| 15283 |      1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
 | 
|  |      2 | 
 | 
| 3123 |      3 | <!-- $Id$ -->
 | 
| 15582 |      4 | 
 | 
|  |      5 | <HTML>
 | 
|  |      6 | 
 | 
|  |      7 | <HEAD>
 | 
|  |      8 |   <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
 | 
|  |      9 |   <TITLE>HOL/ex/README</TITLE>
 | 
|  |     10 | </HEAD>
 | 
|  |     11 | 
 | 
|  |     12 | <BODY>
 | 
| 3123 |     13 | 
 | 
|  |     14 | <H2>ex--Miscellaneous Examples</H2>
 | 
|  |     15 | 
 | 
|  |     16 | <P>This directory presents a number of small examples, illustrating various
 | 
|  |     17 | features of Isabelle/HOL.
 | 
|  |     18 | 
 | 
|  |     19 | <UL> 
 | 
| 15167 |     20 | <LI><A HREF="Classical.thy"><KBD>Classical</KBD></A> demonstrates the power 
 | 
|  |     21 | of Isabelle's classical reasoner.
 | 
| 3123 |     22 | 
 | 
| 11444 |     23 | <LI>Files <A HREF="mesontest.ML"><KBD>mesontest.ML</KBD></A> and
 | 
|  |     24 | <A HREF="mesontest2.ML"><KBD>mesontest2.ML</KBD></A> present an
 | 
| 3123 |     25 | implementation of the Model Elimination (ME) proof procedure, which is even
 | 
|  |     26 | more powerful than the classical reasoner but not generic.
 | 
|  |     27 | 
 | 
| 11444 |     28 | <LI><A HREF="InSort.thy"><KBD>InSort</KBD></A> and <A HREF="Qsort.thy"><KBD>Qsort</KBD></A> are correctness proofs for sorting
 | 
| 3123 |     29 | functions.
 | 
|  |     30 | 
 | 
| 11444 |     31 | <LI><A HREF="Primrec.thy"><KBD>Primrec</KBD></A> proves that Ackermann's
 | 
|  |     32 | function is not primitive recursive.
 | 
| 3123 |     33 | 
 | 
| 11444 |     34 | <LI><A HREF="Tarski.thy"><KBD>Tarski</KBD></A> is a proof of Tarski's fixedpoint theorem: the full
 | 
| 7146 |     35 | version, which states that the fixedpoints of a complete lattice themselves
 | 
|  |     36 | form a complete lattice.  The example demonstrates first-class reasoning about theories.
 | 
|  |     37 | 
 | 
| 11444 |     38 | <LI><A HREF="NatSum.thy"><KBD>NatSum</KBD></A> demonstrates the power of permutative rewriting.
 | 
| 3123 |     39 | Well-known identities about summations are proved using just induction and
 | 
|  |     40 | rewriting.
 | 
|  |     41 | 
 | 
| 11444 |     42 | <LI><A HREF="MT.thy"><KBD>MT</KBD></A> is a preliminary version of Jacob Frost's coinduction
 | 
| 3123 |     43 | example.  The full version is on the directory <KBD>ZF/Coind</KBD>.
 | 
|  |     44 | </UL>
 | 
|  |     45 | 
 | 
|  |     46 | <HR>
 | 
| 7146 |     47 | <P>Last modified on $Date$
 | 
| 3123 |     48 | 
 | 
|  |     49 | <ADDRESS>
 | 
|  |     50 | <A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
 | 
|  |     51 | </ADDRESS>
 | 
| 15582 |     52 | </BODY>
 | 
|  |     53 | </HTML>
 |