesimal; x + y = z |] ==> x @= z" | |
| 713 | apply (rule bex_Infinitesimal_iff [THEN iffD1]) | |
| 714 | apply (drule Infinitesimal_minus_iff [THEN iffD2]) | |
| 715 | apply (auto simp add: minus_add_distrib hypreal_add_assoc [symmetric]) | |
| 716 | done | |
| 717 | ||
| 718 | lemma Infinitesimal_add_approx_self: "y \<in> Infinitesimal ==> x @= x + y" | |
| 719 | apply (rule bex_Infinitesimal_iff [THEN iffD1]) | |
| 720 | apply (drule Infinitesimal_minus_iff [THEN iffD2]) | |
| 721 | apply (auto simp add: minus_add_distrib hypreal_add_assoc [symmetric]) | |
| 722 | done | |
| 723 | ||
| 724 | lemma Infinitesimal_add_approx_self2: "y \<in> Infinitesimal ==> x @= y + x" | |
| 725 | by (auto dest: Infinitesimal_add_approx_self simp add: hypreal_add_commute) | |
| 726 | ||
| 727 | lemma Infinitesimal_add_minus_approx_self: "y \<in> Infinitesimal ==> x @= x + -y" | |
| 728 | by (blast intro!: Infinitesimal_add_approx_self Infinitesimal_minus_iff [THEN iffD2]) | |
| 729 | ||
| 730 | lemma Infinitesimal_add_cancel: "[| y \<in> Infinitesimal; x+y @= z|] ==> x @= z" | |
| 731 | apply (drule_tac x = x in Infinitesimal_add_approx_self [THEN approx_sym]) | |
| 732 | apply (erule approx_trans3 [THEN approx_sym], assumption) | |
| 733 | done | |
| 734 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 735 | lemma Infinitesimal_add_right_cancel: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 736 | "[| y \<in> Infinitesimal; x @= z + y|] ==> x @= z" | 
| 14370 | 737 | apply (drule_tac x = z in Infinitesimal_add_approx_self2 [THEN approx_sym]) | 
| 738 | apply (erule approx_trans3 [THEN approx_sym]) | |
| 739 | apply (simp add: hypreal_add_commute) | |
| 740 | apply (erule approx_sym) | |
| 741 | done | |
| 742 | ||
| 743 | lemma approx_add_left_cancel: "d + b @= d + c ==> b @= c" | |
| 744 | apply (drule approx_minus_iff [THEN iffD1]) | |
| 745 | apply (simp add: minus_add_distrib approx_minus_iff [symmetric] add_ac) | |
| 746 | done | |
| 747 | ||
| 748 | lemma approx_add_right_cancel: "b + d @= c + d ==> b @= c" | |
| 749 | apply (rule approx_add_left_cancel) | |
| 750 | apply (simp add: hypreal_add_commute) | |
| 751 | done | |
| 752 | ||
| 753 | lemma approx_add_mono1: "b @= c ==> d + b @= d + c" | |
| 754 | apply (rule approx_minus_iff [THEN iffD2]) | |
| 755 | apply (simp add: minus_add_distrib approx_minus_iff [symmetric] add_ac) | |
| 756 | done | |
| 757 | ||
| 758 | lemma approx_add_mono2: "b @= c ==> b + a @= c + a" | |
| 759 | apply (simp (no_asm_simp) add: hypreal_add_commute approx_add_mono1) | |
| 760 | done | |
| 761 | ||
| 762 | lemma approx_add_left_iff: "(a + b @= a + c) = (b @= c)" | |
| 763 | by (fast elim: approx_add_left_cancel approx_add_mono1) | |
| 764 | ||
| 765 | declare approx_add_left_iff [simp] | |
| 766 | ||
| 767 | lemma approx_add_right_iff: "(b + a @= c + a) = (b @= c)" | |
| 768 | apply (simp (no_asm) add: hypreal_add_commute) | |
| 769 | done | |
| 770 | ||
| 771 | declare approx_add_right_iff [simp] | |
| 772 | ||
| 773 | lemma approx_HFinite: "[| x \<in> HFinite; x @= y |] ==> y \<in> HFinite" | |
| 774 | apply (drule bex_Infinitesimal_iff2 [THEN iffD2], safe) | |
| 775 | apply (drule Infinitesimal_subset_HFinite [THEN subsetD, THEN HFinite_minus_iff [THEN iffD2]]) | |
| 776 | apply (drule HFinite_add) | |
| 777 | apply (auto simp add: hypreal_add_assoc) | |
| 778 | done | |
| 779 | ||
| 780 | lemma approx_hypreal_of_real_HFinite: "x @= hypreal_of_real D ==> x \<in> HFinite" | |
| 781 | by (rule approx_sym [THEN [2] approx_HFinite], auto) | |
| 782 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 783 | lemma approx_mult_HFinite: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 784 | "[|a @= b; c @= d; b: HFinite; d: HFinite|] ==> a*c @= b*d" | 
| 14370 | 785 | apply (rule approx_trans) | 
| 786 | apply (rule_tac [2] approx_mult2) | |
| 787 | apply (rule approx_mult1) | |
| 788 | prefer 2 apply (blast intro: approx_HFinite approx_sym, auto) | |
| 789 | done | |
| 790 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 791 | lemma approx_mult_hypreal_of_real: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 792 | "[|a @= hypreal_of_real b; c @= hypreal_of_real d |] | 
| 14370 | 793 | ==> a*c @= hypreal_of_real b*hypreal_of_real d" | 
| 794 | apply (blast intro!: approx_mult_HFinite approx_hypreal_of_real_HFinite HFinite_hypreal_of_real) | |
| 795 | done | |
| 796 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 797 | lemma approx_SReal_mult_cancel_zero: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 798 | "[| a \<in> Reals; a \<noteq> 0; a*x @= 0 |] ==> x @= 0" | 
| 14370 | 799 | apply (drule SReal_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | 
| 800 | apply (auto dest: approx_mult2 simp add: hypreal_mult_assoc [symmetric]) | |
| 801 | done | |
| 802 | ||
| 803 | (* REM comments: newly added *) | |
| 804 | lemma approx_mult_SReal1: "[| a \<in> Reals; x @= 0 |] ==> x*a @= 0" | |
| 805 | by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult1) | |
| 806 | ||
| 807 | lemma approx_mult_SReal2: "[| a \<in> Reals; x @= 0 |] ==> a*x @= 0" | |
| 808 | by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult2) | |
| 809 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 810 | lemma approx_mult_SReal_zero_cancel_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 811 | "[|a \<in> Reals; a \<noteq> 0 |] ==> (a*x @= 0) = (x @= 0)" | 
| 14370 | 812 | by (blast intro: approx_SReal_mult_cancel_zero approx_mult_SReal2) | 
| 813 | declare approx_mult_SReal_zero_cancel_iff [simp] | |
| 814 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 815 | lemma approx_SReal_mult_cancel: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 816 | "[| a \<in> Reals; a \<noteq> 0; a* w @= a*z |] ==> w @= z" | 
| 14370 | 817 | apply (drule SReal_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | 
| 818 | apply (auto dest: approx_mult2 simp add: hypreal_mult_assoc [symmetric]) | |
| 819 | done | |
| 820 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 821 | lemma approx_SReal_mult_cancel_iff1: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 822 | "[| a \<in> Reals; a \<noteq> 0|] ==> (a* w @= a*z) = (w @= z)" | 
| 14370 | 823 | by (auto intro!: approx_mult2 SReal_subset_HFinite [THEN subsetD] intro: approx_SReal_mult_cancel) | 
| 824 | declare approx_SReal_mult_cancel_iff1 [simp] | |
| 825 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 826 | lemma approx_le_bound: "[| z \<le> f; f @= g; g \<le> z |] ==> f @= z" | 
| 14370 | 827 | apply (simp add: bex_Infinitesimal_iff2 [symmetric], auto) | 
| 828 | apply (rule_tac x = "g+y-z" in bexI) | |
| 829 | apply (simp (no_asm)) | |
| 830 | apply (rule Infinitesimal_interval2) | |
| 831 | apply (rule_tac [2] Infinitesimal_zero, auto) | |
| 832 | done | |
| 833 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 834 | |
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 835 | subsection{* Zero is the Only Infinitesimal that is Also a Real*}
 | 
| 14370 | 836 | |
| 837 | lemma Infinitesimal_less_SReal: | |
| 838 | "[| x \<in> Reals; y \<in> Infinitesimal; 0 < x |] ==> y < x" | |
| 839 | apply (simp add: Infinitesimal_def) | |
| 840 | apply (rule abs_ge_self [THEN order_le_less_trans], auto) | |
| 841 | done | |
| 842 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 843 | lemma Infinitesimal_less_SReal2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 844 | "y \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> y < r" | 
| 14370 | 845 | by (blast intro: Infinitesimal_less_SReal) | 
| 846 | ||
| 847 | lemma SReal_not_Infinitesimal: | |
| 848 | "[| 0 < y; y \<in> Reals|] ==> y \<notin> Infinitesimal" | |
| 849 | apply (simp add: Infinitesimal_def) | |
| 15003 | 850 | apply (auto simp add: abs_if) | 
| 14370 | 851 | done | 
| 852 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 853 | lemma SReal_minus_not_Infinitesimal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 854 | "[| y < 0; y \<in> Reals |] ==> y \<notin> Infinitesimal" | 
| 14370 | 855 | apply (subst Infinitesimal_minus_iff [symmetric]) | 
| 856 | apply (rule SReal_not_Infinitesimal, auto) | |
| 857 | done | |
| 858 | ||
| 859 | lemma SReal_Int_Infinitesimal_zero: "Reals Int Infinitesimal = {0}"
 | |
| 860 | apply auto | |
| 861 | apply (cut_tac x = x and y = 0 in linorder_less_linear) | |
| 862 | apply (blast dest: SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) | |
| 863 | done | |
| 864 | ||
| 865 | lemma SReal_Infinitesimal_zero: "[| x \<in> Reals; x \<in> Infinitesimal|] ==> x = 0" | |
| 866 | by (cut_tac SReal_Int_Infinitesimal_zero, blast) | |
| 867 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 868 | lemma SReal_HFinite_diff_Infinitesimal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 869 | "[| x \<in> Reals; x \<noteq> 0 |] ==> x \<in> HFinite - Infinitesimal" | 
| 14370 | 870 | by (auto dest: SReal_Infinitesimal_zero SReal_subset_HFinite [THEN subsetD]) | 
| 871 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 872 | lemma hypreal_of_real_HFinite_diff_Infinitesimal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 873 | "hypreal_of_real x \<noteq> 0 ==> hypreal_of_real x \<in> HFinite - Infinitesimal" | 
| 14370 | 874 | by (rule SReal_HFinite_diff_Infinitesimal, auto) | 
| 875 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 876 | lemma hypreal_of_real_Infinitesimal_iff_0: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 877 | "(hypreal_of_real x \<in> Infinitesimal) = (x=0)" | 
| 14370 | 878 | apply auto | 
| 879 | apply (rule ccontr) | |
| 880 | apply (rule hypreal_of_real_HFinite_diff_Infinitesimal [THEN DiffD2], auto) | |
| 881 | done | |
| 882 | declare hypreal_of_real_Infinitesimal_iff_0 [iff] | |
| 883 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 884 | lemma number_of_not_Infinitesimal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 885 | "number_of w \<noteq> (0::hypreal) ==> number_of w \<notin> Infinitesimal" | 
| 14370 | 886 | by (fast dest: SReal_number_of [THEN SReal_Infinitesimal_zero]) | 
| 887 | declare number_of_not_Infinitesimal [simp] | |
| 888 | ||
| 889 | (*again: 1 is a special case, but not 0 this time*) | |
| 890 | lemma one_not_Infinitesimal: "1 \<notin> Infinitesimal" | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 891 | apply (subst numeral_1_eq_1 [symmetric]) | 
| 14370 | 892 | apply (rule number_of_not_Infinitesimal) | 
| 893 | apply (simp (no_asm)) | |
| 894 | done | |
| 895 | declare one_not_Infinitesimal [simp] | |
| 896 | ||
| 897 | lemma approx_SReal_not_zero: "[| y \<in> Reals; x @= y; y\<noteq> 0 |] ==> x \<noteq> 0" | |
| 898 | apply (cut_tac x = 0 and y = y in linorder_less_linear, simp) | |
| 899 | apply (blast dest: approx_sym [THEN mem_infmal_iff [THEN iffD2]] SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) | |
| 900 | done | |
| 901 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 902 | lemma HFinite_diff_Infinitesimal_approx: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 903 | "[| x @= y; y \<in> HFinite - Infinitesimal |] | 
| 14370 | 904 | ==> x \<in> HFinite - Infinitesimal" | 
| 905 | apply (auto intro: approx_sym [THEN [2] approx_HFinite] | |
| 906 | simp add: mem_infmal_iff) | |
| 907 | apply (drule approx_trans3, assumption) | |
| 908 | apply (blast dest: approx_sym) | |
| 909 | done | |
| 910 | ||
| 911 | (*The premise y\<noteq>0 is essential; otherwise x/y =0 and we lose the | |
| 912 | HFinite premise.*) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 913 | lemma Infinitesimal_ratio: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 914 | "[| y \<noteq> 0; y \<in> Infinitesimal; x/y \<in> HFinite |] ==> x \<in> Infinitesimal" | 
| 14370 | 915 | apply (drule Infinitesimal_HFinite_mult2, assumption) | 
| 916 | apply (simp add: hypreal_divide_def hypreal_mult_assoc) | |
| 917 | done | |
| 918 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 919 | lemma Infinitesimal_SReal_divide: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 920 | "[| x \<in> Infinitesimal; y \<in> Reals |] ==> x/y \<in> Infinitesimal" | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14420diff
changeset | 921 | apply (simp add: divide_inverse) | 
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 922 | apply (auto intro!: Infinitesimal_HFinite_mult | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 923 | dest!: SReal_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 924 | done | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 925 | |
| 14370 | 926 | (*------------------------------------------------------------------ | 
| 927 | Standard Part Theorem: Every finite x: R* is infinitely | |
| 928 | close to a unique real number (i.e a member of Reals) | |
| 929 | ------------------------------------------------------------------*) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 930 | |
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 931 | subsection{* Uniqueness: Two Infinitely Close Reals are Equal*}
 | 
| 14370 | 932 | |
| 933 | lemma SReal_approx_iff: "[|x \<in> Reals; y \<in> Reals|] ==> (x @= y) = (x = y)" | |
| 934 | apply auto | |
| 935 | apply (simp add: approx_def) | |
| 936 | apply (drule_tac x = y in SReal_minus) | |
