| 
37936
 | 
     1  | 
(*  Title:      ZF/UNITY/WFair.thy
  | 
| 
11479
 | 
     2  | 
    Author:     Sidi Ehmety, Computer Laboratory
  | 
| 
 | 
     3  | 
    Copyright   1998  University of Cambridge
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
15634
 | 
     6  | 
header{*Progress under Weak Fairness*}
 | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory WFair
  | 
| 
 | 
     9  | 
imports UNITY Main_ZFC
  | 
| 
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
text{*This theory defines the operators transient, ensures and leadsTo,
 | 
| 
 | 
    13  | 
assuming weak fairness. From Misra, "A Logic for Concurrent Programming",
  | 
| 
 | 
    14  | 
1994.*}
  | 
| 
 | 
    15  | 
  | 
| 
24893
 | 
    16  | 
definition
  | 
| 
12195
 | 
    17  | 
  (* This definition specifies weak fairness.  The rest of the theory
  | 
| 
46953
 | 
    18  | 
    is generic to all forms of fairness.*)
  | 
| 
24893
 | 
    19  | 
  transient :: "i=>i"  where
  | 
| 
46953
 | 
    20  | 
  "transient(A) =={F \<in> program. (\<exists>act\<in>Acts(F). A<=domain(act) &
 | 
| 
46823
 | 
    21  | 
                               act``A \<subseteq> state-A) & st_set(A)}"
  | 
| 
11479
 | 
    22  | 
  | 
| 
24893
 | 
    23  | 
definition
  | 
| 
 | 
    24  | 
  ensures :: "[i,i] => i"       (infixl "ensures" 60)  where
  | 
| 
46823
 | 
    25  | 
  "A ensures B == ((A-B) co (A \<union> B)) \<inter> transient(A-B)"
  | 
| 
46953
 | 
    26  | 
  | 
| 
11479
 | 
    27  | 
consts
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
  (*LEADS-TO constant for the inductive definition*)
  | 
| 
12195
 | 
    30  | 
  leads :: "[i, i]=>i"
  | 
| 
11479
 | 
    31  | 
  | 
| 
46953
 | 
    32  | 
inductive
  | 
| 
11479
 | 
    33  | 
  domains
  | 
| 
46823
 | 
    34  | 
     "leads(D, F)" \<subseteq> "Pow(D)*Pow(D)"
  | 
| 
46953
 | 
    35  | 
  intros
  | 
| 
 | 
    36  | 
    Basis:  "[| F \<in> A ensures B;  A \<in> Pow(D); B \<in> Pow(D) |] ==> <A,B>:leads(D, F)"
  | 
| 
46823
 | 
    37  | 
    Trans:  "[| <A,B> \<in> leads(D, F); <B,C> \<in> leads(D, F) |] ==>  <A,C>:leads(D, F)"
  | 
| 
46953
 | 
    38  | 
    Union:   "[| S \<in> Pow({A \<in> S. <A, B>:leads(D, F)}); B \<in> Pow(D); S \<in> Pow(Pow(D)) |] ==>
 | 
| 
46823
 | 
    39  | 
              <\<Union>(S),B>:leads(D, F)"
  | 
| 
11479
 | 
    40  | 
  | 
| 
 | 
    41  | 
  monos        Pow_mono
  | 
| 
15634
 | 
    42  | 
  type_intros  Union_Pow_iff [THEN iffD2] UnionI PowI
  | 
| 
46953
 | 
    43  | 
  | 
| 
24893
 | 
    44  | 
definition
  | 
| 
12195
 | 
    45  | 
  (* The Visible version of the LEADS-TO relation*)
  | 
| 
24893
 | 
    46  | 
  leadsTo :: "[i, i] => i"       (infixl "leadsTo" 60)  where
  | 
| 
46953
 | 
    47  | 
  "A leadsTo B == {F \<in> program. <A,B>:leads(state, F)}"
 | 
| 
 | 
    48  | 
  | 
| 
24893
 | 
    49  | 
definition
  | 
| 
12195
 | 
    50  | 
  (* wlt(F, B) is the largest set that leads to B*)
  | 
| 
24893
 | 
    51  | 
  wlt :: "[i, i] => i"  where
  | 
| 
46953
 | 
    52  | 
    "wlt(F, B) == \<Union>({A \<in> Pow(state). F \<in> A leadsTo B})"
 | 
| 
11479
 | 
    53  | 
  | 
| 
24893
 | 
    54  | 
notation (xsymbols)
  | 
| 
 | 
    55  | 
  leadsTo  (infixl "\<longmapsto>" 60)
  | 
| 
15634
 | 
    56  | 
  | 
| 
 | 
    57  | 
(** Ad-hoc set-theory rules **)
  | 
| 
 | 
    58  | 
  | 
| 
46823
 | 
    59  | 
lemma Int_Union_Union: "\<Union>(B) \<inter> A = (\<Union>b \<in> B. b \<inter> A)"
  | 
| 
15634
 | 
    60  | 
by auto
  | 
| 
 | 
    61  | 
  | 
| 
46823
 | 
    62  | 
lemma Int_Union_Union2: "A \<inter> \<Union>(B) = (\<Union>b \<in> B. A \<inter> b)"
  | 
| 
15634
 | 
    63  | 
by auto
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
(*** transient ***)
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
lemma transient_type: "transient(A)<=program"
  | 
| 
 | 
    68  | 
by (unfold transient_def, auto)
  | 
| 
 | 
    69  | 
  | 
| 
46953
 | 
    70  | 
lemma transientD2:
  | 
| 
15634
 | 
    71  | 
"F \<in> transient(A) ==> F \<in> program & st_set(A)"
  | 
| 
 | 
    72  | 
apply (unfold transient_def, auto)
  | 
| 
 | 
    73  | 
done
