src/HOLCF/Ssum0.thy
author wenzelm
Fri, 05 Oct 2001 21:49:59 +0200
changeset 11699 c7df55158574
parent 10834 a7897aebbffc
child 12030 46d57d0290a2
permissions -rw-r--r--
"num" syntax;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2394
diff changeset
     1
(*  Title:      HOLCF/Ssum0.thy
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     2
    ID:         $Id$
1479
21eb5e156d91 expanded tabs
clasohm
parents: 1274
diff changeset
     3
    Author:     Franz Regensburger
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     4
    Copyright   1993  Technische Universitaet Muenchen
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     5
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2394
diff changeset
     6
Strict sum with typedef
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     7
*)
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     8
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
     9
Ssum0 = Cfun3 +
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    10
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2394
diff changeset
    11
constdefs
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2394
diff changeset
    12
  Sinl_Rep      :: ['a,'a,'b,bool]=>bool
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2394
diff changeset
    13
 "Sinl_Rep == (%a.%x y p. (a~=UU --> x=a & p))"
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2394
diff changeset
    14
  Sinr_Rep      :: ['b,'a,'b,bool]=>bool
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2394
diff changeset
    15
 "Sinr_Rep == (%b.%x y p.(b~=UU --> y=b & ~p))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    16
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2394
diff changeset
    17
typedef (Ssum)  ('a, 'b) "++" (infixr 10) = 
6382
8b0c9205da75 fixed typedef representing set;
wenzelm
parents: 3842
diff changeset
    18
	"{f.(? a. f=Sinl_Rep(a::'a))|(? b. f=Sinr_Rep(b::'b))}"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    19
2394
91d8abf108be adaptions for symbol font
oheimb
parents: 2291
diff changeset
    20
syntax (symbols)
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents: 2394
diff changeset
    21
  "++"		:: [type, type] => type	("(_ \\<oplus>/ _)" [21, 20] 20)
2394
91d8abf108be adaptions for symbol font
oheimb
parents: 2291
diff changeset
    22
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    23
consts
1479
21eb5e156d91 expanded tabs
clasohm
parents: 1274
diff changeset
    24
  Isinl         :: "'a => ('a ++ 'b)"
21eb5e156d91 expanded tabs
clasohm
parents: 1274
diff changeset
    25
  Isinr         :: "'b => ('a ++ 'b)"
21eb5e156d91 expanded tabs
clasohm
parents: 1274
diff changeset
    26
  Iwhen         :: "('a->'c)=>('b->'c)=>('a ++ 'b)=> 'c"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    27
1168
74be52691d62 The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents: 1150
diff changeset
    28
defs   (*defining the abstract constants*)
1479
21eb5e156d91 expanded tabs
clasohm
parents: 1274
diff changeset
    29
  Isinl_def     "Isinl(a) == Abs_Ssum(Sinl_Rep(a))"
21eb5e156d91 expanded tabs
clasohm
parents: 1274
diff changeset
    30
  Isinr_def     "Isinr(b) == Abs_Ssum(Sinr_Rep(b))"
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    31
1479
21eb5e156d91 expanded tabs
clasohm
parents: 1274
diff changeset
    32
  Iwhen_def     "Iwhen(f)(g)(s) == @z.
21eb5e156d91 expanded tabs
clasohm
parents: 1274
diff changeset
    33
                                    (s=Isinl(UU) --> z=UU)
10834
a7897aebbffc *** empty log message ***
nipkow
parents: 6382
diff changeset
    34
                        &(!a. a~=UU & s=Isinl(a) --> z=f$a)  
a7897aebbffc *** empty log message ***
nipkow
parents: 6382
diff changeset
    35
                        &(!b. b~=UU & s=Isinr(b) --> z=g$b)"  
243
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    36
c22b85994e17 Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff changeset
    37
end