| 937 | apply (drule SReal_add, assumption) | |
| 938 | apply (drule SReal_Infinitesimal_zero, assumption) | |
| 939 | apply (drule sym) | |
| 940 | apply (simp add: hypreal_eq_minus_iff [symmetric]) | |
| 941 | done | |
| 942 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 943 | lemma number_of_approx_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 944 | "(number_of v @= number_of w) = (number_of v = (number_of w :: hypreal))" | 
| 14370 | 945 | by (auto simp add: SReal_approx_iff) | 
| 946 | declare number_of_approx_iff [simp] | |
| 947 | ||
| 948 | (*And also for 0 @= #nn and 1 @= #nn, #nn @= 0 and #nn @= 1.*) | |
| 949 | lemma [simp]: "(0 @= number_of w) = ((number_of w :: hypreal) = 0)" | |
| 950 | "(number_of w @= 0) = ((number_of w :: hypreal) = 0)" | |
| 951 | "(1 @= number_of w) = ((number_of w :: hypreal) = 1)" | |
| 952 | "(number_of w @= 1) = ((number_of w :: hypreal) = 1)" | |
| 953 | "~ (0 @= 1)" "~ (1 @= 0)" | |
| 954 | by (auto simp only: SReal_number_of SReal_approx_iff Reals_0 Reals_1) | |
| 955 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 956 | lemma hypreal_of_real_approx_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 957 | "(hypreal_of_real k @= hypreal_of_real m) = (k = m)" | 
| 14370 | 958 | apply auto | 
| 959 | apply (rule inj_hypreal_of_real [THEN injD]) | |
| 960 | apply (rule SReal_approx_iff [THEN iffD1], auto) | |
| 961 | done | |
| 962 | declare hypreal_of_real_approx_iff [simp] | |
| 963 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 964 | lemma hypreal_of_real_approx_number_of_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 965 | "(hypreal_of_real k @= number_of w) = (k = number_of w)" | 
| 14370 | 966 | by (subst hypreal_of_real_approx_iff [symmetric], auto) | 
| 967 | declare hypreal_of_real_approx_number_of_iff [simp] | |
| 968 | ||
| 969 | (*And also for 0 and 1.*) | |
| 970 | (*And also for 0 @= #nn and 1 @= #nn, #nn @= 0 and #nn @= 1.*) | |
| 971 | lemma [simp]: "(hypreal_of_real k @= 0) = (k = 0)" | |
| 972 | "(hypreal_of_real k @= 1) = (k = 1)" | |
| 973 | by (simp_all add: hypreal_of_real_approx_iff [symmetric]) | |
| 974 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 975 | lemma approx_unique_real: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 976 | "[| r \<in> Reals; s \<in> Reals; r @= x; s @= x|] ==> r = s" | 
| 14370 | 977 | by (blast intro: SReal_approx_iff [THEN iffD1] approx_trans2) | 
| 978 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 979 | |
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 980 | subsection{* Existence of Unique Real Infinitely Close*}
 | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 981 | |
| 14370 | 982 | (* lemma about lubs *) | 
| 983 | lemma hypreal_isLub_unique: | |
| 984 | "[| isLub R S x; isLub R S y |] ==> x = (y::hypreal)" | |
| 985 | apply (frule isLub_isUb) | |
| 986 | apply (frule_tac x = y in isLub_isUb) | |
| 987 | apply (blast intro!: hypreal_le_anti_sym dest!: isLub_le_isUb) | |
| 988 | done | |
| 989 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 990 | lemma lemma_st_part_ub: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 991 |      "x \<in> HFinite ==> \<exists>u. isUb Reals {s. s \<in> Reals & s < x} u"
 | 
| 14370 | 992 | apply (drule HFiniteD, safe) | 
| 993 | apply (rule exI, rule isUbI) | |
| 994 | apply (auto intro: setleI isUbI simp add: abs_less_iff) | |
| 995 | done | |
| 996 | ||
| 997 | lemma lemma_st_part_nonempty: "x \<in> HFinite ==> \<exists>y. y \<in> {s. s \<in> Reals & s < x}"
 | |
| 998 | apply (drule HFiniteD, safe) | |
| 999 | apply (drule SReal_minus) | |
| 1000 | apply (rule_tac x = "-t" in exI) | |
| 1001 | apply (auto simp add: abs_less_iff) | |
| 1002 | done | |
| 1003 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1004 | lemma lemma_st_part_subset: "{s. s \<in> Reals & s < x} \<subseteq> Reals"
 | 
| 14370 | 1005 | by auto | 
| 1006 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1007 | lemma lemma_st_part_lub: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1008 |      "x \<in> HFinite ==> \<exists>t. isLub Reals {s. s \<in> Reals & s < x} t"
 | 
| 14370 | 1009 | by (blast intro!: SReal_complete lemma_st_part_ub lemma_st_part_nonempty lemma_st_part_subset) | 
| 1010 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1011 | lemma lemma_hypreal_le_left_cancel: "((t::hypreal) + r \<le> t) = (r \<le> 0)" | 
| 14370 | 1012 | apply safe | 
| 1013 | apply (drule_tac c = "-t" in add_left_mono) | |
| 1014 | apply (drule_tac [2] c = t in add_left_mono) | |
| 1015 | apply (auto simp add: hypreal_add_assoc [symmetric]) | |
| 1016 | done | |
| 1017 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1018 | lemma lemma_st_part_le1: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1019 |      "[| x \<in> HFinite;  isLub Reals {s. s \<in> Reals & s < x} t;
 | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1020 | r \<in> Reals; 0 < r |] ==> x \<le> t + r" | 
| 14370 | 1021 | apply (frule isLubD1a) | 
| 1022 | apply (rule ccontr, drule linorder_not_le [THEN iffD2]) | |
| 1023 | apply (drule_tac x = t in SReal_add, assumption) | |
| 1024 | apply (drule_tac y = "t + r" in isLubD1 [THEN setleD], auto) | |
| 1025 | done | |
| 1026 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1027 | lemma hypreal_setle_less_trans: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1028 | "!!x::hypreal. [| S *<= x; x < y |] ==> S *<= y" | 
| 14370 | 1029 | apply (simp add: setle_def) | 
| 1030 | apply (auto dest!: bspec order_le_less_trans intro: order_less_imp_le) | |
| 1031 | done | |
| 1032 | ||
| 1033 | lemma hypreal_gt_isUb: | |
| 1034 | "!!x::hypreal. [| isUb R S x; x < y; y \<in> R |] ==> isUb R S y" | |
| 1035 | apply (simp add: isUb_def) | |
| 1036 | apply (blast intro: hypreal_setle_less_trans) | |
| 1037 | done | |
| 1038 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1039 | lemma lemma_st_part_gt_ub: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1040 | "[| x \<in> HFinite; x < y; y \<in> Reals |] | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1041 |       ==> isUb Reals {s. s \<in> Reals & s < x} y"
 | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1042 | by (auto dest: order_less_trans intro: order_less_imp_le intro!: isUbI setleI) | 
| 14370 | 1043 | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1044 | lemma lemma_minus_le_zero: "t \<le> t + -r ==> r \<le> (0::hypreal)" | 
| 14370 | 1045 | apply (drule_tac c = "-t" in add_left_mono) | 
| 1046 | apply (auto simp add: hypreal_add_assoc [symmetric]) | |
| 1047 | done | |
| 1048 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1049 | lemma lemma_st_part_le2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1050 | "[| x \<in> HFinite; | 
| 14370 | 1051 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | 
| 1052 | r \<in> Reals; 0 < r |] | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1053 | ==> t + -r \<le> x" | 
| 14370 | 1054 | apply (frule isLubD1a) | 
| 1055 | apply (rule ccontr, drule linorder_not_le [THEN iffD1]) | |
| 1056 | apply (drule SReal_minus, drule_tac x = t in SReal_add, assumption) | |
| 1057 | apply (drule lemma_st_part_gt_ub, assumption+) | |
| 1058 | apply (drule isLub_le_isUb, assumption) | |
| 1059 | apply (drule lemma_minus_le_zero) | |
| 1060 | apply (auto dest: order_less_le_trans) | |
| 1061 | done | |
| 1062 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1063 | lemma lemma_hypreal_le_swap: "((x::hypreal) \<le> t + r) = (x + -t \<le> r)" | 
| 14370 | 1064 | by auto | 
| 1065 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1066 | lemma lemma_st_part1a: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1067 | "[| x \<in> HFinite; | 
| 14370 | 1068 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | 
| 1069 | r \<in> Reals; 0 < r |] | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1070 | ==> x + -t \<le> r" | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1071 | by (blast intro!: lemma_hypreal_le_swap [THEN iffD1] lemma_st_part_le1) | 
| 14370 | 1072 | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1073 | lemma lemma_hypreal_le_swap2: "(t + -r \<le> x) = (-(x + -t) \<le> (r::hypreal))" | 
| 14370 | 1074 | by auto | 
| 1075 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1076 | lemma lemma_st_part2a: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1077 | "[| x \<in> HFinite; | 
| 14370 | 1078 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | 
| 1079 | r \<in> Reals; 0 < r |] | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1080 | ==> -(x + -t) \<le> r" | 
| 14370 | 1081 | apply (blast intro!: lemma_hypreal_le_swap2 [THEN iffD1] lemma_st_part_le2) | 
| 1082 | done | |
| 1083 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1084 | lemma lemma_SReal_ub: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1085 |      "(x::hypreal) \<in> Reals ==> isUb Reals {s. s \<in> Reals & s < x} x"
 | 
| 14370 | 1086 | by (auto intro: isUbI setleI order_less_imp_le) | 
| 1087 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1088 | lemma lemma_SReal_lub: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1089 |      "(x::hypreal) \<in> Reals ==> isLub Reals {s. s \<in> Reals & s < x} x"
 | 
| 14370 | 1090 | apply (auto intro!: isLubI2 lemma_SReal_ub setgeI) | 
| 1091 | apply (frule isUbD2a) | |
| 1092 | apply (rule_tac x = x and y = y in linorder_cases) | |
| 1093 | apply (auto intro!: order_less_imp_le) | |
| 1094 | apply (drule SReal_dense, assumption, assumption, safe) | |
| 1095 | apply (drule_tac y = r in isUbD) | |
| 1096 | apply (auto dest: order_less_le_trans) | |
| 1097 | done | |
| 1098 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1099 | lemma lemma_st_part_not_eq1: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1100 | "[| x \<in> HFinite; | 
| 14370 | 1101 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | 
| 1102 | r \<in> Reals; 0 < r |] | |
| 1103 | ==> x + -t \<noteq> r" | |
| 1104 | apply auto | |
| 1105 | apply (frule isLubD1a [THEN SReal_minus]) | |
| 1106 | apply (drule SReal_add_cancel, assumption) | |
| 1107 | apply (drule_tac x = x in lemma_SReal_lub) | |
| 1108 | apply (drule hypreal_isLub_unique, assumption, auto) | |
| 1109 | done | |
| 1110 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1111 | lemma lemma_st_part_not_eq2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1112 | "[| x \<in> HFinite; | 
| 14370 | 1113 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | 
| 1114 | r \<in> Reals; 0 < r |] | |
| 1115 | ==> -(x + -t) \<noteq> r" | |
| 1116 | apply (auto simp add: minus_add_distrib) | |
| 1117 | apply (frule isLubD1a) | |
| 1118 | apply (drule SReal_add_cancel, assumption) | |
| 1119 | apply (drule_tac x = "-x" in SReal_minus, simp) | |
| 1120 | apply (drule_tac x = x in lemma_SReal_lub) | |
| 1121 | apply (drule hypreal_isLub_unique, assumption, auto) | |
| 1122 | done | |
| 1123 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1124 | lemma lemma_st_part_major: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1125 | "[| x \<in> HFinite; | 
| 14370 | 1126 |          isLub Reals {s. s \<in> Reals & s < x} t;
 | 
| 1127 | r \<in> Reals; 0 < r |] | |
| 1128 | ==> abs (x + -t) < r" | |
| 1129 | apply (frule lemma_st_part1a) | |
| 1130 | apply (frule_tac [4] lemma_st_part2a, auto) | |
| 1131 | apply (drule order_le_imp_less_or_eq)+ | |
| 1132 | apply (auto dest: lemma_st_part_not_eq1 lemma_st_part_not_eq2 simp add: abs_less_iff) | |
| 1133 | done | |
| 1134 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1135 | lemma lemma_st_part_major2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1136 |      "[| x \<in> HFinite; isLub Reals {s. s \<in> Reals & s < x} t |]
 | 
| 14370 | 1137 | ==> \<forall>r \<in> Reals. 0 < r --> abs (x + -t) < r" | 
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1138 | by (blast dest!: lemma_st_part_major) | 
| 14370 | 1139 | |
| 1140 | (*---------------------------------------------- | |
| 1141 | Existence of real and Standard Part Theorem | |
| 1142 | ----------------------------------------------*) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1143 | lemma lemma_st_part_Ex: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1144 | "x \<in> HFinite ==> \<exists>t \<in> Reals. \<forall>r \<in> Reals. 0 < r --> abs (x + -t) < r" | 
| 14370 | 1145 | apply (frule lemma_st_part_lub, safe) | 
| 1146 | apply (frule isLubD1a) | |
| 1147 | apply (blast dest: lemma_st_part_major2) | |
| 1148 | done | |
| 1149 | ||
| 1150 | lemma st_part_Ex: | |
| 1151 | "x \<in> HFinite ==> \<exists>t \<in> Reals. x @= t" | |
| 1152 | apply (simp add: approx_def Infinitesimal_def) | |
| 1153 | apply (drule lemma_st_part_Ex, auto) | |
| 1154 | done | |
| 1155 | ||
| 1156 | (*-------------------------------- | |
| 1157 | Unique real infinitely close | |
| 1158 | -------------------------------*) | |
| 1159 | lemma st_part_Ex1: "x \<in> HFinite ==> EX! t. t \<in> Reals & x @= t" | |
| 1160 | apply (drule st_part_Ex, safe) | |
| 1161 | apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym) | |
| 1162 | apply (auto intro!: approx_unique_real) | |
| 1163 | done | |