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
lemma stable_transient_empty: "[| F \<in> stable(A); F \<in> transient(A) |] ==> A = 0"
  | 
| 
 | 
    76  | 
by (simp add: stable_def constrains_def transient_def, fast)
  | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
lemma transient_strengthen: "[|F \<in> transient(A); B<=A|] ==> F \<in> transient(B)"
  | 
| 
 | 
    79  | 
apply (simp add: transient_def st_set_def, clarify)
  | 
| 
 | 
    80  | 
apply (blast intro!: rev_bexI)
  | 
| 
 | 
    81  | 
done
  | 
| 
 | 
    82  | 
  | 
| 
46953
 | 
    83  | 
lemma transientI:
  | 
| 
 | 
    84  | 
"[|act \<in> Acts(F); A \<subseteq> domain(act); act``A \<subseteq> state-A;
  | 
| 
15634
 | 
    85  | 
    F \<in> program; st_set(A)|] ==> F \<in> transient(A)"
  | 
| 
 | 
    86  | 
by (simp add: transient_def, blast)
  | 
| 
 | 
    87  | 
  | 
| 
46953
 | 
    88  | 
lemma transientE:
  | 
| 
 | 
    89  | 
     "[| F \<in> transient(A);
  | 
| 
46823
 | 
    90  | 
         !!act. [| act \<in> Acts(F);  A \<subseteq> domain(act); act``A \<subseteq> state-A|]==>P|]
  | 
| 
15634
 | 
    91  | 
      ==>P"
  | 
| 
 | 
    92  | 
by (simp add: transient_def, blast)
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
lemma transient_state: "transient(state) = 0"
  | 
| 
 | 
    95  | 
apply (simp add: transient_def)
  | 
| 
46953
 | 
    96  | 
apply (rule equalityI, auto)
  | 
| 
15634
 | 
    97  | 
apply (cut_tac F = x in Acts_type)
  | 
| 
 | 
    98  | 
apply (simp add: Diff_cancel)
  | 
| 
 | 
    99  | 
apply (auto intro: st0_in_state)
  | 
| 
 | 
   100  | 
done
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
lemma transient_state2: "state<=B ==> transient(B) = 0"
  | 
| 
 | 
   103  | 
apply (simp add: transient_def st_set_def)
  | 
| 
 | 
   104  | 
apply (rule equalityI, auto)
  | 
| 
 | 
   105  | 
apply (cut_tac F = x in Acts_type)
  | 
| 
 | 
   106  | 
apply (subgoal_tac "B=state")
  | 
| 
 | 
   107  | 
apply (auto intro: st0_in_state)
  | 
| 
 | 
   108  | 
done
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
lemma transient_empty: "transient(0) = program"
  | 
| 
 | 
   111  | 
by (auto simp add: transient_def)
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
declare transient_empty [simp] transient_state [simp] transient_state2 [simp]
  | 
| 
 | 
   114  | 
  | 
| 
 | 
   115  | 
(*** ensures ***)
  | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
lemma ensures_type: "A ensures B <=program"
  | 
| 
 | 
   118  | 
by (simp add: ensures_def constrains_def, auto)
  | 
| 
 | 
   119  | 
  | 
| 
46953
 | 
   120  | 
lemma ensuresI:
  | 
| 
46823
 | 
   121  | 
"[|F:(A-B) co (A \<union> B); F \<in> transient(A-B)|]==>F \<in> A ensures B"
  | 
| 
15634
 | 
   122  | 
apply (unfold ensures_def)
  | 
| 
 | 
   123  | 
apply (auto simp add: transient_type [THEN subsetD])
  | 
| 
 | 
   124  | 
done
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
(* Added by Sidi, from Misra's notes, Progress chapter, exercise 4 *)
  | 
| 
46823
 | 
   127  | 
lemma ensuresI2: "[| F \<in> A co A \<union> B; F \<in> transient(A) |] ==> F \<in> A ensures B"
  | 
| 
15634
 | 
   128  | 
apply (drule_tac B = "A-B" in constrains_weaken_L)
  | 
| 
 | 
   129  | 
apply (drule_tac [2] B = "A-B" in transient_strengthen)
  | 
| 
 | 
   130  | 
apply (auto simp add: ensures_def transient_type [THEN subsetD])
  | 
| 
 | 
   131  | 
done
  | 
| 
 | 
   132  | 
  | 
| 
46823
 | 
   133  | 
lemma ensuresD: "F \<in> A ensures B ==> F:(A-B) co (A \<union> B) & F \<in> transient (A-B)"
  | 
| 
15634
 | 
   134  | 
by (unfold ensures_def, auto)
  | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
lemma ensures_weaken_R: "[|F \<in> A ensures A'; A'<=B' |] ==> F \<in> A ensures B'"
  | 
| 
 | 
   137  | 
apply (unfold ensures_def)
  | 
| 
 | 
   138  | 
apply (blast intro: transient_strengthen constrains_weaken)
  | 
| 
 | 
   139  | 
done
  | 
| 
 | 
   140  | 
  | 
| 
46953
 | 
   141  | 
(*The L-version (precondition strengthening) fails, but we have this*)
  | 
| 
 | 
   142  | 
lemma stable_ensures_Int:
  | 
| 
46823
 | 
   143  | 
     "[| F \<in> stable(C);  F \<in> A ensures B |] ==> F:(C \<inter> A) ensures (C \<inter> B)"
