| 
1478
 | 
     1  | 
(*  Title:      ZF/Nat.thy
  | 
| 
0
 | 
     2  | 
    ID:         $Id$
  | 
| 
1478
 | 
     3  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
435
 | 
     4  | 
    Copyright   1994  University of Cambridge
  | 
| 
0
 | 
     5  | 
  | 
| 
 | 
     6  | 
Natural numbers in Zermelo-Fraenkel Set Theory 
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
2469
 | 
     9  | 
Nat = OrdQuant + Bool + mono +
  | 
| 
0
 | 
    10  | 
consts
  | 
| 
1478
 | 
    11  | 
    nat         ::      i
  | 
| 
1401
 | 
    12  | 
    nat_case    ::      [i, i=>i, i]=>i
  | 
| 
 | 
    13  | 
    nat_rec     ::      [i, i, [i,i]=>i]=>i
  | 
| 
0
 | 
    14  | 
  | 
| 
753
 | 
    15  | 
defs
  | 
| 
0
 | 
    16  | 
  | 
| 
 | 
    17  | 
    nat_def     "nat == lfp(Inf, %X. {0} Un {succ(i). i:X})"
 | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
    nat_case_def
  | 
| 
1478
 | 
    20  | 
        "nat_case(a,b,k) == THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))"
  | 
| 
0
 | 
    21  | 
  | 
| 
 | 
    22  | 
    nat_rec_def
  | 
| 
1478
 | 
    23  | 
        "nat_rec(k,a,b) ==   
  | 
| 
 | 
    24  | 
          wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))"
  | 
| 
0
 | 
    25  | 
  | 
| 
 | 
    26  | 
end
  |