| 1164 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1165 | subsection{* Finite, Infinite and Infinitesimal*}
 | 
| 14370 | 1166 | |
| 1167 | lemma HFinite_Int_HInfinite_empty: "HFinite Int HInfinite = {}"
 | |
| 1168 | ||
| 1169 | apply (simp add: HFinite_def HInfinite_def) | |
| 1170 | apply (auto dest: order_less_trans) | |
| 1171 | done | |
| 1172 | declare HFinite_Int_HInfinite_empty [simp] | |
| 1173 | ||
| 1174 | lemma HFinite_not_HInfinite: | |
| 1175 | assumes x: "x \<in> HFinite" shows "x \<notin> HInfinite" | |
| 1176 | proof | |
| 1177 | assume x': "x \<in> HInfinite" | |
| 1178 | with x have "x \<in> HFinite \<inter> HInfinite" by blast | |
| 1179 | thus False by auto | |
| 1180 | qed | |
| 1181 | ||
| 1182 | lemma not_HFinite_HInfinite: "x\<notin> HFinite ==> x \<in> HInfinite" | |
| 1183 | apply (simp add: HInfinite_def HFinite_def, auto) | |
| 1184 | apply (drule_tac x = "r + 1" in bspec) | |
| 1185 | apply (auto simp add: SReal_add) | |
| 1186 | done | |
| 1187 | ||
| 1188 | lemma HInfinite_HFinite_disj: "x \<in> HInfinite | x \<in> HFinite" | |
| 1189 | by (blast intro: not_HFinite_HInfinite) | |
| 1190 | ||
| 1191 | lemma HInfinite_HFinite_iff: "(x \<in> HInfinite) = (x \<notin> HFinite)" | |
| 1192 | by (blast dest: HFinite_not_HInfinite not_HFinite_HInfinite) | |
| 1193 | ||
| 1194 | lemma HFinite_HInfinite_iff: "(x \<in> HFinite) = (x \<notin> HInfinite)" | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1195 | by (simp add: HInfinite_HFinite_iff) | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1196 | |
| 14370 | 1197 | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1198 | lemma HInfinite_diff_HFinite_Infinitesimal_disj: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1199 | "x \<notin> Infinitesimal ==> x \<in> HInfinite | x \<in> HFinite - Infinitesimal" | 
| 14370 | 1200 | by (fast intro: not_HFinite_HInfinite) | 
| 1201 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1202 | lemma HFinite_inverse: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1203 | "[| x \<in> HFinite; x \<notin> Infinitesimal |] ==> inverse x \<in> HFinite" | 
| 14370 | 1204 | apply (cut_tac x = "inverse x" in HInfinite_HFinite_disj) | 
| 1205 | apply (auto dest!: HInfinite_inverse_Infinitesimal) | |
| 1206 | done | |
| 1207 | ||
| 1208 | lemma HFinite_inverse2: "x \<in> HFinite - Infinitesimal ==> inverse x \<in> HFinite" | |
| 1209 | by (blast intro: HFinite_inverse) | |
| 1210 | ||
| 1211 | (* stronger statement possible in fact *) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1212 | lemma Infinitesimal_inverse_HFinite: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1213 | "x \<notin> Infinitesimal ==> inverse(x) \<in> HFinite" | 
| 14370 | 1214 | apply (drule HInfinite_diff_HFinite_Infinitesimal_disj) | 
| 1215 | apply (blast intro: HFinite_inverse HInfinite_inverse_Infinitesimal Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 1216 | done | |
| 1217 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1218 | lemma HFinite_not_Infinitesimal_inverse: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1219 | "x \<in> HFinite - Infinitesimal ==> inverse x \<in> HFinite - Infinitesimal" | 
| 14370 | 1220 | apply (auto intro: Infinitesimal_inverse_HFinite) | 
| 1221 | apply (drule Infinitesimal_HFinite_mult2, assumption) | |
| 1222 | apply (simp add: not_Infinitesimal_not_zero hypreal_mult_inverse) | |
| 1223 | done | |
| 1224 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1225 | lemma approx_inverse: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1226 | "[| x @= y; y \<in> HFinite - Infinitesimal |] | 
| 14370 | 1227 | ==> inverse x @= inverse y" | 
| 1228 | apply (frule HFinite_diff_Infinitesimal_approx, assumption) | |
| 1229 | apply (frule not_Infinitesimal_not_zero2) | |
| 1230 | apply (frule_tac x = x in not_Infinitesimal_not_zero2) | |
| 1231 | apply (drule HFinite_inverse2)+ | |
| 1232 | apply (drule approx_mult2, assumption, auto) | |
| 1233 | apply (drule_tac c = "inverse x" in approx_mult1, assumption) | |
| 1234 | apply (auto intro: approx_sym simp add: hypreal_mult_assoc) | |
| 1235 | done | |
| 1236 | ||
| 1237 | (*Used for NSLIM_inverse, NSLIMSEQ_inverse*) | |
| 1238 | lemmas hypreal_of_real_approx_inverse = hypreal_of_real_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] | |
| 1239 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1240 | lemma inverse_add_Infinitesimal_approx: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1241 | "[| x \<in> HFinite - Infinitesimal; | 
| 14370 | 1242 | h \<in> Infinitesimal |] ==> inverse(x + h) @= inverse x" | 
| 1243 | apply (auto intro: approx_inverse approx_sym Infinitesimal_add_approx_self) | |
| 1244 | done | |
| 1245 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1246 | lemma inverse_add_Infinitesimal_approx2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1247 | "[| x \<in> HFinite - Infinitesimal; | 
| 14370 | 1248 | h \<in> Infinitesimal |] ==> inverse(h + x) @= inverse x" | 
| 1249 | apply (rule hypreal_add_commute [THEN subst]) | |
| 1250 | apply (blast intro: inverse_add_Infinitesimal_approx) | |
| 1251 | done | |
| 1252 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1253 | lemma inverse_add_Infinitesimal_approx_Infinitesimal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1254 | "[| x \<in> HFinite - Infinitesimal; | 
| 14370 | 1255 | h \<in> Infinitesimal |] ==> inverse(x + h) + -inverse x @= h" | 
| 1256 | apply (rule approx_trans2) | |
| 1257 | apply (auto intro: inverse_add_Infinitesimal_approx simp add: mem_infmal_iff approx_minus_iff [symmetric]) | |
| 1258 | done | |
| 1259 | ||
| 1260 | lemma Infinitesimal_square_iff: "(x \<in> Infinitesimal) = (x*x \<in> Infinitesimal)" | |
| 1261 | apply (auto intro: Infinitesimal_mult) | |
| 1262 | apply (rule ccontr, frule Infinitesimal_inverse_HFinite) | |
| 1263 | apply (frule not_Infinitesimal_not_zero) | |
| 1264 | apply (auto dest: Infinitesimal_HFinite_mult simp add: hypreal_mult_assoc) | |
| 1265 | done | |
| 1266 | declare Infinitesimal_square_iff [symmetric, simp] | |
| 1267 | ||
| 1268 | lemma HFinite_square_iff: "(x*x \<in> HFinite) = (x \<in> HFinite)" | |
| 1269 | apply (auto intro: HFinite_mult) | |
| 1270 | apply (auto dest: HInfinite_mult simp add: HFinite_HInfinite_iff) | |
| 1271 | done | |
| 1272 | declare HFinite_square_iff [simp] | |
| 1273 | ||
| 1274 | lemma HInfinite_square_iff: "(x*x \<in> HInfinite) = (x \<in> HInfinite)" | |
| 1275 | by (auto simp add: HInfinite_HFinite_iff) | |
| 1276 | declare HInfinite_square_iff [simp] | |
| 1277 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1278 | lemma approx_HFinite_mult_cancel: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1279 | "[| a: HFinite-Infinitesimal; a* w @= a*z |] ==> w @= z" | 
| 14370 | 1280 | apply safe | 
| 1281 | apply (frule HFinite_inverse, assumption) | |
| 1282 | apply (drule not_Infinitesimal_not_zero) | |
| 1283 | apply (auto dest: approx_mult2 simp add: hypreal_mult_assoc [symmetric]) | |
| 1284 | done | |
| 1285 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1286 | lemma approx_HFinite_mult_cancel_iff1: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1287 | "a: HFinite-Infinitesimal ==> (a * w @= a * z) = (w @= z)" | 
| 14370 | 1288 | by (auto intro: approx_mult2 approx_HFinite_mult_cancel) | 
| 1289 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1290 | lemma HInfinite_HFinite_add_cancel: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1291 | "[| x + y \<in> HInfinite; y \<in> HFinite |] ==> x \<in> HInfinite" | 
| 14370 | 1292 | apply (rule ccontr) | 
| 1293 | apply (drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1294 | apply (auto dest: HFinite_add simp add: HInfinite_HFinite_iff) | |
| 1295 | done | |
| 1296 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1297 | lemma HInfinite_HFinite_add: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1298 | "[| x \<in> HInfinite; y \<in> HFinite |] ==> x + y \<in> HInfinite" | 
| 14370 | 1299 | apply (rule_tac y = "-y" in HInfinite_HFinite_add_cancel) | 
| 1300 | apply (auto simp add: hypreal_add_assoc HFinite_minus_iff) | |
| 1301 | done | |
| 1302 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1303 | lemma HInfinite_ge_HInfinite: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1304 | "[| x \<in> HInfinite; x \<le> y; 0 \<le> x |] ==> y \<in> HInfinite" | 
| 14370 | 1305 | by (auto intro: HFinite_bounded simp add: HInfinite_HFinite_iff) | 
| 1306 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1307 | lemma Infinitesimal_inverse_HInfinite: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1308 | "[| x \<in> Infinitesimal; x \<noteq> 0 |] ==> inverse x \<in> HInfinite" | 
| 14370 | 1309 | apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) | 
| 1310 | apply (auto dest: Infinitesimal_HFinite_mult2) | |
| 1311 | done | |
| 1312 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1313 | lemma HInfinite_HFinite_not_Infinitesimal_mult: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1314 | "[| x \<in> HInfinite; y \<in> HFinite - Infinitesimal |] | 
| 14370 | 1315 | ==> x * y \<in> HInfinite" | 
| 1316 | apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1317 | apply (frule HFinite_Infinitesimal_not_zero) | |
| 1318 | apply (drule HFinite_not_Infinitesimal_inverse) | |
| 1319 | apply (safe, drule HFinite_mult) | |
| 1320 | apply (auto simp add: hypreal_mult_assoc HFinite_HInfinite_iff) | |
| 1321 | done | |
| 1322 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1323 | lemma HInfinite_HFinite_not_Infinitesimal_mult2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1324 | "[| x \<in> HInfinite; y \<in> HFinite - Infinitesimal |] | 
| 14370 | 1325 | ==> y * x \<in> HInfinite" | 
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1326 | by (auto simp add: hypreal_mult_commute HInfinite_HFinite_not_Infinitesimal_mult) | 
| 14370 | 1327 | |
| 1328 | lemma HInfinite_gt_SReal: "[| x \<in> HInfinite; 0 < x; y \<in> Reals |] ==> y < x" | |
| 15003 | 1329 | by (auto dest!: bspec simp add: HInfinite_def abs_if order_less_imp_le) | 
| 14370 | 1330 | |
| 1331 | lemma HInfinite_gt_zero_gt_one: "[| x \<in> HInfinite; 0 < x |] ==> 1 < x" | |
| 1332 | by (auto intro: HInfinite_gt_SReal) | |
| 1333 | ||
| 1334 | ||
| 1335 | lemma not_HInfinite_one: "1 \<notin> HInfinite" | |
| 1336 | apply (simp (no_asm) add: HInfinite_HFinite_iff) | |
| 1337 | done | |
| 1338 | declare not_HInfinite_one [simp] | |
| 1339 | ||
| 1340 | lemma approx_hrabs_disj: "abs x @= x | abs x @= -x" | |
| 1341 | by (cut_tac x = x in hrabs_disj, auto) | |
| 1342 | ||
| 1343 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1344 | subsection{*Theorems about Monads*}
 | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1345 | |
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1346 | lemma monad_hrabs_Un_subset: "monad (abs x) \<le> monad(x) Un monad(-x)" | 
| 14370 | 1347 | by (rule_tac x1 = x in hrabs_disj [THEN disjE], auto) | 
| 1348 | ||
| 1349 | lemma Infinitesimal_monad_eq: "e \<in> Infinitesimal ==> monad (x+e) = monad x" | |
| 1350 | by (fast intro!: Infinitesimal_add_approx_self [THEN approx_sym] approx_monad_iff [THEN iffD1]) | |
| 1351 | ||
| 1352 | lemma mem_monad_iff: "(u \<in> monad x) = (-u \<in> monad (-x))" | |
| 1353 | by (simp add: monad_def) | |
| 1354 | ||
| 1355 | lemma Infinitesimal_monad_zero_iff: "(x \<in> Infinitesimal) = (x \<in> monad 0)" | |
| 1356 | by (auto intro: approx_sym simp add: monad_def mem_infmal_iff) | |
| 1357 | ||
| 1358 | lemma monad_zero_minus_iff: "(x \<in> monad 0) = (-x \<in> monad 0)" | |
| 1359 | apply (simp (no_asm) add: Infinitesimal_monad_zero_iff [symmetric]) | |
| 1360 | done | |
| 1361 | ||
| 1362 | lemma monad_zero_hrabs_iff: "(x \<in> monad 0) = (abs x \<in> monad 0)" | |
| 1363 | apply (rule_tac x1 = x in hrabs_disj [THEN disjE]) | |
| 1364 | apply (auto simp add: monad_zero_minus_iff [symmetric]) | |
| 1365 | done | |
| 1366 | ||
| 1367 | lemma mem_monad_self: "x \<in> monad x" | |
| 1368 | by (simp add: monad_def) | |
| 1369 | declare mem_monad_self [simp] | |
| 1370 | ||
| 1371 | (*------------------------------------------------------------------ | |
| 1372 | Proof that x @= y ==> abs x @= abs y | |
| 1373 | ------------------------------------------------------------------*) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1374 | lemma approx_subset_monad: "x @= y ==> {x,y}\<le>monad x"
 | 
| 14370 | 1375 | apply (simp (no_asm)) | 
| 1376 | apply (simp add: approx_monad_iff) | |
| 1377 | done | |
| 1378 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1379 | lemma approx_subset_monad2: "x @= y ==> {x,y}\<le>monad y"
 | 
| 14370 | 1380 | apply (drule approx_sym) | 
| 1381 | apply (fast dest: approx_subset_monad) | |
| 1382 | done | |
| 1383 | ||
| 1384 | lemma mem_monad_approx: "u \<in> monad x ==> x @= u" | |
| 1385 | by (simp add: monad_def) | |
| 1386 | ||
| 1387 | lemma approx_mem_monad: "x @= u ==> u \<in> monad x" | |
| 1388 | by (simp add: monad_def) | |
| 1389 | ||
| 1390 | lemma approx_mem_monad2: "x @= u ==> x \<in> monad u" | |
| 1391 | apply (simp add: monad_def) | |
| 1392 | apply (blast intro!: approx_sym) | |