  | 
| 
46953
 | 
   144  | 
  | 
| 
15634
 | 
   145  | 
apply (unfold ensures_def)
  | 
| 
 | 
   146  | 
apply (simp (no_asm) add: Int_Un_distrib [symmetric] Diff_Int_distrib [symmetric])
  | 
| 
 | 
   147  | 
apply (blast intro: transient_strengthen stable_constrains_Int constrains_weaken)
  | 
| 
 | 
   148  | 
done
  | 
| 
 | 
   149  | 
  | 
| 
46823
 | 
   150  | 
lemma stable_transient_ensures: "[|F \<in> stable(A);  F \<in> transient(C); A<=B \<union> C|] ==> F \<in> A ensures B"
  | 
| 
15634
 | 
   151  | 
apply (frule stable_type [THEN subsetD])
  | 
| 
 | 
   152  | 
apply (simp add: ensures_def stable_def)
  | 
| 
 | 
   153  | 
apply (blast intro: transient_strengthen constrains_weaken)
  | 
| 
 | 
   154  | 
done
  | 
| 
 | 
   155  | 
  | 
| 
46823
 | 
   156  | 
lemma ensures_eq: "(A ensures B) = (A unless B) \<inter> transient (A-B)"
  | 
| 
15634
 | 
   157  | 
by (auto simp add: ensures_def unless_def)
  | 
| 
 | 
   158  | 
  | 
| 
 | 
   159  | 
lemma subset_imp_ensures: "[| F \<in> program; A<=B  |] ==> F \<in> A ensures B"
  | 
| 
 | 
   160  | 
by (auto simp add: ensures_def constrains_def transient_def st_set_def)
  | 
| 
 | 
   161  | 
  | 
| 
 | 
   162  | 
(*** leadsTo ***)
  | 
| 
 | 
   163  | 
lemmas leads_left = leads.dom_subset [THEN subsetD, THEN SigmaD1]
  | 
| 
 | 
   164  | 
lemmas leads_right = leads.dom_subset [THEN subsetD, THEN SigmaD2]
  | 
| 
 | 
   165  | 
  | 
| 
46823
 | 
   166  | 
lemma leadsTo_type: "A leadsTo B \<subseteq> program"
  | 
| 
15634
 | 
   167  | 
by (unfold leadsTo_def, auto)
  | 
| 
 | 
   168  | 
  | 
| 
46953
 | 
   169  | 
lemma leadsToD2:
  | 
| 
15634
 | 
   170  | 
"F \<in> A leadsTo B ==> F \<in> program & st_set(A) & st_set(B)"
  | 
| 
 | 
   171  | 
apply (unfold leadsTo_def st_set_def)
  | 
| 
 | 
   172  | 
apply (blast dest: leads_left leads_right)
  | 
| 
 | 
   173  | 
done
  | 
| 
 | 
   174  | 
  | 
| 
46953
 | 
   175  | 
lemma leadsTo_Basis:
  | 
| 
15634
 | 
   176  | 
    "[|F \<in> A ensures B; st_set(A); st_set(B)|] ==> F \<in> A leadsTo B"
  | 
| 
 | 
   177  | 
apply (unfold leadsTo_def st_set_def)
  | 
| 
 | 
   178  | 
apply (cut_tac ensures_type)
  | 
| 
 | 
   179  | 
apply (auto intro: leads.Basis)
  | 
| 
 | 
   180  | 
done
  | 
| 
 | 
   181  | 
declare leadsTo_Basis [intro]
  | 
| 
 | 
   182  | 
  | 
| 
 | 
   183  | 
(* Added by Sidi, from Misra's notes, Progress chapter, exercise number 4 *)
  | 
| 
 | 
   184  | 
(* [| F \<in> program; A<=B;  st_set(A); st_set(B) |] ==> A leadsTo B *)
  | 
| 
45602
 | 
   185  | 
lemmas subset_imp_leadsTo = subset_imp_ensures [THEN leadsTo_Basis]
  | 
| 
15634
 | 
   186  | 
  | 
| 
 | 
   187  | 
lemma leadsTo_Trans: "[|F \<in> A leadsTo B;  F \<in> B leadsTo C |]==>F \<in> A leadsTo C"
  | 
| 
 | 
   188  | 
apply (unfold leadsTo_def)
  | 
| 
 | 
   189  | 
apply (auto intro: leads.Trans)
  | 
| 
 | 
   190  | 
done
  | 
| 
 | 
   191  | 
  | 
| 
 | 
   192  | 
(* Better when used in association with leadsTo_weaken_R *)
  | 
| 
 | 
   193  | 
lemma transient_imp_leadsTo: "F \<in> transient(A) ==> F \<in> A leadsTo (state-A)"
  | 
| 
 | 
   194  | 
apply (unfold transient_def)
  | 
| 
 | 
   195  | 
apply (blast intro: ensuresI [THEN leadsTo_Basis] constrains_weaken transientI)
  | 
| 
 | 
   196  | 
done
  | 
| 
 | 
   197  | 
  | 
| 
 | 
   198  | 
(*Useful with cancellation, disjunction*)
  | 
| 
46823
 | 
   199  | 
lemma leadsTo_Un_duplicate: "F \<in> A leadsTo (A' \<union> A') ==> F \<in> A leadsTo A'"
  | 
| 
15634
 | 
   200  | 
by simp
  | 
| 
 | 
   201  | 
  | 
| 
 | 
   202  | 
lemma leadsTo_Un_duplicate2:
  | 
| 
46823
 | 
   203  | 
     "F \<in> A leadsTo (A' \<union> C \<union> C) ==> F \<in> A leadsTo (A' \<union> C)"
  | 
| 
15634
 | 
   204  | 
by (simp add: Un_ac)
  | 
| 
 | 
   205  | 
  | 
| 
 | 
   206  | 
(*The Union introduction rule as we should have liked to state it*)
  | 
| 
46953
 | 
   207  | 
lemma leadsTo_Union:
  | 
| 
15634
 | 
   208  | 
    "[|!!A. A \<in> S ==> F \<in> A leadsTo B; F \<in> program; st_set(B)|]
  | 
| 
46823
 | 
   209  | 
     ==> F \<in> \<Union>(S) leadsTo B"
  | 
| 
15634
 | 
   210  | 
apply (unfold leadsTo_def st_set_def)