| 1393 | done | |
| 1394 | ||
| 1395 | lemma approx_mem_monad_zero: "[| x @= y;x \<in> monad 0 |] ==> y \<in> monad 0" | |
| 1396 | apply (drule mem_monad_approx) | |
| 1397 | apply (fast intro: approx_mem_monad approx_trans) | |
| 1398 | done | |
| 1399 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1400 | lemma Infinitesimal_approx_hrabs: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1401 | "[| x @= y; x \<in> Infinitesimal |] ==> abs x @= abs y" | 
| 14370 | 1402 | apply (drule Infinitesimal_monad_zero_iff [THEN iffD1]) | 
| 1403 | apply (blast intro: approx_mem_monad_zero monad_zero_hrabs_iff [THEN iffD1] mem_monad_approx approx_trans3) | |
| 1404 | done | |
| 1405 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1406 | lemma less_Infinitesimal_less: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1407 | "[| 0 < x; x \<notin>Infinitesimal; e :Infinitesimal |] ==> e < x" | 
| 14370 | 1408 | apply (rule ccontr) | 
| 1409 | apply (auto intro: Infinitesimal_zero [THEN [2] Infinitesimal_interval] | |
| 1410 | dest!: order_le_imp_less_or_eq simp add: linorder_not_less) | |
| 1411 | done | |
| 1412 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1413 | lemma Ball_mem_monad_gt_zero: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1414 | "[| 0 < x; x \<notin> Infinitesimal; u \<in> monad x |] ==> 0 < u" | 
| 14370 | 1415 | apply (drule mem_monad_approx [THEN approx_sym]) | 
| 1416 | apply (erule bex_Infinitesimal_iff2 [THEN iffD2, THEN bexE]) | |
| 1417 | apply (drule_tac e = "-xa" in less_Infinitesimal_less, auto) | |
| 1418 | done | |
| 1419 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1420 | lemma Ball_mem_monad_less_zero: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1421 | "[| x < 0; x \<notin> Infinitesimal; u \<in> monad x |] ==> u < 0" | 
| 14370 | 1422 | apply (drule mem_monad_approx [THEN approx_sym]) | 
| 1423 | apply (erule bex_Infinitesimal_iff [THEN iffD2, THEN bexE]) | |
| 1424 | apply (cut_tac x = "-x" and e = xa in less_Infinitesimal_less, auto) | |
| 1425 | done | |
| 1426 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1427 | lemma lemma_approx_gt_zero: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1428 | "[|0 < x; x \<notin> Infinitesimal; x @= y|] ==> 0 < y" | 
| 14370 | 1429 | by (blast dest: Ball_mem_monad_gt_zero approx_subset_monad) | 
| 1430 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1431 | lemma lemma_approx_less_zero: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1432 | "[|x < 0; x \<notin> Infinitesimal; x @= y|] ==> y < 0" | 
| 14370 | 1433 | by (blast dest: Ball_mem_monad_less_zero approx_subset_monad) | 
| 1434 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1435 | lemma approx_hrabs1: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1436 | "[| x @= y; x < 0; x \<notin> Infinitesimal |] ==> abs x @= abs y" | 
| 14370 | 1437 | apply (frule lemma_approx_less_zero) | 
| 1438 | apply (assumption+) | |
| 1439 | apply (simp add: abs_if) | |
| 1440 | done | |
| 1441 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1442 | lemma approx_hrabs2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1443 | "[| x @= y; 0 < x; x \<notin> Infinitesimal |] ==> abs x @= abs y" | 
| 14370 | 1444 | apply (frule lemma_approx_gt_zero) | 
| 1445 | apply (assumption+) | |
| 1446 | apply (simp add: abs_if) | |
| 1447 | done | |
| 1448 | ||
| 1449 | lemma approx_hrabs: "x @= y ==> abs x @= abs y" | |
| 1450 | apply (rule_tac Q = "x \<in> Infinitesimal" in excluded_middle [THEN disjE]) | |
| 1451 | apply (rule_tac x1 = x and y1 = 0 in linorder_less_linear [THEN disjE]) | |
| 1452 | apply (auto intro: approx_hrabs1 approx_hrabs2 Infinitesimal_approx_hrabs) | |
| 1453 | done | |
| 1454 | ||
| 1455 | lemma approx_hrabs_zero_cancel: "abs(x) @= 0 ==> x @= 0" | |
| 1456 | apply (cut_tac x = x in hrabs_disj) | |
| 1457 | apply (auto dest: approx_minus) | |
| 1458 | done | |
| 1459 | ||
| 1460 | lemma approx_hrabs_add_Infinitesimal: "e \<in> Infinitesimal ==> abs x @= abs(x+e)" | |
| 1461 | by (fast intro: approx_hrabs Infinitesimal_add_approx_self) | |
| 1462 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1463 | lemma approx_hrabs_add_minus_Infinitesimal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1464 | "e \<in> Infinitesimal ==> abs x @= abs(x + -e)" | 
| 14370 | 1465 | by (fast intro: approx_hrabs Infinitesimal_add_minus_approx_self) | 
| 1466 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1467 | lemma hrabs_add_Infinitesimal_cancel: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1468 | "[| e \<in> Infinitesimal; e' \<in> Infinitesimal; | 
| 14370 | 1469 | abs(x+e) = abs(y+e')|] ==> abs x @= abs y" | 
| 1470 | apply (drule_tac x = x in approx_hrabs_add_Infinitesimal) | |
| 1471 | apply (drule_tac x = y in approx_hrabs_add_Infinitesimal) | |
| 1472 | apply (auto intro: approx_trans2) | |
| 1473 | done | |
| 1474 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1475 | lemma hrabs_add_minus_Infinitesimal_cancel: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1476 | "[| e \<in> Infinitesimal; e' \<in> Infinitesimal; | 
| 14370 | 1477 | abs(x + -e) = abs(y + -e')|] ==> abs x @= abs y" | 
| 1478 | apply (drule_tac x = x in approx_hrabs_add_minus_Infinitesimal) | |
| 1479 | apply (drule_tac x = y in approx_hrabs_add_minus_Infinitesimal) | |
| 1480 | apply (auto intro: approx_trans2) | |
| 1481 | done | |
| 1482 | ||
| 1483 | lemma hypreal_less_minus_iff: "((x::hypreal) < y) = (0 < y + -x)" | |
| 1484 | by arith | |
| 10751 | 1485 | |
| 14370 | 1486 | (* interesting slightly counterintuitive theorem: necessary | 
| 1487 | for proving that an open interval is an NS open set | |
| 1488 | *) | |
| 1489 | lemma Infinitesimal_add_hypreal_of_real_less: | |
| 1490 | "[| x < y; u \<in> Infinitesimal |] | |
| 1491 | ==> hypreal_of_real x + u < hypreal_of_real y" | |
| 1492 | apply (simp add: Infinitesimal_def) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1493 | apply (drule_tac x = "hypreal_of_real y + -hypreal_of_real x" in bspec, simp) | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 1494 | apply (auto simp add: add_commute abs_less_iff SReal_add SReal_minus) | 
| 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 1495 | apply (simp add: compare_rls) | 
| 14370 | 1496 | done | 
| 1497 | ||
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 1498 | lemma Infinitesimal_add_hrabs_hypreal_of_real_less: | 
| 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 1499 | "[| x \<in> Infinitesimal; abs(hypreal_of_real r) < hypreal_of_real y |] | 
| 14370 | 1500 | ==> abs (hypreal_of_real r + x) < hypreal_of_real y" | 
| 1501 | apply (drule_tac x = "hypreal_of_real r" in approx_hrabs_add_Infinitesimal) | |
| 1502 | apply (drule approx_sym [THEN bex_Infinitesimal_iff2 [THEN iffD2]]) | |
| 1503 | apply (auto intro!: Infinitesimal_add_hypreal_of_real_less simp add: hypreal_of_real_hrabs) | |
| 1504 | done | |
| 1505 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1506 | lemma Infinitesimal_add_hrabs_hypreal_of_real_less2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1507 | "[| x \<in> Infinitesimal; abs(hypreal_of_real r) < hypreal_of_real y |] | 
| 14370 | 1508 | ==> abs (x + hypreal_of_real r) < hypreal_of_real y" | 
| 1509 | apply (rule hypreal_add_commute [THEN subst]) | |
| 1510 | apply (erule Infinitesimal_add_hrabs_hypreal_of_real_less, assumption) | |
| 1511 | done | |
| 1512 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1513 | lemma hypreal_of_real_le_add_Infininitesimal_cancel: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1514 | "[| u \<in> Infinitesimal; v \<in> Infinitesimal; | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1515 | hypreal_of_real x + u \<le> hypreal_of_real y + v |] | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1516 | ==> hypreal_of_real x \<le> hypreal_of_real y" | 
| 14370 | 1517 | apply (simp add: linorder_not_less [symmetric], auto) | 
| 1518 | apply (drule_tac u = "v-u" in Infinitesimal_add_hypreal_of_real_less) | |
| 1519 | apply (auto simp add: Infinitesimal_diff) | |
| 1520 | done | |
| 1521 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1522 | lemma hypreal_of_real_le_add_Infininitesimal_cancel2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1523 | "[| u \<in> Infinitesimal; v \<in> Infinitesimal; | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1524 | hypreal_of_real x + u \<le> hypreal_of_real y + v |] | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1525 | ==> x \<le> y" | 
| 14370 | 1526 | apply (blast intro!: hypreal_of_real_le_iff [THEN iffD1] hypreal_of_real_le_add_Infininitesimal_cancel) | 
| 1527 | done | |
| 1528 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1529 | lemma hypreal_of_real_less_Infinitesimal_le_zero: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1530 | "[| hypreal_of_real x < e; e \<in> Infinitesimal |] ==> hypreal_of_real x \<le> 0" | 
| 14370 | 1531 | apply (rule linorder_not_less [THEN iffD1], safe) | 
| 1532 | apply (drule Infinitesimal_interval) | |
| 1533 | apply (drule_tac [4] SReal_hypreal_of_real [THEN SReal_Infinitesimal_zero], auto) | |
| 1534 | done | |
| 1535 | ||
| 1536 | (*used once, in Lim/NSDERIV_inverse*) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1537 | lemma Infinitesimal_add_not_zero: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1538 | "[| h \<in> Infinitesimal; x \<noteq> 0 |] ==> hypreal_of_real x + h \<noteq> 0" | 
| 14370 | 1539 | apply auto | 
| 1540 | apply (subgoal_tac "h = - hypreal_of_real x", auto) | |
| 1541 | done | |
| 1542 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1543 | lemma Infinitesimal_square_cancel: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1544 | "x*x + y*y \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | 
| 14370 | 1545 | apply (rule Infinitesimal_interval2) | 
| 1546 | apply (rule_tac [3] zero_le_square, assumption) | |
| 1547 | apply (auto simp add: zero_le_square) | |
| 1548 | done | |
| 1549 | declare Infinitesimal_square_cancel [simp] | |
| 1550 | ||
| 1551 | lemma HFinite_square_cancel: "x*x + y*y \<in> HFinite ==> x*x \<in> HFinite" | |
| 1552 | apply (rule HFinite_bounded, assumption) | |
| 1553 | apply (auto simp add: zero_le_square) | |
| 1554 | done | |
| 1555 | declare HFinite_square_cancel [simp] | |
| 1556 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1557 | lemma Infinitesimal_square_cancel2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1558 | "x*x + y*y \<in> Infinitesimal ==> y*y \<in> Infinitesimal" | 
| 14370 | 1559 | apply (rule Infinitesimal_square_cancel) | 
| 1560 | apply (rule hypreal_add_commute [THEN subst]) | |
| 1561 | apply (simp (no_asm)) | |
| 1562 | done | |
| 1563 | declare Infinitesimal_square_cancel2 [simp] | |
| 1564 | ||
| 1565 | lemma HFinite_square_cancel2: "x*x + y*y \<in> HFinite ==> y*y \<in> HFinite" | |
| 1566 | apply (rule HFinite_square_cancel) | |
| 1567 | apply (rule hypreal_add_commute [THEN subst]) | |
| 1568 | apply (simp (no_asm)) | |
| 1569 | done | |
| 1570 | declare HFinite_square_cancel2 [simp] | |
| 1571 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1572 | lemma Infinitesimal_sum_square_cancel: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1573 | "x*x + y*y + z*z \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | 
| 14370 | 1574 | apply (rule Infinitesimal_interval2, assumption) | 
| 1575 | apply (rule_tac [2] zero_le_square, simp) | |
| 1576 | apply (insert zero_le_square [of y]) | |
| 1577 | apply (insert zero_le_square [of z], simp) | |
| 1578 | done | |
| 1579 | declare Infinitesimal_sum_square_cancel [simp] | |
| 1580 | ||
| 1581 | lemma HFinite_sum_square_cancel: "x*x + y*y + z*z \<in> HFinite ==> x*x \<in> HFinite" | |
| 1582 | apply (rule HFinite_bounded, assumption) | |
| 1583 | apply (rule_tac [2] zero_le_square) | |
| 1584 | apply (insert zero_le_square [of y]) | |
| 1585 | apply (insert zero_le_square [of z], simp) | |
| 1586 | done | |
| 1587 | declare HFinite_sum_square_cancel [simp] | |
| 1588 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1589 | lemma Infinitesimal_sum_square_cancel2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1590 | "y*y + x*x + z*z \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | 
| 14370 | 1591 | apply (rule Infinitesimal_sum_square_cancel) | 
| 1592 | apply (simp add: add_ac) | |
| 1593 | done | |
| 1594 | declare Infinitesimal_sum_square_cancel2 [simp] | |
| 1595 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1596 | lemma HFinite_sum_square_cancel2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1597 | "y*y + x*x + z*z \<in> HFinite ==> x*x \<in> HFinite" | 
| 14370 | 1598 | apply (rule HFinite_sum_square_cancel) | 
| 1599 | apply (simp add: add_ac) | |
| 1600 | done | |
| 1601 | declare HFinite_sum_square_cancel2 [simp] | |
| 1602 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1603 | lemma Infinitesimal_sum_square_cancel3: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1604 | "z*z + y*y + x*x \<in> Infinitesimal ==> x*x \<in> Infinitesimal" | 
| 14370 | 1605 | apply (rule Infinitesimal_sum_square_cancel) | 
| 1606 | apply (simp add: add_ac) | |
| 1607 | done | |
| 1608 | declare Infinitesimal_sum_square_cancel3 [simp] | |
| 1609 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1610 | lemma HFinite_sum_square_cancel3: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1611 | "z*z + y*y + x*x \<in> HFinite ==> x*x \<in> HFinite" | 
| 14370 | 1612 | apply (rule HFinite_sum_square_cancel) | 
| 1613 | apply (simp add: add_ac) | |
| 1614 | done | |
| 1615 | declare HFinite_sum_square_cancel3 [simp] | |
| 1616 | ||
| 1617 | lemma monad_hrabs_less: "[| y \<in> monad x; 0 < hypreal_of_real e |] | |
| 1618 | ==> abs (y + -x) < hypreal_of_real e" | |
| 1619 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1620 | apply (drule bex_Infinitesimal_iff [THEN iffD2]) | |
| 1621 | apply (auto dest!: InfinitesimalD) | |
| 1622 | done | |
| 1623 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1624 | lemma mem_monad_SReal_HFinite: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1625 | "x \<in> monad (hypreal_of_real a) ==> x \<in> HFinite" | 
| 14370 | 1626 | apply (drule mem_monad_approx [THEN approx_sym]) | 
| 1627 | apply (drule bex_Infinitesimal_iff2 [THEN iffD2]) | |
| 1628 | apply (safe dest!: Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 1629 | apply (erule SReal_hypreal_of_real [THEN SReal_subset_HFinite [THEN subsetD], THEN HFinite_add]) | |
| 1630 | done | |
| 1631 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1632 | |
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1633 | subsection{* Theorems about Standard Part*}
 | 
| 14370 | 1634 | |
| 1635 | lemma st_approx_self: "x \<in> HFinite ==> st x @= x" | |
| 1636 | apply (simp add: st_def) | |
| 1637 | apply (frule st_part_Ex, safe) | |
| 1638 | apply (rule someI2) | |
| 1639 | apply (auto intro: approx_sym) | |
| 1640 | done | |
| 1641 | ||
| 1642 | lemma st_SReal: "x \<in> HFinite ==> st x \<in> Reals" | |
| 1643 | apply (simp add: st_def) | |
| 1644 | apply (frule st_part_Ex, safe) | |
| 1645 | apply (rule someI2) | |
| 1646 | apply (auto intro: approx_sym) | |
| 1647 | done | |
| 1648 | ||
| 1649 | lemma st_HFinite: "x \<in> HFinite ==> st x \<in> HFinite" | |
| 1650 | by (erule st_SReal [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 1651 | ||
| 1652 | lemma st_SReal_eq: "x \<in> Reals ==> st x = x" | |
| 1653 | apply (simp add: st_def) | |
| 1654 | apply (rule some_equality) | |
| 1655 | apply (fast intro: SReal_subset_HFinite [THEN subsetD]) | |
| 1656 | apply (blast dest: SReal_approx_iff [THEN iffD1]) | |
| 1657 | done | |
| 1658 | ||
| 1659 | (* ???should be added to simpset *) | |
| 1660 | lemma st_hypreal_of_real: "st (hypreal_of_real x) = hypreal_of_real x" | |
| 1661 | by (rule SReal_hypreal_of_real [THEN st_SReal_eq]) | |
| 1662 | ||
| 1663 | lemma st_eq_approx: "[| x \<in> HFinite; y \<in> HFinite; st x = st y |] ==> x @= y" | |
| 1664 | by (auto dest!: st_approx_self elim!: approx_trans3) | |
| 1665 | ||
| 1666 | lemma approx_st_eq: | |
| 1667 | assumes "x \<in> HFinite" and "y \<in> HFinite" and "x @= y" | |
| 1668 | shows "st x = st y" | |
| 1669 | proof - | |
| 1670 | have "st x @= x" "st y @= y" "st x \<in> Reals" "st y \<in> Reals" | |
| 1671 | by (simp_all add: st_approx_self st_SReal prems) | |
| 1672 | with prems show ?thesis | |
| 1673 | by (fast elim: approx_trans approx_trans2 SReal_approx_iff [THEN iffD1]) | |
| 1674 | qed | |
| 1675 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1676 | lemma st_eq_approx_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1677 | "[| x \<in> HFinite; y \<in> HFinite|] | 
| 14370 | 1678 | ==> (x @= y) = (st x = st y)" | 
| 1679 | by (blast intro: approx_st_eq st_eq_approx) | |
| 1680 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1681 | lemma st_Infinitesimal_add_SReal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1682 | "[| x \<in> Reals; e \<in> Infinitesimal |] ==> st(x + e) = x" | 
| 14370 | 1683 | apply (frule st_SReal_eq [THEN subst]) | 
| 1684 | prefer 2 apply assumption | |
| 1685 | apply (frule SReal_subset_HFinite [THEN subsetD]) | |
| 1686 | apply (frule Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 1687 | apply (drule st_SReal_eq) | |
| 1688 | apply (rule approx_st_eq) | |
| 1689 | apply (auto intro: HFinite_add simp add: Infinitesimal_add_approx_self [THEN approx_sym]) | |
| 1690 | done | |
| 1691 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1692 | lemma st_Infinitesimal_add_SReal2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1693 | "[| x \<in> Reals; e \<in> Infinitesimal |] ==> st(e + x) = x" | 
| 14370 | 1694 | apply (rule hypreal_add_commute [THEN subst]) | 
| 1695 | apply (blast intro!: st_Infinitesimal_add_SReal) | |
| 1696 | done | |
| 1697 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1698 | lemma HFinite_st_Infinitesimal_add: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1699 | "x \<in> HFinite ==> \<exists>e \<in> Infinitesimal. x = st(x) + e" | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1700 | by (blast dest!: st_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2]) | 
| 14370 | 1701 | |
| 1702 | lemma st_add: | |
| 1703 | assumes x: "x \<in> HFinite" and y: "y \<in> HFinite" | |
| 1704 | shows "st (x + y) = st(x) + st(y)" | |
| 1705 | proof - | |
| 1706 | from HFinite_st_Infinitesimal_add [OF x] | |
| 1707 | obtain ex where ex: "ex \<in> Infinitesimal" "st x + ex = x" | |
| 1708 | by (blast intro: sym) | |
| 1709 | from HFinite_st_Infinitesimal_add [OF y] | |
| 1710 | obtain ey where ey: "ey \<in> Infinitesimal" "st y + ey = y" | |
| 1711 | by (blast intro: sym) | |
| 1712 | have "st (x + y) = st ((st x + ex) + (st y + ey))" | |
| 1713 | by (simp add: ex ey) | |
| 1714 | also have "... = st ((ex + ey) + (st x + st y))" by (simp add: add_ac) | |
| 1715 | also have "... = st x + st y" | |
| 1716 | by (simp add: prems st_SReal SReal_add Infinitesimal_add | |
| 1717 | st_Infinitesimal_add_SReal2) | |
| 1718 | finally show ?thesis . | |
| 1719 | qed | |
| 1720 | ||
| 1721 | lemma st_number_of: "st (number_of w) = number_of w" | |
| 1722 | by (rule SReal_number_of [THEN st_SReal_eq]) | |
| 1723 | declare st_number_of [simp] | |
| 1724 | ||
| 1725 | (*the theorem above for the special cases of zero and one*) | |
| 1726 | lemma [simp]: "st 0 = 0" "st 1 = 1" | |
| 1727 | by (simp_all add: st_SReal_eq) | |
| 1728 | ||
| 1729 | lemma st_minus: assumes "y \<in> HFinite" shows "st(-y) = -st(y)" | |
| 1730 | proof - | |
| 1731 | have "st (- y) + st y = 0" | |
| 1732 | by (simp add: prems st_add [symmetric] HFinite_minus_iff) | |
| 1733 | thus ?thesis by arith | |
| 1734 | qed | |
| 1735 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1736 | lemma st_diff: "[| x \<in> HFinite; y \<in> HFinite |] ==> st (x-y) = st(x) - st(y)" | 
| 14370 | 1737 | apply (simp add: hypreal_diff_def) | 
| 1738 | apply (frule_tac y1 = y in st_minus [symmetric]) | |
| 1739 | apply (drule_tac x1 = y in HFinite_minus_iff [THEN iffD2]) | |
| 1740 | apply (simp (no_asm_simp) add: st_add) | |
| 1741 | done | |
| 1742 | ||
| 1743 | (* lemma *) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1744 | lemma lemma_st_mult: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1745 | "[| x \<in> HFinite; y \<in> HFinite; e \<in> Infinitesimal; ea \<in> Infinitesimal |] | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1746 | ==> e*y + x*ea + e*ea \<in> Infinitesimal" | 
| 14370 | 1747 | apply (frule_tac x = e and y = y in Infinitesimal_HFinite_mult) | 
| 1748 | apply (frule_tac [2] x = ea and y = x in Infinitesimal_HFinite_mult) | |
| 1749 | apply (drule_tac [3] Infinitesimal_mult) | |
| 1750 | apply (auto intro: Infinitesimal_add simp add: add_ac mult_ac) | |
| 1751 | done | |
| 1752 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1753 | lemma st_mult: "[| x \<in> HFinite; y \<in> HFinite |] ==> st (x * y) = st(x) * st(y)" | 
| 14370 | 1754 | apply (frule HFinite_st_Infinitesimal_add) | 
| 1755 | apply (frule_tac x = y in HFinite_st_Infinitesimal_add, safe) | |
| 1756 | apply (subgoal_tac "st (x * y) = st ((st x + e) * (st y + ea))") | |
| 1757 | apply (drule_tac [2] sym, drule_tac [2] sym) | |
| 1758 | prefer 2 apply simp | |
| 1759 | apply (erule_tac V = "x = st x + e" in thin_rl) | |
| 1760 | apply (erule_tac V = "y = st y + ea" in thin_rl) | |
| 1761 | apply (simp add: left_distrib right_distrib) | |
| 1762 | apply (drule st_SReal)+ | |
| 1763 | apply (simp (no_asm_use) add: hypreal_add_assoc) | |
| 1764 | apply (rule st_Infinitesimal_add_SReal) | |
| 1765 | apply (blast intro!: SReal_mult) | |
| 1766 | apply (drule SReal_subset_HFinite [THEN subsetD])+ | |
| 1767 | apply (rule hypreal_add_assoc [THEN subst]) | |
| 1768 | apply (blast intro!: lemma_st_mult) | |
| 1769 | done | |
| 1770 | ||
| 1771 | lemma st_Infinitesimal: "x \<in> Infinitesimal ==> st x = 0" | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 1772 | apply (subst numeral_0_eq_0 [symmetric]) | 
| 14370 | 1773 | apply (rule st_number_of [THEN subst]) | 
| 1774 | apply (rule approx_st_eq) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1775 | apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1776 | simp add: mem_infmal_iff [symmetric]) | 
| 14370 | 1777 | done | 
| 1778 | ||
| 1779 | lemma st_not_Infinitesimal: "st(x) \<noteq> 0 ==> x \<notin> Infinitesimal" | |
| 1780 | by (fast intro: st_Infinitesimal) | |
| 1781 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1782 | lemma st_inverse: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1783 | "[| x \<in> HFinite; st x \<noteq> 0 |] | 
| 14370 | 1784 | ==> st(inverse x) = inverse (st x)" | 
| 1785 | apply (rule_tac c1 = "st x" in hypreal_mult_left_cancel [THEN iffD1]) | |
| 1786 | apply (auto simp add: st_mult [symmetric] st_not_Infinitesimal HFinite_inverse) | |
| 1787 | apply (subst hypreal_mult_inverse, auto) | |
| 1788 | done | |
| 1789 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1790 | lemma st_divide: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1791 | "[| x \<in> HFinite; y \<in> HFinite; st y \<noteq> 0 |] | 
| 14370 | 1792 | ==> st(x/y) = (st x) / (st y)" | 
| 1793 | apply (auto simp add: hypreal_divide_def st_mult st_not_Infinitesimal HFinite_inverse st_inverse) | |
| 1794 | done | |
| 1795 | declare st_divide [simp] | |
| 1796 | ||
| 1797 | lemma st_idempotent: "x \<in> HFinite ==> st(st(x)) = st(x)" | |
| 1798 | by (blast intro: st_HFinite st_approx_self approx_st_eq) | |
| 1799 | declare st_idempotent [simp] | |
| 1800 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1801 | lemma Infinitesimal_add_st_less: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1802 | "[| x \<in> HFinite; y \<in> HFinite; u \<in> Infinitesimal; st x < st y |] | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1803 | ==> st x + u < st y" | 
| 14370 | 1804 | apply (drule st_SReal)+ | 
| 1805 | apply (auto intro!: Infinitesimal_add_hypreal_of_real_less simp add: SReal_iff) | |
| 1806 | done | |
| 1807 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1808 | lemma Infinitesimal_add_st_le_cancel: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1809 | "[| x \<in> HFinite; y \<in> HFinite; | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1810 | u \<in> Infinitesimal; st x \<le> st y + u | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1811 | |] ==> st x \<le> st y" | 
| 14370 | 1812 | apply (simp add: linorder_not_less [symmetric]) | 
| 1813 | apply (auto dest: Infinitesimal_add_st_less) | |
| 1814 | done | |
| 1815 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1816 | lemma st_le: "[| x \<in> HFinite; y \<in> HFinite; x \<le> y |] ==> st(x) \<le> st(y)" | 
| 14370 | 1817 | apply (frule HFinite_st_Infinitesimal_add) | 
| 1818 | apply (rotate_tac 1) | |
| 1819 | apply (frule HFinite_st_Infinitesimal_add, safe) | |
| 1820 | apply (rule Infinitesimal_add_st_le_cancel) | |
| 1821 | apply (rule_tac [3] x = ea and y = e in Infinitesimal_diff) | |
| 1822 | apply (auto simp add: hypreal_add_assoc [symmetric]) | |
| 1823 | done | |
| 1824 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1825 | lemma st_zero_le: "[| 0 \<le> x; x \<in> HFinite |] ==> 0 \<le> st x" | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 1826 | apply (subst numeral_0_eq_0 [symmetric]) | 
| 14370 | 1827 | apply (rule st_number_of [THEN subst]) | 
| 1828 | apply (rule st_le, auto) | |
| 1829 | done | |
| 1830 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1831 | lemma st_zero_ge: "[| x \<le> 0; x \<in> HFinite |] ==> st x \<le> 0" | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 1832 | apply (subst numeral_0_eq_0 [symmetric]) | 
| 14370 | 1833 | apply (rule st_number_of [THEN subst]) | 
| 1834 | apply (rule st_le, auto) | |
| 1835 | done | |
| 1836 | ||
| 1837 | lemma st_hrabs: "x \<in> HFinite ==> abs(st x) = st(abs x)" | |
| 1838 | apply (simp add: linorder_not_le st_zero_le abs_if st_minus | |
| 1839 | linorder_not_less) | |
| 1840 | apply (auto dest!: st_zero_ge [OF order_less_imp_le]) | |
| 1841 | done | |
| 1842 | ||
| 1843 | ||
| 1844 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1845 | subsection{*Alternative Definitions for @{term HFinite} using Free Ultrafilter*}
 | 