  | 
| 
 | 
   211  | 
apply (blast intro: leads.Union dest: leads_left)
  | 
| 
 | 
   212  | 
done
  | 
| 
 | 
   213  | 
  | 
| 
46953
 | 
   214  | 
lemma leadsTo_Union_Int:
  | 
| 
 | 
   215  | 
    "[|!!A. A \<in> S ==>F \<in> (A \<inter> C) leadsTo B; F \<in> program; st_set(B)|]
  | 
| 
46823
 | 
   216  | 
     ==> F \<in> (\<Union>(S)Int C)leadsTo B"
  | 
| 
15634
 | 
   217  | 
apply (unfold leadsTo_def st_set_def)
  | 
| 
 | 
   218  | 
apply (simp only: Int_Union_Union)
  | 
| 
 | 
   219  | 
apply (blast dest: leads_left intro: leads.Union)
  | 
| 
 | 
   220  | 
done
  | 
| 
 | 
   221  | 
  | 
| 
46953
 | 
   222  | 
lemma leadsTo_UN:
  | 
| 
15634
 | 
   223  | 
    "[| !!i. i \<in> I ==> F \<in> A(i) leadsTo B; F \<in> program; st_set(B)|]
  | 
| 
 | 
   224  | 
     ==> F:(\<Union>i \<in> I. A(i)) leadsTo B"
  | 
| 
 | 
   225  | 
apply (simp add: Int_Union_Union leadsTo_def st_set_def)
  | 
| 
 | 
   226  | 
apply (blast dest: leads_left intro: leads.Union)
  | 
| 
 | 
   227  | 
done
  | 
| 
 | 
   228  | 
  | 
| 
 | 
   229  | 
(* Binary union introduction rule *)
  | 
| 
 | 
   230  | 
lemma leadsTo_Un:
  | 
| 
46823
 | 
   231  | 
     "[| F \<in> A leadsTo C; F \<in> B leadsTo C |] ==> F \<in> (A \<union> B) leadsTo C"
  | 
| 
15634
 | 
   232  | 
apply (subst Un_eq_Union)
  | 
| 
 | 
   233  | 
apply (blast intro: leadsTo_Union dest: leadsToD2)
  | 
| 
 | 
   234  | 
done
  | 
| 
 | 
   235  | 
  | 
| 
 | 
   236  | 
lemma single_leadsTo_I:
  | 
| 
46953
 | 
   237  | 
    "[|!!x. x \<in> A==> F:{x} leadsTo B; F \<in> program; st_set(B) |]
 | 
| 
15634
 | 
   238  | 
     ==> F \<in> A leadsTo B"
  | 
| 
 | 
   239  | 
apply (rule_tac b = A in UN_singleton [THEN subst])
  | 
| 
46953
 | 
   240  | 
apply (rule leadsTo_UN, auto)
  | 
| 
15634
 | 
   241  | 
done
  | 
| 
 | 
   242  | 
  | 
| 
 | 
   243  | 
lemma leadsTo_refl: "[| F \<in> program; st_set(A) |] ==> F \<in> A leadsTo A"
  | 
| 
 | 
   244  | 
by (blast intro: subset_imp_leadsTo)
  | 
| 
 | 
   245  | 
  | 
| 
46823
 | 
   246  | 
lemma leadsTo_refl_iff: "F \<in> A leadsTo A \<longleftrightarrow> F \<in> program & st_set(A)"
  | 
| 
15634
 | 
   247  | 
by (auto intro: leadsTo_refl dest: leadsToD2)
  | 
| 
 | 
   248  | 
  | 
| 
46823
 | 
   249  | 
lemma empty_leadsTo: "F \<in> 0 leadsTo B \<longleftrightarrow> (F \<in> program & st_set(B))"
  | 
| 
15634
 | 
   250  | 
by (auto intro: subset_imp_leadsTo dest: leadsToD2)
  | 
| 
 | 
   251  | 
declare empty_leadsTo [iff]
  | 
| 
 | 
   252  | 
  | 
| 
46823
 | 
   253  | 
lemma leadsTo_state: "F \<in> A leadsTo state \<longleftrightarrow> (F \<in> program & st_set(A))"
  | 
| 
15634
 | 
   254  | 
by (auto intro: subset_imp_leadsTo dest: leadsToD2 st_setD)
  | 
| 
 | 
   255  | 
declare leadsTo_state [iff]
  | 
| 
 | 
   256  | 
  | 
| 
 | 
   257  | 
lemma leadsTo_weaken_R: "[| F \<in> A leadsTo A'; A'<=B'; st_set(B') |] ==> F \<in> A leadsTo B'"
  | 
| 
 | 
   258  | 
by (blast dest: leadsToD2 intro: subset_imp_leadsTo leadsTo_Trans)
  | 
| 
 | 
   259  | 
  | 
| 
 | 
   260  | 
lemma leadsTo_weaken_L: "[| F \<in> A leadsTo A'; B<=A |] ==> F \<in> B leadsTo A'"
  | 
| 
 | 
   261  | 
apply (frule leadsToD2)
  | 
| 
 | 
   262  | 
apply (blast intro: leadsTo_Trans subset_imp_leadsTo st_set_subset)
  | 
| 
 | 
   263  | 
done
  | 
| 
 | 
   264  | 
  | 
| 
 | 
   265  | 
lemma leadsTo_weaken: "[| F \<in> A leadsTo A'; B<=A; A'<=B'; st_set(B')|]==> F \<in> B leadsTo B'"
  | 
| 
 | 
   266  | 
apply (frule leadsToD2)
  | 
| 
 | 
   267  | 
apply (blast intro: leadsTo_weaken_R leadsTo_weaken_L leadsTo_Trans leadsTo_refl)
  | 
| 
 | 
   268  | 
done
  | 
| 
 | 
   269  | 
  | 
| 
 | 
   270  | 
(* This rule has a nicer conclusion *)
  | 
| 
 | 
   271  | 
lemma transient_imp_leadsTo2: "[| F \<in> transient(A); state-A<=B; st_set(B)|] ==> F \<in> A leadsTo B"
  | 
| 
 | 
   272  | 
apply (frule transientD2)
  | 
| 
 | 
   273  | 
apply (rule leadsTo_weaken_R)
  | 
| 
 | 
   274  | 
apply (auto simp add: transient_imp_leadsTo)
  | 
| 
 | 
   275  | 
done
  | 
| 
 | 
   276  | 
  | 
| 
 | 
   277  | 
(*Distributes over binary unions*)
  | 
| 
46823
 | 
   278  | 
lemma leadsTo_Un_distrib: "F:(A \<union> B) leadsTo C  \<longleftrightarrow>  (F \<in> A leadsTo C & F \<in> B leadsTo C)"
  | 
| 
15634
 | 
   279  | 
by (blast intro: leadsTo_Un leadsTo_weaken_L)
  | 
| 
 | 
   280  | 
  | 
| 
46953
 | 
   281  | 
lemma leadsTo_UN_distrib:
  | 
| 
46823
 | 
   282  | 
"(F:(\<Union>i \<in> I. A(i)) leadsTo B)\<longleftrightarrow> ((\<forall>i \<in> I. F \<in> A(i) leadsTo B) & F \<in> program & st_set(B))"
  | 
| 
15634
 | 
   283  | 
apply (blast dest: leadsToD2 intro: leadsTo_UN leadsTo_weaken_L)
  | 
| 
 | 
   284  | 
done
  | 
| 
 | 
   285  | 
  | 
| 
46823
 | 
   286  | 
lemma leadsTo_Union_distrib: "(F \<in> \<Union>(S) leadsTo B) \<longleftrightarrow>  (\<forall>A \<in> S. F \<in> A leadsTo B) & F \<in> program & st_set(B)"
  | 
| 
15634
 | 
   287  | 
by (blast dest: leadsToD2 intro: leadsTo_Union leadsTo_weaken_L)
  | 
| 
 | 
   288  | 
  | 
| 
 | 
   289  | 
text{*Set difference: maybe combine with @{text leadsTo_weaken_L}??*}
 | 
| 
 | 
   290  | 
lemma leadsTo_Diff:
  | 
| 
 | 
   291  | 
     "[| F: (A-B) leadsTo C; F \<in> B leadsTo C; st_set(C) |]
  | 
| 
 | 
   292  | 
      ==> F \<in> A leadsTo C"
  | 
| 
 | 
   293  | 
by (blast intro: leadsTo_Un leadsTo_weaken dest: leadsToD2)
  | 
| 
 | 
   294  | 
  | 
| 
 | 
   295  | 
lemma leadsTo_UN_UN:
  | 
| 
46953
 | 
   296  | 
    "[|!!i. i \<in> I ==> F \<in> A(i) leadsTo A'(i); F \<in> program |]
  | 
| 
15634
 | 
   297  | 
     ==> F: (\<Union>i \<in> I. A(i)) leadsTo (\<Union>i \<in> I. A'(i))"
  | 
| 
 | 
   298  | 
apply (rule leadsTo_Union)
  | 
| 
46953
 | 
   299  | 
apply (auto intro: leadsTo_weaken_R dest: leadsToD2)
  | 
| 
15634
 | 
   300  | 
done
  | 
| 
 | 
   301  | 
  | 
| 
 | 
   302  | 
(*Binary union version*)
  | 
| 
46823
 | 
   303  | 
lemma leadsTo_Un_Un: "[| F \<in> A leadsTo A'; F \<in> B leadsTo B' |] ==> F \<in> (A \<union> B) leadsTo (A' \<union> B')"
  | 
| 
15634
 | 
   304  | 
apply (subgoal_tac "st_set (A) & st_set (A') & st_set (B) & st_set (B') ")
  | 
| 
 | 
   305  | 
prefer 2 apply (blast dest: leadsToD2)
  | 
| 
 | 
   306  | 
apply (blast intro: leadsTo_Un leadsTo_weaken_R)
  | 
| 
 | 
   307  | 
done
  | 
| 
 | 
   308  | 
  | 
| 
 | 
   309  | 
(** The cancellation law **)
  | 
| 
46823
 | 
   310  | 
lemma leadsTo_cancel2: "[|F \<in> A leadsTo (A' \<union> B); F \<in> B leadsTo B'|] ==> F \<in> A leadsTo (A' \<union> B')"
  | 
| 
15634
 | 
   311  | 
apply (subgoal_tac "st_set (A) & st_set (A') & st_set (B) & st_set (B') &F \<in> program")
  | 
| 
 | 
   312  | 
prefer 2 apply (blast dest: leadsToD2)
  | 
| 
 | 
   313  | 
apply (blast intro: leadsTo_Trans leadsTo_Un_Un leadsTo_refl)
  | 
| 
 | 
   314  | 
done
  | 
| 
 | 
   315  | 
  | 
| 
46823
 | 
   316  | 
lemma leadsTo_cancel_Diff2: "[|F \<in> A leadsTo (A' \<union> B); F \<in> (B-A') leadsTo B'|]==> F \<in> A leadsTo (A' \<union> B')"
  | 
| 
15634
 | 
   317  | 
apply (rule leadsTo_cancel2)
  | 
| 
 | 
   318  | 
prefer 2 apply assumption
  | 
| 
 | 
   319  | 
apply (blast dest: leadsToD2 intro: leadsTo_weaken_R)
  | 
| 
 | 
   320  | 
done
  | 
| 
 | 
   321  | 
  | 
| 
 | 
   322  | 
  | 
| 
46823
 | 
   323  | 
lemma leadsTo_cancel1: "[| F \<in> A leadsTo (B \<union> A'); F \<in> B leadsTo B' |] ==> F \<in> A leadsTo (B' \<union> A')"
  | 
| 
15634
 | 
   324  | 
apply (simp add: Un_commute)
  | 
| 
 | 
   325  | 
apply (blast intro!: leadsTo_cancel2)
  | 
| 
 | 
   326  | 
done
  | 
| 
 | 
   327  | 
  | 
| 
 | 
   328  | 
lemma leadsTo_cancel_Diff1:
  | 
| 
46823
 | 
   329  | 
     "[|F \<in> A leadsTo (B \<union> A'); F: (B-A') leadsTo B'|]==> F \<in> A leadsTo (B' \<union> A')"
  | 
| 
15634
 | 
   330  | 
apply (rule leadsTo_cancel1)
  | 
| 
 | 
   331  | 
prefer 2 apply assumption
  | 
| 
 | 
   332  | 
apply (blast intro: leadsTo_weaken_R dest: leadsToD2)
  | 
| 
 | 
   333  | 
done
  | 
| 
 | 
   334  | 
  | 
| 
 | 
   335  | 
(*The INDUCTION rule as we should have liked to state it*)
  | 
| 
 | 
   336  | 
lemma leadsTo_induct:
  | 
| 
 | 
   337  | 
  assumes major: "F \<in> za leadsTo zb"
  | 
| 
 | 
   338  | 
      and basis: "!!A B. [|F \<in> A ensures B; st_set(A); st_set(B)|] ==> P(A,B)"
  | 
| 
46953