| 14370 | 1846 | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1847 | lemma FreeUltrafilterNat_Rep_hypreal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1848 | "[| X \<in> Rep_hypreal x; Y \<in> Rep_hypreal x |] | 
| 14370 | 1849 |       ==> {n. X n = Y n} \<in> FreeUltrafilterNat"
 | 
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1850 | by (rule_tac z = x in eq_Abs_hypreal, auto, ultra) | 
| 14370 | 1851 | |
| 1852 | lemma HFinite_FreeUltrafilterNat: | |
| 1853 | "x \<in> HFinite | |
| 1854 |      ==> \<exists>X \<in> Rep_hypreal x. \<exists>u. {n. abs (X n) < u} \<in> FreeUltrafilterNat"
 | |
| 14468 | 1855 | apply (cases x) | 
| 14370 | 1856 | apply (auto simp add: HFinite_def abs_less_iff minus_less_iff [of x] | 
| 1857 | hypreal_less SReal_iff hypreal_minus hypreal_of_real_def) | |
| 1858 | apply (rule_tac x=x in bexI) | |
| 1859 | apply (rule_tac x=y in exI, auto, ultra) | |
| 1860 | done | |
| 1861 | ||
| 1862 | lemma FreeUltrafilterNat_HFinite: | |
| 1863 | "\<exists>X \<in> Rep_hypreal x. | |
| 1864 |        \<exists>u. {n. abs (X n) < u} \<in> FreeUltrafilterNat
 | |
| 1865 | ==> x \<in> HFinite" | |
| 14468 | 1866 | apply (cases x) | 
| 14370 | 1867 | apply (auto simp add: HFinite_def abs_less_iff minus_less_iff [of x]) | 
| 1868 | apply (rule_tac x = "hypreal_of_real u" in bexI) | |
| 1869 | apply (auto simp add: hypreal_less SReal_iff hypreal_minus hypreal_of_real_def, ultra+) | |
| 1870 | done | |
| 1871 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1872 | lemma HFinite_FreeUltrafilterNat_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1873 | "(x \<in> HFinite) = (\<exists>X \<in> Rep_hypreal x. | 
| 14370 | 1874 |            \<exists>u. {n. abs (X n) < u} \<in> FreeUltrafilterNat)"
 | 
| 1875 | apply (blast intro!: HFinite_FreeUltrafilterNat FreeUltrafilterNat_HFinite) | |
| 1876 | done | |
| 1877 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1878 | |
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1879 | subsection{*Alternative Definitions for @{term HInfinite} using Free Ultrafilter*}
 | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1880 | |
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1881 | lemma lemma_Compl_eq: "- {n. (u::real) < abs (xa n)} = {n. abs (xa n) \<le> u}"
 | 
| 14370 | 1882 | by auto | 
| 1883 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1884 | lemma lemma_Compl_eq2: "- {n. abs (xa n) < (u::real)} = {n. u \<le> abs (xa n)}"
 | 
| 14370 | 1885 | by auto | 
| 1886 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1887 | lemma lemma_Int_eq1: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1888 |      "{n. abs (xa n) \<le> (u::real)} Int {n. u \<le> abs (xa n)}
 | 
| 14370 | 1889 |           = {n. abs(xa n) = u}"
 | 
| 1890 | apply auto | |
| 1891 | done | |
| 1892 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1893 | lemma lemma_FreeUltrafilterNat_one: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1894 |      "{n. abs (xa n) = u} \<le> {n. abs (xa n) < u + (1::real)}"
 | 
| 14370 | 1895 | by auto | 
| 1896 | ||
| 1897 | (*------------------------------------- | |
| 1898 | Exclude this type of sets from free | |
| 1899 | ultrafilter for Infinite numbers! | |
| 1900 | -------------------------------------*) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1901 | lemma FreeUltrafilterNat_const_Finite: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1902 | "[| xa: Rep_hypreal x; | 
| 14370 | 1903 |                   {n. abs (xa n) = u} \<in> FreeUltrafilterNat
 | 
| 1904 | |] ==> x \<in> HFinite" | |
| 1905 | apply (rule FreeUltrafilterNat_HFinite) | |
| 1906 | apply (rule_tac x = xa in bexI) | |
| 1907 | apply (rule_tac x = "u + 1" in exI) | |
| 1908 | apply (ultra, assumption) | |
| 1909 | done | |
| 1910 | ||
| 1911 | lemma HInfinite_FreeUltrafilterNat: | |
| 1912 | "x \<in> HInfinite ==> \<exists>X \<in> Rep_hypreal x. | |
| 1913 |            \<forall>u. {n. u < abs (X n)} \<in> FreeUltrafilterNat"
 | |
| 1914 | apply (frule HInfinite_HFinite_iff [THEN iffD1]) | |
| 1915 | apply (cut_tac x = x in Rep_hypreal_nonempty) | |
| 1916 | apply (auto simp del: Rep_hypreal_nonempty simp add: HFinite_FreeUltrafilterNat_iff Bex_def) | |
| 1917 | apply (drule spec)+ | |
| 1918 | apply auto | |
| 1919 | apply (drule_tac x = u in spec) | |
| 1920 | apply (drule FreeUltrafilterNat_Compl_mem)+ | |
| 1921 | apply (drule FreeUltrafilterNat_Int, assumption) | |
| 1922 | apply (simp add: lemma_Compl_eq lemma_Compl_eq2 lemma_Int_eq1) | |
| 1923 | apply (auto dest: FreeUltrafilterNat_const_Finite simp | |
| 1924 | add: HInfinite_HFinite_iff [THEN iffD1]) | |
| 1925 | done | |
| 1926 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1927 | lemma lemma_Int_HI: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1928 |      "{n. abs (Xa n) < u} Int {n. X n = Xa n} \<subseteq> {n. abs (X n) < (u::real)}"
 | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1929 | by auto | 
| 14370 | 1930 | |
| 1931 | lemma lemma_Int_HIa: "{n. u < abs (X n)} Int {n. abs (X n) < (u::real)} = {}"
 | |
| 1932 | by (auto intro: order_less_asym) | |
| 1933 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1934 | lemma FreeUltrafilterNat_HInfinite: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1935 | "\<exists>X \<in> Rep_hypreal x. \<forall>u. | 
| 14370 | 1936 |                {n. u < abs (X n)} \<in> FreeUltrafilterNat
 | 
| 1937 | ==> x \<in> HInfinite" | |
| 1938 | apply (rule HInfinite_HFinite_iff [THEN iffD2]) | |
| 1939 | apply (safe, drule HFinite_FreeUltrafilterNat, auto) | |
| 1940 | apply (drule_tac x = u in spec) | |
| 1941 | apply (drule FreeUltrafilterNat_Rep_hypreal, assumption) | |
| 1942 | apply (drule_tac Y = "{n. X n = Xa n}" in FreeUltrafilterNat_Int, simp) 
 | |
| 1943 | apply (drule lemma_Int_HI [THEN [2] FreeUltrafilterNat_subset]) | |
| 1944 | apply (drule_tac Y = "{n. abs (X n) < u}" in FreeUltrafilterNat_Int)
 | |
| 1945 | apply (auto simp add: lemma_Int_HIa FreeUltrafilterNat_empty) | |
| 1946 | done | |
| 1947 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1948 | lemma HInfinite_FreeUltrafilterNat_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1949 | "(x \<in> HInfinite) = (\<exists>X \<in> Rep_hypreal x. | 
| 14370 | 1950 |            \<forall>u. {n. u < abs (X n)} \<in> FreeUltrafilterNat)"
 | 
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1951 | by (blast intro!: HInfinite_FreeUltrafilterNat FreeUltrafilterNat_HInfinite) | 
| 14370 | 1952 | |
| 1953 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1954 | subsection{*Alternative Definitions for @{term Infinitesimal} using Free Ultrafilter*}
 | 
| 10751 | 1955 | |
| 14370 | 1956 | lemma Infinitesimal_FreeUltrafilterNat: | 
| 1957 | "x \<in> Infinitesimal ==> \<exists>X \<in> Rep_hypreal x. | |
| 1958 |            \<forall>u. 0 < u --> {n. abs (X n) < u} \<in> FreeUltrafilterNat"
 | |
| 1959 | apply (simp add: Infinitesimal_def) | |
| 1960 | apply (auto simp add: abs_less_iff minus_less_iff [of x]) | |
| 14468 | 1961 | apply (cases x) | 
| 14370 | 1962 | apply (auto, rule bexI [OF _ lemma_hyprel_refl], safe) | 
| 1963 | apply (drule hypreal_of_real_less_iff [THEN iffD2]) | |
| 1964 | apply (drule_tac x = "hypreal_of_real u" in bspec, auto) | |
| 1965 | apply (auto simp add: hypreal_less hypreal_minus hypreal_of_real_def, ultra) | |
| 1966 | done | |
| 1967 | ||
| 1968 | lemma FreeUltrafilterNat_Infinitesimal: | |
| 1969 | "\<exists>X \<in> Rep_hypreal x. | |
| 1970 |             \<forall>u. 0 < u --> {n. abs (X n) < u} \<in> FreeUltrafilterNat
 | |
| 1971 | ==> x \<in> Infinitesimal" | |
| 1972 | apply (simp add: Infinitesimal_def) | |
| 14468 | 1973 | apply (cases x) | 
| 14370 | 1974 | apply (auto simp add: abs_less_iff abs_interval_iff minus_less_iff [of x]) | 
| 1975 | apply (auto simp add: SReal_iff) | |
| 1976 | apply (drule_tac [!] x=y in spec) | |
| 1977 | apply (auto simp add: hypreal_less hypreal_minus hypreal_of_real_def, ultra+) | |
| 1978 | done | |
| 1979 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1980 | lemma Infinitesimal_FreeUltrafilterNat_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1981 | "(x \<in> Infinitesimal) = (\<exists>X \<in> Rep_hypreal x. | 
| 14370 | 1982 |            \<forall>u. 0 < u --> {n. abs (X n) < u} \<in> FreeUltrafilterNat)"
 | 
| 1983 | apply (blast intro!: Infinitesimal_FreeUltrafilterNat FreeUltrafilterNat_Infinitesimal) | |
| 1984 | done | |
| 1985 | ||
| 1986 | (*------------------------------------------------------------------------ | |
| 1987 | Infinitesimals as smaller than 1/n for all n::nat (> 0) | |
| 1988 | ------------------------------------------------------------------------*) | |
| 1989 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1990 | lemma lemma_Infinitesimal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1991 | "(\<forall>r. 0 < r --> x < r) = (\<forall>n. x < inverse(real (Suc n)))" | 
| 14370 | 1992 | apply (auto simp add: real_of_nat_Suc_gt_zero) | 
| 1993 | apply (blast dest!: reals_Archimedean intro: order_less_trans) | |
| 1994 | done | |
| 1995 | ||
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 1996 | lemma of_nat_in_Reals [simp]: "(of_nat n::hypreal) \<in> \<real>" | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 1997 | apply (induct n) | 
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 1998 | apply (simp_all add: SReal_add) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 1999 | done | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 2000 | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2001 | lemma lemma_Infinitesimal2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2002 | "(\<forall>r \<in> Reals. 0 < r --> x < r) = | 
| 14370 | 2003 | (\<forall>n. x < inverse(hypreal_of_nat (Suc n)))" | 
| 2004 | apply safe | |
| 2005 | apply (drule_tac x = "inverse (hypreal_of_real (real (Suc n))) " in bspec) | |
| 2006 | apply (simp (no_asm_use) add: SReal_inverse) | |
| 2007 | apply (rule real_of_nat_Suc_gt_zero [THEN positive_imp_inverse_positive, THEN hypreal_of_real_less_iff [THEN iffD2], THEN [2] impE]) | |
| 2008 | prefer 2 apply assumption | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 2009 | apply (simp add: real_of_nat_Suc_gt_zero hypreal_of_nat_eq) | 
| 14370 | 2010 | apply (auto dest!: reals_Archimedean simp add: SReal_iff) | 
| 2011 | apply (drule hypreal_of_real_less_iff [THEN iffD2]) | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 2012 | apply (simp add: real_of_nat_Suc_gt_zero hypreal_of_nat_eq) | 
| 14370 | 2013 | apply (blast intro: order_less_trans) | 
| 2014 | done | |
| 2015 | ||
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14371diff
changeset | 2016 | |
| 14370 | 2017 | lemma Infinitesimal_hypreal_of_nat_iff: | 
| 2018 |      "Infinitesimal = {x. \<forall>n. abs x < inverse (hypreal_of_nat (Suc n))}"
 | |
| 2019 | apply (simp add: Infinitesimal_def) | |
| 2020 | apply (auto simp add: lemma_Infinitesimal2) | |
| 2021 | done | |
| 2022 | ||
| 2023 | ||
| 2024 | (*------------------------------------------------------------------------- | |
| 2025 | Proof that omega is an infinite number and | |
| 2026 | hence that epsilon is an infinitesimal number. | |
| 2027 | -------------------------------------------------------------------------*) | |
| 2028 | lemma Suc_Un_eq: "{n. n < Suc m} = {n. n < m} Un {n. n = m}"
 | |
| 2029 | by (auto simp add: less_Suc_eq) | |
| 2030 | ||
| 2031 | (*------------------------------------------- | |
| 2032 | Prove that any segment is finite and | |
| 2033 | hence cannot belong to FreeUltrafilterNat | |
| 2034 | -------------------------------------------*) | |
| 2035 | lemma finite_nat_segment: "finite {n::nat. n < m}"
 | |
| 2036 | apply (induct_tac "m") | |
| 2037 | apply (auto simp add: Suc_Un_eq) | |
| 2038 | done | |
| 2039 | ||
| 2040 | lemma finite_real_of_nat_segment: "finite {n::nat. real n < real (m::nat)}"
 | |
| 2041 | by (auto intro: finite_nat_segment) | |
| 2042 | ||
| 2043 | lemma finite_real_of_nat_less_real: "finite {n::nat. real n < u}"
 | |
| 2044 | apply (cut_tac x = u in reals_Archimedean2, safe) | |
| 2045 | apply (rule finite_real_of_nat_segment [THEN [2] finite_subset]) | |
| 2046 | apply (auto dest: order_less_trans) | |
| 2047 | done | |
| 2048 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2049 | lemma lemma_real_le_Un_eq: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2050 |      "{n. f n \<le> u} = {n. f n < u} Un {n. u = (f n :: real)}"
 | 
| 14370 | 2051 | by (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le) | 
| 2052 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2053 | lemma finite_real_of_nat_le_real: "finite {n::nat. real n \<le> u}"
 | 
| 14370 | 2054 | by (auto simp add: lemma_real_le_Un_eq lemma_finite_omega_set finite_real_of_nat_less_real) | 
| 2055 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2056 | lemma finite_rabs_real_of_nat_le_real: "finite {n::nat. abs(real n) \<le> u}"
 | 
| 14370 | 2057 | apply (simp (no_asm) add: real_of_nat_Suc_gt_zero finite_real_of_nat_le_real) | 
| 2058 | done | |
| 2059 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2060 | lemma rabs_real_of_nat_le_real_FreeUltrafilterNat: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2061 |      "{n. abs(real n) \<le> u} \<notin> FreeUltrafilterNat"
 | 
| 14370 | 2062 | by (blast intro!: FreeUltrafilterNat_finite finite_rabs_real_of_nat_le_real) | 
| 2063 | ||
| 2064 | lemma FreeUltrafilterNat_nat_gt_real: "{n. u < real n} \<in> FreeUltrafilterNat"
 | |
| 2065 | apply (rule ccontr, drule FreeUltrafilterNat_Compl_mem) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2066 | apply (subgoal_tac "- {n::nat. u < real n} = {n. real n \<le> u}")
 | 
| 14370 | 2067 | prefer 2 apply force | 
| 2068 | apply (simp add: finite_real_of_nat_le_real [THEN FreeUltrafilterNat_finite]) | |
| 2069 | done | |
| 2070 | ||
| 2071 | (*-------------------------------------------------------------- | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2072 |  The complement of {n. abs(real n) \<le> u} =
 | 
| 14370 | 2073 |  {n. u < abs (real n)} is in FreeUltrafilterNat
 | 
| 2074 | by property of (free) ultrafilters | |
| 2075 | --------------------------------------------------------------*) | |
| 2076 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2077 | lemma Compl_real_le_eq: "- {n::nat. real n \<le> u} = {n. u < real n}"
 | 
| 14370 | 2078 | by (auto dest!: order_le_less_trans simp add: linorder_not_le) | 
| 2079 | ||
| 2080 | (*----------------------------------------------- | |
| 2081 | Omega is a member of HInfinite | |
| 2082 | -----------------------------------------------*) | |
| 2083 | ||
| 2084 | lemma hypreal_omega: "hyprel``{%n::nat. real (Suc n)} \<in> hypreal"
 | |
| 2085 | by auto | |
| 2086 | ||
| 2087 | lemma FreeUltrafilterNat_omega: "{n. u < real n} \<in> FreeUltrafilterNat"
 | |
| 2088 | apply (cut_tac u = u in rabs_real_of_nat_le_real_FreeUltrafilterNat) | |
| 2089 | apply (auto dest: FreeUltrafilterNat_Compl_mem simp add: Compl_real_le_eq) | |
| 2090 | done | |
| 2091 | ||
| 2092 | lemma HInfinite_omega: "omega: HInfinite" | |
| 2093 | apply (simp add: omega_def) | |
| 2094 | apply (auto intro!: FreeUltrafilterNat_HInfinite) | |
| 2095 | apply (rule bexI) | |
| 2096 | apply (rule_tac [2] lemma_hyprel_refl, auto) | |
| 2097 | apply (simp (no_asm) add: real_of_nat_Suc diff_less_eq [symmetric] FreeUltrafilterNat_omega) | |
| 2098 | done | |
| 2099 | declare HInfinite_omega [simp] | |
| 2100 | ||
| 2101 | (*----------------------------------------------- | |
| 2102 | Epsilon is a member of Infinitesimal | |
| 2103 | -----------------------------------------------*) | |
| 2104 | ||
| 2105 | lemma Infinitesimal_epsilon: "epsilon \<in> Infinitesimal" | |
| 2106 | by (auto intro!: HInfinite_inverse_Infinitesimal HInfinite_omega simp add: hypreal_epsilon_inverse_omega) | |
| 2107 | declare Infinitesimal_epsilon [simp] | |
| 2108 | ||
| 2109 | lemma HFinite_epsilon: "epsilon \<in> HFinite" | |
| 2110 | by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 2111 | declare HFinite_epsilon [simp] | |
| 2112 | ||
| 2113 | lemma epsilon_approx_zero: "epsilon @= 0" | |
| 2114 | apply (simp (no_asm) add: mem_infmal_iff [symmetric]) | |
| 2115 | done | |
| 2116 | declare epsilon_approx_zero [simp] | |
| 2117 | ||
| 2118 | (*------------------------------------------------------------------------ | |
| 2119 | Needed for proof that we define a hyperreal [<X(n)] @= hypreal_of_real a given | |
| 2120 | that \<forall>n. |X n - a| < 1/n. Used in proof of NSLIM => LIM. | |
| 2121 | -----------------------------------------------------------------------*) | |
| 2122 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2123 | lemma real_of_nat_less_inverse_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2124 | "0 < u ==> (u < inverse (real(Suc n))) = (real(Suc n) < inverse u)" | 
| 14370 | 2125 | apply (simp add: inverse_eq_divide) | 
| 2126 | apply (subst pos_less_divide_eq, assumption) | |
| 2127 | apply (subst pos_less_divide_eq) | |
| 2128 | apply (simp add: real_of_nat_Suc_gt_zero) | |
| 2129 | apply (simp add: real_mult_commute) | |
| 2130 | done | |
| 2131 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2132 | lemma finite_inverse_real_of_posnat_gt_real: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2133 |      "0 < u ==> finite {n. u < inverse(real(Suc n))}"
 | 
| 14370 | 2134 | apply (simp (no_asm_simp) add: real_of_nat_less_inverse_iff) | 
| 2135 | apply (simp (no_asm_simp) add: real_of_nat_Suc less_diff_eq [symmetric]) | |
| 2136 | apply (rule finite_real_of_nat_less_real) | |
| 2137 | done | |
| 2138 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2139 | lemma lemma_real_le_Un_eq2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2140 |      "{n. u \<le> inverse(real(Suc n))} =
 | 
| 14370 | 2141 |      {n. u < inverse(real(Suc n))} Un {n. u = inverse(real(Suc n))}"
 | 
| 2142 | apply (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le) | |
| 2143 | done | |
| 2144 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2145 | lemma real_of_nat_inverse_le_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2146 | "(inverse (real(Suc n)) \<le> r) = (1 \<le> r * real(Suc n))" | 
| 14370 | 2147 | apply (simp (no_asm) add: linorder_not_less [symmetric]) | 
| 2148 | apply (simp (no_asm) add: inverse_eq_divide) | |
| 2149 | apply (subst pos_less_divide_eq) | |
| 2150 | apply (simp (no_asm) add: real_of_nat_Suc_gt_zero) | |
| 2151 | apply (simp (no_asm) add: real_mult_commute) | |
| 2152 | done | |
| 2153 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2154 | lemma real_of_nat_inverse_eq_iff: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2155 | "(u = inverse (real(Suc n))) = (real(Suc n) = inverse u)" | 
| 14370 | 2156 | by (auto simp add: inverse_inverse_eq real_of_nat_Suc_gt_zero real_not_refl2 [THEN not_sym]) | 
| 2157 | ||
| 2158 | lemma lemma_finite_omega_set2: "finite {n::nat. u = inverse(real(Suc n))}"
 | |
| 2159 | apply (simp (no_asm_simp) add: real_of_nat_inverse_eq_iff) | |
| 2160 | apply (cut_tac x = "inverse u - 1" in lemma_finite_omega_set) | |
| 2161 | apply (simp add: real_of_nat_Suc diff_eq_eq [symmetric] eq_commute) | |
| 2162 | done | |
| 2163 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2164 | lemma finite_inverse_real_of_posnat_ge_real: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2165 |      "0 < u ==> finite {n. u \<le> inverse(real(Suc n))}"
 | 
| 14370 | 2166 | by (auto simp add: lemma_real_le_Un_eq2 lemma_finite_omega_set2 finite_inverse_real_of_posnat_gt_real) | 
| 2167 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2168 | lemma inverse_real_of_posnat_ge_real_FreeUltrafilterNat: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2169 |      "0 < u ==> {n. u \<le> inverse(real(Suc n))} \<notin> FreeUltrafilterNat"
 | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2170 | by (blast intro!: FreeUltrafilterNat_finite finite_inverse_real_of_posnat_ge_real) | 
| 14370 | 2171 | |
| 2172 | (*-------------------------------------------------------------- | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2173 |     The complement of  {n. u \<le> inverse(real(Suc n))} =
 | 
| 14370 | 2174 |     {n. inverse(real(Suc n)) < u} is in FreeUltrafilterNat
 | 
| 2175 | by property of (free) ultrafilters | |
| 2176 | --------------------------------------------------------------*) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2177 | lemma Compl_le_inverse_eq: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2178 |      "- {n. u \<le> inverse(real(Suc n))} =
 | 
| 14370 | 2179 |       {n. inverse(real(Suc n)) < u}"
 | 
| 2180 | apply (auto dest!: order_le_less_trans simp add: linorder_not_le) | |
| 2181 | done | |
| 2182 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2183 | lemma FreeUltrafilterNat_inverse_real_of_posnat: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2184 | "0 < u ==> | 
| 14370 | 2185 |       {n. inverse(real(Suc n)) < u} \<in> FreeUltrafilterNat"
 | 
| 2186 | apply (cut_tac u = u in inverse_real_of_posnat_ge_real_FreeUltrafilterNat) | |
| 2187 | apply (auto dest: FreeUltrafilterNat_Compl_mem simp add: Compl_le_inverse_eq) | |
| 2188 | done | |
| 2189 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2190 | text{* Example where we get a hyperreal from a real sequence
 | 
| 14370 | 2191 | for which a particular property holds. The theorem is | 
| 2192 | used in proofs about equivalence of nonstandard and | |
| 2193 | standard neighbourhoods. Also used for equivalence of | |
| 2194 | nonstandard ans standard definitions of pointwise | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2195 | limit.*} | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2196 | |
| 14370 | 2197 | (*----------------------------------------------------- | 
| 2198 | |X(n) - x| < 1/n ==> [<X n>] - hypreal_of_real x| \<in> Infinitesimal | |
| 2199 | -----------------------------------------------------*) | |
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2200 | lemma real_seq_to_hypreal_Infinitesimal: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2201 | "\<forall>n. abs(X n + -x) < inverse(real(Suc n)) | 
| 14370 | 2202 |      ==> Abs_hypreal(hyprel``{X}) + -hypreal_of_real x \<in> Infinitesimal"
 | 
| 2203 | apply (auto intro!: bexI dest: FreeUltrafilterNat_inverse_real_of_posnat FreeUltrafilterNat_all FreeUltrafilterNat_Int intro: order_less_trans FreeUltrafilterNat_subset simp add: hypreal_minus hypreal_of_real_def hypreal_add Infinitesimal_FreeUltrafilterNat_iff hypreal_inverse) | |
| 2204 | done | |
| 2205 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2206 | lemma real_seq_to_hypreal_approx: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2207 | "\<forall>n. abs(X n + -x) < inverse(real(Suc n)) | 
| 14370 | 2208 |       ==> Abs_hypreal(hyprel``{X}) @= hypreal_of_real x"
 | 
| 2209 | apply (subst approx_minus_iff) | |
| 2210 | apply (rule mem_infmal_iff [THEN subst]) | |
| 2211 | apply (erule real_seq_to_hypreal_Infinitesimal) | |
| 2212 | done | |
| 2213 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2214 | lemma real_seq_to_hypreal_approx2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2215 | "\<forall>n. abs(x + -X n) < inverse(real(Suc n)) | 
| 14370 | 2216 |                ==> Abs_hypreal(hyprel``{X}) @= hypreal_of_real x"
 | 
| 2217 | apply (simp add: abs_minus_add_cancel real_seq_to_hypreal_approx) | |
| 2218 | done | |
| 2219 | ||
| 14420 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2220 | lemma real_seq_to_hypreal_Infinitesimal2: | 
| 
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
 paulson parents: 
14387diff
changeset | 2221 | "\<forall>n. abs(X n + -Y n) < inverse(real(Suc n)) | 
| 14370 | 2222 |       ==> Abs_hypreal(hyprel``{X}) +
 | 
| 2223 |           -Abs_hypreal(hyprel``{Y}) \<in> Infinitesimal"
 | |
| 2224 | by (auto intro!: bexI | |
| 2225 | dest: FreeUltrafilterNat_inverse_real_of_posnat | |
| 2226 | FreeUltrafilterNat_all FreeUltrafilterNat_Int | |
| 2227 | intro: order_less_trans FreeUltrafilterNat_subset | |
| 2228 | simp add: Infinitesimal_FreeUltrafilterNat_iff hypreal_minus | |
| 2229 | hypreal_add hypreal_inverse) | |
| 2230 | ||
| 2231 | ||
| 2232 | ML | |
| 2233 | {*
 | |
| 2234 | val Infinitesimal_def = thm"Infinitesimal_def"; | |
| 2235 | val HFinite_def = thm"HFinite_def"; | |
| 2236 | val HInfinite_def = thm"HInfinite_def"; | |
| 2237 | val st_def = thm"st_def"; | |
| 2238 | val monad_def = thm"monad_def"; | |
| 2239 | val galaxy_def = thm"galaxy_def"; | |
| 2240 | val approx_def = thm"approx_def"; | |
| 2241 | val SReal_def = thm"SReal_def"; | |
| 2242 | ||
| 2243 | val Infinitesimal_approx_minus = thm "Infinitesimal_approx_minus"; | |
| 2244 | val approx_monad_iff = thm "approx_monad_iff"; | |
| 2245 | val Infinitesimal_approx = thm "Infinitesimal_approx"; | |
| 2246 | val approx_add = thm "approx_add"; | |
| 2247 | val approx_minus = thm "approx_minus"; | |
| 2248 | val approx_minus2 = thm "approx_minus2"; | |
| 2249 | val approx_minus_cancel = thm "approx_minus_cancel"; | |
| 2250 | val approx_add_minus = thm "approx_add_minus"; | |
| 2251 | val approx_mult1 = thm "approx_mult1"; | |
| 2252 | val approx_mult2 = thm "approx_mult2"; | |
| 2253 | val approx_mult_subst = thm "approx_mult_subst"; | |
| 2254 | val approx_mult_subst2 = thm "approx_mult_subst2"; | |
| 2255 | val approx_mult_subst_SReal = thm "approx_mult_subst_SReal"; | |
| 2256 | val approx_eq_imp = thm "approx_eq_imp"; | |
| 2257 | val Infinitesimal_minus_approx = thm "Infinitesimal_minus_approx"; | |
| 2258 | val bex_Infinitesimal_iff = thm "bex_Infinitesimal_iff"; | |
| 2259 | val bex_Infinitesimal_iff2 = thm "bex_Infinitesimal_iff2"; | |
| 2260 | val Infinitesimal_add_approx = thm "Infinitesimal_add_approx"; | |
| 2261 | val Infinitesimal_add_approx_self = thm "Infinitesimal_add_approx_self"; | |
| 2262 | val Infinitesimal_add_approx_self2 = thm "Infinitesimal_add_approx_self2"; | |
| 2263 | val Infinitesimal_add_minus_approx_self = thm "Infinitesimal_add_minus_approx_self"; | |
| 2264 | val Infinitesimal_add_cancel = thm "Infinitesimal_add_cancel"; | |
| 2265 | val Infinitesimal_add_right_cancel = thm "Infinitesimal_add_right_cancel"; | |
| 2266 | val approx_add_left_cancel = thm "approx_add_left_cancel"; | |
| 2267 | val approx_add_right_cancel = thm "approx_add_right_cancel"; | |