 | 
   339  | 
      and trans: "!!A B C. [| F \<in> A leadsTo B; P(A, B);
  | 
| 
15634
 | 
   340  | 
                              F \<in> B leadsTo C; P(B, C) |] ==> P(A,C)"
  | 
| 
46953
 | 
   341  | 
      and union: "!!B S. [| \<forall>A \<in> S. F \<in> A leadsTo B; \<forall>A \<in> S. P(A,B);
  | 
| 
46823
 | 
   342  | 
                           st_set(B); \<forall>A \<in> S. st_set(A)|] ==> P(\<Union>(S), B)"
  | 
| 
15634
 | 
   343  | 
  shows "P(za, zb)"
  | 
| 
 | 
   344  | 
apply (cut_tac major)
  | 
| 
46953
 | 
   345  | 
apply (unfold leadsTo_def, clarify)
  | 
| 
 | 
   346  | 
apply (erule leads.induct)
  | 
| 
15634
 | 
   347  | 
  apply (blast intro: basis [unfolded st_set_def])
  | 
| 
46953
 | 
   348  | 
 apply (blast intro: trans [unfolded leadsTo_def])
  | 
| 
 | 
   349  | 
apply (force intro: union [unfolded st_set_def leadsTo_def])
  | 
| 
15634
 | 
   350  | 
done
  | 
| 
 | 
   351  | 
  | 
| 
 | 
   352  | 
  | 
| 
 | 
   353  | 
(* Added by Sidi, an induction rule without ensures *)
  | 
| 
 | 
   354  | 
lemma leadsTo_induct2:
  | 
| 
 | 
   355  | 
  assumes major: "F \<in> za leadsTo zb"
  | 
| 
 | 
   356  | 
      and basis1: "!!A B. [| A<=B; st_set(B) |] ==> P(A, B)"
  | 
| 
46953
 | 
   357  | 
      and basis2: "!!A B. [| F \<in> A co A \<union> B; F \<in> transient(A); st_set(B) |]
  | 
| 
15634
 | 
   358  | 
                          ==> P(A, B)"
  | 
| 
46953
 | 
   359  | 
      and trans: "!!A B C. [| F \<in> A leadsTo B; P(A, B);
  | 
| 
15634
 | 
   360  | 
                              F \<in> B leadsTo C; P(B, C) |] ==> P(A,C)"
  | 
| 
46953
 | 
   361  | 
      and union: "!!B S. [| \<forall>A \<in> S. F \<in> A leadsTo B; \<forall>A \<in> S. P(A,B);
  | 
| 
46823
 | 
   362  | 
                           st_set(B); \<forall>A \<in> S. st_set(A)|] ==> P(\<Union>(S), B)"
  | 
| 
15634
 | 
   363  | 
  shows "P(za, zb)"
  | 
| 
 | 
   364  | 
apply (cut_tac major)
  | 
| 
 | 
   365  | 
apply (erule leadsTo_induct)
  | 
| 
 | 
   366  | 
apply (auto intro: trans union)
  | 
| 
 | 
   367  | 
apply (simp add: ensures_def, clarify)
  | 
| 
 | 
   368  | 
apply (frule constrainsD2)
  | 
| 
46823
 | 
   369  | 
apply (drule_tac B' = " (A-B) \<union> B" in constrains_weaken_R)
  | 
| 
15634
 | 
   370  | 
apply blast
  | 
| 
 | 
   371  | 
apply (frule ensuresI2 [THEN leadsTo_Basis])
  | 
| 
 | 
   372  | 
apply (drule_tac [4] basis2, simp_all)
  | 
| 
 | 
   373  | 
apply (frule_tac A1 = A and B = B in Int_lower2 [THEN basis1])
  | 
| 
46823
 | 
   374  | 
apply (subgoal_tac "A=\<Union>({A - B, A \<inter> B}) ")
 | 
| 
15634
 | 
   375  | 
prefer 2 apply blast
  | 
| 
 | 
   376  | 
apply (erule ssubst)
  | 
| 
 | 
   377  | 
apply (rule union)
  | 
| 
 | 
   378  | 
apply (auto intro: subset_imp_leadsTo)
  | 
| 
 | 
   379  | 
done
  | 
| 
 | 
   380  | 
  | 
| 
 | 
   381  | 
  | 
| 
 | 
   382  | 
(** Variant induction rule: on the preconditions for B **)
  | 
| 
 | 
   383  | 
(*Lemma is the weak version: can't see how to do it in one step*)
  | 
| 
46953
 | 
   384  | 
lemma leadsTo_induct_pre_aux:
  | 
| 
 | 
   385  | 
  "[| F \<in> za leadsTo zb;
  | 
| 
 | 
   386  | 
      P(zb);
  | 
| 
 | 
   387  | 
      !!A B. [| F \<in> A ensures B;  P(B); st_set(A); st_set(B) |] ==> P(A);
  | 
| 
 | 
   388  | 
      !!S. [| \<forall>A \<in> S. P(A); \<forall>A \<in> S. st_set(A) |] ==> P(\<Union>(S))
  | 
| 
15634
 | 
   389  | 
   |] ==> P(za)"
  | 
| 
 | 
   390  | 
txt{*by induction on this formula*}
 | 
| 
46823
 | 
   391  | 
apply (subgoal_tac "P (zb) \<longrightarrow> P (za) ")
  | 
| 
15634
 | 
   392  | 
txt{*now solve first subgoal: this formula is sufficient*}
 | 
| 
 | 
   393  | 
apply (blast intro: leadsTo_refl)
  | 
| 
 | 
   394  | 
apply (erule leadsTo_induct)
  | 
| 
 | 
   395  | 
apply (blast+)
  | 
| 
 | 
   396  | 
done
  | 
| 
 | 
   397  | 
  | 
| 
 | 
   398  | 
  | 
| 
46953
 | 
   399  | 
lemma leadsTo_induct_pre:
  | 
| 
 | 
   400  | 
  "[| F \<in> za leadsTo zb;
  | 
| 
 | 
   401  | 
      P(zb);
  | 
| 
 | 
   402  | 
      !!A B. [| F \<in> A ensures B;  F \<in> B leadsTo zb;  P(B); st_set(A) |] ==> P(A);
  | 
| 
 | 
   403  | 