| 2268 | val approx_add_mono1 = thm "approx_add_mono1"; | |
| 2269 | val approx_add_mono2 = thm "approx_add_mono2"; | |
| 2270 | val approx_add_left_iff = thm "approx_add_left_iff"; | |
| 2271 | val approx_add_right_iff = thm "approx_add_right_iff"; | |
| 2272 | val approx_HFinite = thm "approx_HFinite"; | |
| 2273 | val approx_hypreal_of_real_HFinite = thm "approx_hypreal_of_real_HFinite"; | |
| 2274 | val approx_mult_HFinite = thm "approx_mult_HFinite"; | |
| 2275 | val approx_mult_hypreal_of_real = thm "approx_mult_hypreal_of_real"; | |
| 2276 | val approx_SReal_mult_cancel_zero = thm "approx_SReal_mult_cancel_zero"; | |
| 2277 | val approx_mult_SReal1 = thm "approx_mult_SReal1"; | |
| 2278 | val approx_mult_SReal2 = thm "approx_mult_SReal2"; | |
| 2279 | val approx_mult_SReal_zero_cancel_iff = thm "approx_mult_SReal_zero_cancel_iff"; | |
| 2280 | val approx_SReal_mult_cancel = thm "approx_SReal_mult_cancel"; | |
| 2281 | val approx_SReal_mult_cancel_iff1 = thm "approx_SReal_mult_cancel_iff1"; | |
| 2282 | val approx_le_bound = thm "approx_le_bound"; | |
| 2283 | val Infinitesimal_less_SReal = thm "Infinitesimal_less_SReal"; | |
| 2284 | val Infinitesimal_less_SReal2 = thm "Infinitesimal_less_SReal2"; | |
| 2285 | val SReal_not_Infinitesimal = thm "SReal_not_Infinitesimal"; | |
| 2286 | val SReal_minus_not_Infinitesimal = thm "SReal_minus_not_Infinitesimal"; | |
| 2287 | val SReal_Int_Infinitesimal_zero = thm "SReal_Int_Infinitesimal_zero"; | |
| 2288 | val SReal_Infinitesimal_zero = thm "SReal_Infinitesimal_zero"; | |
| 2289 | val SReal_HFinite_diff_Infinitesimal = thm "SReal_HFinite_diff_Infinitesimal"; | |
| 2290 | val hypreal_of_real_HFinite_diff_Infinitesimal = thm "hypreal_of_real_HFinite_diff_Infinitesimal"; | |
| 2291 | val hypreal_of_real_Infinitesimal_iff_0 = thm "hypreal_of_real_Infinitesimal_iff_0"; | |
| 2292 | val number_of_not_Infinitesimal = thm "number_of_not_Infinitesimal"; | |
| 2293 | val one_not_Infinitesimal = thm "one_not_Infinitesimal"; | |
| 2294 | val approx_SReal_not_zero = thm "approx_SReal_not_zero"; | |
| 2295 | val HFinite_diff_Infinitesimal_approx = thm "HFinite_diff_Infinitesimal_approx"; | |
| 2296 | val Infinitesimal_ratio = thm "Infinitesimal_ratio"; | |
| 2297 | val SReal_approx_iff = thm "SReal_approx_iff"; | |
| 2298 | val number_of_approx_iff = thm "number_of_approx_iff"; | |
| 2299 | val hypreal_of_real_approx_iff = thm "hypreal_of_real_approx_iff"; | |
| 2300 | val hypreal_of_real_approx_number_of_iff = thm "hypreal_of_real_approx_number_of_iff"; | |
| 2301 | val approx_unique_real = thm "approx_unique_real"; | |
| 2302 | val hypreal_isLub_unique = thm "hypreal_isLub_unique"; | |
| 2303 | val hypreal_setle_less_trans = thm "hypreal_setle_less_trans"; | |
| 2304 | val hypreal_gt_isUb = thm "hypreal_gt_isUb"; | |
| 2305 | val st_part_Ex = thm "st_part_Ex"; | |
| 2306 | val st_part_Ex1 = thm "st_part_Ex1"; | |
| 2307 | val HFinite_Int_HInfinite_empty = thm "HFinite_Int_HInfinite_empty"; | |
| 2308 | val HFinite_not_HInfinite = thm "HFinite_not_HInfinite"; | |
| 2309 | val not_HFinite_HInfinite = thm "not_HFinite_HInfinite"; | |
| 2310 | val HInfinite_HFinite_disj = thm "HInfinite_HFinite_disj"; | |
| 2311 | val HInfinite_HFinite_iff = thm "HInfinite_HFinite_iff"; | |
| 2312 | val HFinite_HInfinite_iff = thm "HFinite_HInfinite_iff"; | |
| 2313 | val HInfinite_diff_HFinite_Infinitesimal_disj = thm "HInfinite_diff_HFinite_Infinitesimal_disj"; | |
| 2314 | val HFinite_inverse = thm "HFinite_inverse"; | |
| 2315 | val HFinite_inverse2 = thm "HFinite_inverse2"; | |
| 2316 | val Infinitesimal_inverse_HFinite = thm "Infinitesimal_inverse_HFinite"; | |
| 2317 | val HFinite_not_Infinitesimal_inverse = thm "HFinite_not_Infinitesimal_inverse"; | |
| 2318 | val approx_inverse = thm "approx_inverse"; | |
| 2319 | val hypreal_of_real_approx_inverse = thm "hypreal_of_real_approx_inverse"; | |
| 2320 | val inverse_add_Infinitesimal_approx = thm "inverse_add_Infinitesimal_approx"; | |
| 2321 | val inverse_add_Infinitesimal_approx2 = thm "inverse_add_Infinitesimal_approx2"; | |
| 2322 | val inverse_add_Infinitesimal_approx_Infinitesimal = thm "inverse_add_Infinitesimal_approx_Infinitesimal"; | |
| 2323 | val Infinitesimal_square_iff = thm "Infinitesimal_square_iff"; | |
| 2324 | val HFinite_square_iff = thm "HFinite_square_iff"; | |
| 2325 | val HInfinite_square_iff = thm "HInfinite_square_iff"; | |
| 2326 | val approx_HFinite_mult_cancel = thm "approx_HFinite_mult_cancel"; | |
| 2327 | val approx_HFinite_mult_cancel_iff1 = thm "approx_HFinite_mult_cancel_iff1"; | |
| 2328 | val approx_hrabs_disj = thm "approx_hrabs_disj"; | |
| 2329 | val monad_hrabs_Un_subset = thm "monad_hrabs_Un_subset"; | |
| 2330 | val Infinitesimal_monad_eq = thm "Infinitesimal_monad_eq"; | |
| 2331 | val mem_monad_iff = thm "mem_monad_iff"; | |
| 2332 | val Infinitesimal_monad_zero_iff = thm "Infinitesimal_monad_zero_iff"; | |
| 2333 | val monad_zero_minus_iff = thm "monad_zero_minus_iff"; | |
| 2334 | val monad_zero_hrabs_iff = thm "monad_zero_hrabs_iff"; | |
| 2335 | val mem_monad_self = thm "mem_monad_self"; | |
| 2336 | val approx_subset_monad = thm "approx_subset_monad"; | |
| 2337 | val approx_subset_monad2 = thm "approx_subset_monad2"; | |
| 2338 | val mem_monad_approx = thm "mem_monad_approx"; | |
| 2339 | val approx_mem_monad = thm "approx_mem_monad"; | |
| 2340 | val approx_mem_monad2 = thm "approx_mem_monad2"; | |
| 2341 | val approx_mem_monad_zero = thm "approx_mem_monad_zero"; | |
| 2342 | val Infinitesimal_approx_hrabs = thm "Infinitesimal_approx_hrabs"; | |
| 2343 | val less_Infinitesimal_less = thm "less_Infinitesimal_less"; | |
| 2344 | val Ball_mem_monad_gt_zero = thm "Ball_mem_monad_gt_zero"; | |
| 2345 | val Ball_mem_monad_less_zero = thm "Ball_mem_monad_less_zero"; | |
| 2346 | val approx_hrabs1 = thm "approx_hrabs1"; | |
| 2347 | val approx_hrabs2 = thm "approx_hrabs2"; | |
| 2348 | val approx_hrabs = thm "approx_hrabs"; | |
| 2349 | val approx_hrabs_zero_cancel = thm "approx_hrabs_zero_cancel"; | |
| 2350 | val approx_hrabs_add_Infinitesimal = thm "approx_hrabs_add_Infinitesimal"; | |
| 2351 | val approx_hrabs_add_minus_Infinitesimal = thm "approx_hrabs_add_minus_Infinitesimal"; | |
| 2352 | val hrabs_add_Infinitesimal_cancel = thm "hrabs_add_Infinitesimal_cancel"; | |
| 2353 | val hrabs_add_minus_Infinitesimal_cancel = thm "hrabs_add_minus_Infinitesimal_cancel"; | |
| 2354 | val hypreal_less_minus_iff = thm "hypreal_less_minus_iff"; | |
| 2355 | val Infinitesimal_add_hypreal_of_real_less = thm "Infinitesimal_add_hypreal_of_real_less"; | |
| 2356 | val Infinitesimal_add_hrabs_hypreal_of_real_less = thm "Infinitesimal_add_hrabs_hypreal_of_real_less"; | |
| 2357 | val Infinitesimal_add_hrabs_hypreal_of_real_less2 = thm "Infinitesimal_add_hrabs_hypreal_of_real_less2"; | |
| 2358 | val hypreal_of_real_le_add_Infininitesimal_cancel2 = thm"hypreal_of_real_le_add_Infininitesimal_cancel2"; | |
| 2359 | val hypreal_of_real_less_Infinitesimal_le_zero = thm "hypreal_of_real_less_Infinitesimal_le_zero"; | |
| 2360 | val Infinitesimal_add_not_zero = thm "Infinitesimal_add_not_zero"; | |
| 2361 | val Infinitesimal_square_cancel = thm "Infinitesimal_square_cancel"; | |
| 2362 | val HFinite_square_cancel = thm "HFinite_square_cancel"; | |
| 2363 | val Infinitesimal_square_cancel2 = thm "Infinitesimal_square_cancel2"; | |
| 2364 | val HFinite_square_cancel2 = thm "HFinite_square_cancel2"; | |
| 2365 | val Infinitesimal_sum_square_cancel = thm "Infinitesimal_sum_square_cancel"; | |
| 2366 | val HFinite_sum_square_cancel = thm "HFinite_sum_square_cancel"; | |
| 2367 | val Infinitesimal_sum_square_cancel2 = thm "Infinitesimal_sum_square_cancel2"; | |
| 2368 | val HFinite_sum_square_cancel2 = thm "HFinite_sum_square_cancel2"; | |
| 2369 | val Infinitesimal_sum_square_cancel3 = thm "Infinitesimal_sum_square_cancel3"; | |
| 2370 | val HFinite_sum_square_cancel3 = thm "HFinite_sum_square_cancel3"; | |
| 2371 | val monad_hrabs_less = thm "monad_hrabs_less"; | |
| 2372 | val mem_monad_SReal_HFinite = thm "mem_monad_SReal_HFinite"; | |
| 2373 | val st_approx_self = thm "st_approx_self"; | |
| 2374 | val st_SReal = thm "st_SReal"; | |
| 2375 | val st_HFinite = thm "st_HFinite"; | |
| 2376 | val st_SReal_eq = thm "st_SReal_eq"; | |
| 2377 | val st_hypreal_of_real = thm "st_hypreal_of_real"; | |
| 2378 | val st_eq_approx = thm "st_eq_approx"; | |
| 2379 | val approx_st_eq = thm "approx_st_eq"; | |
| 2380 | val st_eq_approx_iff = thm "st_eq_approx_iff"; | |
| 2381 | val st_Infinitesimal_add_SReal = thm "st_Infinitesimal_add_SReal"; | |
| 2382 | val st_Infinitesimal_add_SReal2 = thm "st_Infinitesimal_add_SReal2"; | |
| 2383 | val HFinite_st_Infinitesimal_add = thm "HFinite_st_Infinitesimal_add"; | |
| 2384 | val st_add = thm "st_add"; | |
| 2385 | val st_number_of = thm "st_number_of"; | |
| 2386 | val st_minus = thm "st_minus"; | |
| 2387 | val st_diff = thm "st_diff"; | |
| 2388 | val st_mult = thm "st_mult"; | |
| 2389 | val st_Infinitesimal = thm "st_Infinitesimal"; | |
| 2390 | val st_not_Infinitesimal = thm "st_not_Infinitesimal"; | |
| 2391 | val st_inverse = thm "st_inverse"; | |
| 2392 | val st_divide = thm "st_divide"; | |
| 2393 | val st_idempotent = thm "st_idempotent"; | |
| 2394 | val Infinitesimal_add_st_less = thm "Infinitesimal_add_st_less"; | |
| 2395 | val Infinitesimal_add_st_le_cancel = thm "Infinitesimal_add_st_le_cancel"; | |
| 2396 | val st_le = thm "st_le"; | |
| 2397 | val st_zero_le = thm "st_zero_le"; | |
| 2398 | val st_zero_ge = thm "st_zero_ge"; | |
| 2399 | val st_hrabs = thm "st_hrabs"; | |
| 2400 | val FreeUltrafilterNat_HFinite = thm "FreeUltrafilterNat_HFinite"; | |
| 2401 | val HFinite_FreeUltrafilterNat_iff = thm "HFinite_FreeUltrafilterNat_iff"; | |
| 2402 | val FreeUltrafilterNat_const_Finite = thm "FreeUltrafilterNat_const_Finite"; | |
| 2403 | val FreeUltrafilterNat_HInfinite = thm "FreeUltrafilterNat_HInfinite"; | |
| 2404 | val HInfinite_FreeUltrafilterNat_iff = thm "HInfinite_FreeUltrafilterNat_iff"; | |
| 2405 | val Infinitesimal_FreeUltrafilterNat = thm "Infinitesimal_FreeUltrafilterNat"; | |
| 2406 | val FreeUltrafilterNat_Infinitesimal = thm "FreeUltrafilterNat_Infinitesimal"; | |
| 2407 | val Infinitesimal_FreeUltrafilterNat_iff = thm "Infinitesimal_FreeUltrafilterNat_iff"; | |
| 2408 | val Infinitesimal_hypreal_of_nat_iff = thm "Infinitesimal_hypreal_of_nat_iff"; | |
| 2409 | val Suc_Un_eq = thm "Suc_Un_eq"; | |
| 2410 | val finite_nat_segment = thm "finite_nat_segment"; | |
| 2411 | val finite_real_of_nat_segment = thm "finite_real_of_nat_segment"; | |
| 2412 | val finite_real_of_nat_less_real = thm "finite_real_of_nat_less_real"; | |
| 2413 | val finite_real_of_nat_le_real = thm "finite_real_of_nat_le_real"; | |
| 2414 | val finite_rabs_real_of_nat_le_real = thm "finite_rabs_real_of_nat_le_real"; | |
| 2415 | val rabs_real_of_nat_le_real_FreeUltrafilterNat = thm "rabs_real_of_nat_le_real_FreeUltrafilterNat"; | |
| 2416 | val FreeUltrafilterNat_nat_gt_real = thm "FreeUltrafilterNat_nat_gt_real"; | |
| 2417 | val hypreal_omega = thm "hypreal_omega"; | |
| 2418 | val FreeUltrafilterNat_omega = thm "FreeUltrafilterNat_omega"; | |
| 2419 | val HInfinite_omega = thm "HInfinite_omega"; | |
| 2420 | val Infinitesimal_epsilon = thm "Infinitesimal_epsilon"; | |
| 2421 | val HFinite_epsilon = thm "HFinite_epsilon"; | |
| 2422 | val epsilon_approx_zero = thm "epsilon_approx_zero"; | |
| 2423 | val real_of_nat_less_inverse_iff = thm "real_of_nat_less_inverse_iff"; | |
| 2424 | val finite_inverse_real_of_posnat_gt_real = thm "finite_inverse_real_of_posnat_gt_real"; | |
| 2425 | val real_of_nat_inverse_le_iff = thm "real_of_nat_inverse_le_iff"; | |
| 2426 | val real_of_nat_inverse_eq_iff = thm "real_of_nat_inverse_eq_iff"; | |
| 2427 | val finite_inverse_real_of_posnat_ge_real = thm "finite_inverse_real_of_posnat_ge_real"; | |
| 2428 | val inverse_real_of_posnat_ge_real_FreeUltrafilterNat = thm "inverse_real_of_posnat_ge_real_FreeUltrafilterNat"; | |
| 2429 | val FreeUltrafilterNat_inverse_real_of_posnat = thm "FreeUltrafilterNat_inverse_real_of_posnat"; | |
| 2430 | val real_seq_to_hypreal_Infinitesimal = thm "real_seq_to_hypreal_Infinitesimal"; | |
| 2431 | val real_seq_to_hypreal_approx = thm "real_seq_to_hypreal_approx"; | |
| 2432 | val real_seq_to_hypreal_approx2 = thm "real_seq_to_hypreal_approx2"; | |
| 2433 | val real_seq_to_hypreal_Infinitesimal2 = thm "real_seq_to_hypreal_Infinitesimal2"; | |
| 2434 | val HInfinite_HFinite_add = thm "HInfinite_HFinite_add"; | |
| 2435 | val HInfinite_ge_HInfinite = thm "HInfinite_ge_HInfinite"; | |
| 2436 | val Infinitesimal_inverse_HInfinite = thm "Infinitesimal_inverse_HInfinite"; | |
| 2437 | val HInfinite_HFinite_not_Infinitesimal_mult = thm "HInfinite_HFinite_not_Infinitesimal_mult"; | |
| 2438 | val HInfinite_HFinite_not_Infinitesimal_mult2 = thm "HInfinite_HFinite_not_Infinitesimal_mult2"; | |
| 2439 | val HInfinite_gt_SReal = thm "HInfinite_gt_SReal"; | |
| 2440 | val HInfinite_gt_zero_gt_one = thm "HInfinite_gt_zero_gt_one"; | |
| 2441 | val not_HInfinite_one = thm "not_HInfinite_one"; | |
| 2442 | *} | |
| 2443 | ||
| 10751 | 2444 | end |