      !!S. \<forall>A \<in> S. F \<in> A leadsTo zb & P(A) & st_set(A) ==> P(\<Union>(S))
  | 
| 
15634
 | 
   404  | 
   |] ==> P(za)"
  | 
| 
 | 
   405  | 
apply (subgoal_tac " (F \<in> za leadsTo zb) & P (za) ")
  | 
| 
 | 
   406  | 
apply (erule conjunct2)
  | 
| 
46953
 | 
   407  | 
apply (frule leadsToD2)
  | 
| 
15634
 | 
   408  | 
apply (erule leadsTo_induct_pre_aux)
  | 
| 
 | 
   409  | 
prefer 3 apply (blast dest: leadsToD2 intro: leadsTo_Union)
  | 
| 
 | 
   410  | 
prefer 2 apply (blast intro: leadsTo_Trans leadsTo_Basis)
  | 
| 
 | 
   411  | 
apply (blast intro: leadsTo_refl)
  | 
| 
 | 
   412  | 
done
  | 
| 
 | 
   413  | 
  | 
| 
 | 
   414  | 
(** The impossibility law **)
  | 
| 
46953
 | 
   415  | 
lemma leadsTo_empty:
  | 
| 
15634
 | 
   416  | 
   "F \<in> A leadsTo 0 ==> A=0"
  | 
| 
 | 
   417  | 
apply (erule leadsTo_induct_pre)
  | 
| 
 | 
   418  | 
apply (auto simp add: ensures_def constrains_def transient_def st_set_def)
  | 
| 
 | 
   419  | 
apply (drule bspec, assumption)+
  | 
| 
 | 
   420  | 
apply blast
  | 
| 
 | 
   421  | 
done
  | 
| 
 | 
   422  | 
declare leadsTo_empty [simp]
  | 
| 
 | 
   423  | 
  | 
| 
 | 
   424  | 
subsection{*PSP: Progress-Safety-Progress*}
 | 
| 
 | 
   425  | 
  | 
| 
 | 
   426  | 
text{*Special case of PSP: Misra's "stable conjunction"*}
 | 
| 
 | 
   427  | 
  | 
| 
46953
 | 
   428  | 
lemma psp_stable:
  | 
| 
46823
 | 
   429  | 
   "[| F \<in> A leadsTo A'; F \<in> stable(B) |] ==> F:(A \<inter> B) leadsTo (A' \<inter> B)"
  | 
| 
15634
 | 
   430  | 
apply (unfold stable_def)
  | 
| 
46953
 | 
   431  | 
apply (frule leadsToD2)
  | 
| 
15634
 | 
   432  | 
apply (erule leadsTo_induct)
  | 
| 
 | 
   433  | 
prefer 3 apply (blast intro: leadsTo_Union_Int)
  | 
| 
 | 
   434  | 
prefer 2 apply (blast intro: leadsTo_Trans)
  | 
| 
 | 
   435  | 
apply (rule leadsTo_Basis)
  | 
| 
 | 
   436  | 
apply (simp add: ensures_def Diff_Int_distrib2 [symmetric] Int_Un_distrib2 [symmetric])
  | 
| 
 | 
   437  | 
apply (auto intro: transient_strengthen constrains_Int)
  | 
| 
 | 
   438  | 
done
  | 
| 
 | 
   439  | 
  | 
| 
 | 
   440  | 
  | 
| 
46823
 | 
   441  | 
lemma psp_stable2: "[|F \<in> A leadsTo A'; F \<in> stable(B) |]==>F: (B \<inter> A) leadsTo (B \<inter> A')"
  | 
| 
15634
 | 
   442  | 
apply (simp (no_asm_simp) add: psp_stable Int_ac)
  | 
| 
 | 
   443  | 
done
  | 
| 
 | 
   444  | 
  | 
| 
46953
 | 
   445  | 
lemma psp_ensures:
  | 
| 
46823
 | 
   446  | 
"[| F \<in> A ensures A'; F \<in> B co B' |]==> F: (A \<inter> B') ensures ((A' \<inter> B) \<union> (B' - B))"
  | 
| 
15634
 | 
   447  | 
apply (unfold ensures_def constrains_def st_set_def)
  | 
| 
 | 
   448  | 
(*speeds up the proof*)
  | 
| 
 | 
   449  | 
apply clarify
  | 
| 
 | 
   450  | 
apply (blast intro: transient_strengthen)
  | 
| 
 | 
   451  | 
done
  | 
| 
 | 
   452  | 
  | 
| 
46953
 | 
   453  | 
lemma psp:
  | 
| 
46823
 | 
   454  | 
"[|F \<in> A leadsTo A'; F \<in> B co B'; st_set(B')|]==> F:(A \<inter> B') leadsTo ((A' \<inter> B) \<union> (B' - B))"
  | 
| 
15634
 | 
   455  | 
apply (subgoal_tac "F \<in> program & st_set (A) & st_set (A') & st_set (B) ")
  | 
| 
 | 
   456  | 
prefer 2 apply (blast dest!: constrainsD2 leadsToD2)
  | 
| 
 | 
   457  | 
apply (erule leadsTo_induct)
  | 
| 
 | 
   458  | 
prefer 3 apply (blast intro: leadsTo_Union_Int)
  | 
| 
 | 
   459  | 
 txt{*Basis case*}
 | 
| 
 | 
   460  | 
 apply (blast intro: psp_ensures leadsTo_Basis)
  | 
| 
 | 
   461  | 
txt{*Transitivity case has a delicate argument involving "cancellation"*}
 | 
| 
 | 
   462  | 
apply (rule leadsTo_Un_duplicate2)
  | 
| 
 | 
   463  | 
apply (erule leadsTo_cancel_Diff1)
  | 
| 
 | 
   464  | 
apply (simp add: Int_Diff Diff_triv)
  | 
| 
 | 
   465  | 
apply (blast intro: leadsTo_weaken_L dest: constrains_imp_subset)
  | 
| 
 | 
   466  | 
done
  | 
| 
 | 
   467  | 
  | 
| 
 | 
   468  | 
  | 
| 
46953
 | 
   469  | 
lemma psp2: "[| F \<in> A leadsTo A'; F \<in> B co B'; st_set(B') |]
  | 
| 
46823
 | 
   470  | 
    ==> F \<in> (B' \<inter> A) leadsTo ((B \<inter> A') \<union> (B' - B))"
  | 
| 
15634
 | 
   471  | 
by (simp (no_asm_simp) add: psp Int_ac)
  | 
| 
 | 
   472  | 
  | 
| 
46953
 | 
   473  | 
lemma psp_unless:
  | 
| 
 | 
   474  | 
   "[| F \<in> A leadsTo A';  F \<in> B unless B'; st_set(B); st_set(B') |]
  | 
| 
46823
 | 
   475  | 
    ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B) \<union> B')"
  | 
| 
15634
 | 
   476  | 
apply (unfold unless_def)
  | 
| 
 | 
   477  | 
apply (subgoal_tac "st_set (A) &st_set (A') ")
  | 
| 
 | 
   478  | 
prefer 2 apply (blast dest: leadsToD2)
  | 
| 
 | 
   479  | 
apply (drule psp, assumption, blast)
  | 
| 
 | 
   480  | 
apply (blast intro: leadsTo_weaken)
  | 
| 
 | 
   481  | 
done
  | 
| 
 | 
   482  | 
  | 
| 
 | 
   483  | 
  | 
| 
 | 
   484  | 
subsection{*Proving the induction rules*}
 | 
| 
 | 
   485  | 
  | 
| 
 | 
   486  | 
(** The most general rule \<in> r is any wf relation; f is any variant function **)
  | 
| 
46953
 | 
   487  | 
lemma leadsTo_wf_induct_aux: "[| wf(r);
  | 
| 
 | 
   488  | 
         m \<in> I;
  | 
| 
 | 
   489  | 
         field(r)<=I;
  | 
| 
 | 
   490  | 
         F \<in> program; st_set(B);
  | 
| 
 | 
   491  | 
         \<forall>m \<in> I. F \<in> (A \<inter> f-``{m}) leadsTo
 | 
| 
 | 
   492  | 
                    ((A \<inter> f-``(converse(r)``{m})) \<union> B) |]
 | 
| 
46823
 | 
   493  | 
      ==> F \<in> (A \<inter> f-``{m}) leadsTo B"
 | 
| 
15634
 | 
   494  | 
apply (erule_tac a = m in wf_induct2, simp_all)
  | 
| 
46823
 | 
   495  | 
apply (subgoal_tac "F \<in> (A \<inter> (f-`` (converse (r) ``{x}))) leadsTo B")
 | 
| 
15634
 | 
   496  | 
 apply (blast intro: leadsTo_cancel1 leadsTo_Un_duplicate)
  | 
| 
 | 
   497  | 
apply (subst vimage_eq_UN)
  | 
| 
 | 
   498  | 
apply (simp del: UN_simps add: Int_UN_distrib)
  | 
| 
 | 
   499  | 
apply (auto intro: leadsTo_UN simp del: UN_simps simp add: Int_UN_distrib)
  | 
| 
 | 
   500  | 
done
  | 
| 
 | 
   501  | 
  | 
| 
 | 
   502  | 
(** Meta or object quantifier ? **)
  | 
| 
46953
 | 
   503  | 
lemma leadsTo_wf_induct: "[| wf(r);
  | 
| 
 | 
   504  | 
         field(r)<=I;
  | 
| 
 | 
   505  | 
         A<=f-``I;
  | 
| 
 | 
   506  | 
         F \<in> program; st_set(A); st_set(B);
  | 
| 
 | 
   507  | 
         \<forall>m \<in> I. F \<in> (A \<inter> f-``{m}) leadsTo
 | 
| 
 | 
   508  | 
                    ((A \<inter> f-``(converse(r)``{m})) \<union> B) |]
 | 
| 
15634
 | 
   509  | 
      ==> F \<in> A leadsTo B"
  | 
| 
 | 
   510  | 
apply (rule_tac b = A in subst)
  | 
| 
 | 
   511  | 
 defer 1
  | 
| 
 | 
   512  | 
 apply (rule_tac I = I in leadsTo_UN)
  | 
| 
46953
 | 
   513  | 
 apply (erule_tac I = I in leadsTo_wf_induct_aux, assumption+, best)
  | 
| 
15634
 | 
   514  | 
done
  | 
| 
 | 
   515  | 
  | 
| 
 | 
   516  | 
lemma nat_measure_field: "field(measure(nat, %x. x)) = nat"
  | 
| 
 | 
   517  | 
apply (unfold field_def)
  | 
| 
 | 
   518  | 
apply (simp add: measure_def)
  | 
| 
 | 
   519  | 
apply (rule equalityI, force, clarify)
  | 
| 
 | 
   520  | 
apply (erule_tac V = "x\<notin>range (?y) " in thin_rl)
  | 
| 
 | 
   521  | 
apply (erule nat_induct)
  | 
| 
 | 
   522  | 
apply (rule_tac [2] b = "succ (succ (xa))" in domainI)
  | 
| 
 | 
   523  | 
apply (rule_tac b = "succ (0) " in domainI)
  | 
| 
 | 
   524  | 
apply simp_all
  | 
| 
 | 
   525  | 
done
  | 
| 
 | 
   526  | 
  | 
| 
 | 
   527  | 
  | 
| 
 | 
   528  | 
lemma Image_inverse_lessThan: "k<A ==> measure(A, %x. x) -`` {k} = k"
 | 
| 
 | 
   529  | 
apply (rule equalityI)
  | 
| 
 | 
   530  | 
apply (auto simp add: measure_def)
  | 
| 
 | 
   531  | 
apply (blast intro: ltD)
  | 
| 
 | 
   532  | 
apply (rule vimageI)
  | 
| 
 | 
   533  | 
prefer 2 apply blast
  | 
| 
 | 
   534  | 
apply (simp add: lt_Ord lt_Ord2 Ord_mem_iff_lt)
  | 
| 
 | 
   535  | 
apply (blast intro: lt_trans)
  | 
| 
 | 
   536  | 
done
  | 
| 
 | 
   537  | 
  | 
| 
46823
 | 
   538  | 
(*Alternative proof is via the lemma F \<in> (A \<inter> f-`(lessThan m)) leadsTo B*)
  | 
| 
46953
 | 
   539  | 
lemma lessThan_induct:
  | 
| 
 | 
   540  | 
 "[| A<=f-``nat;
  | 
| 
 | 
   541  | 
     F \<in> program; st_set(A); st_set(B);
  | 
| 
 | 
   542  | 
     \<forall>m \<in> nat. F:(A \<inter> f-``{m}) leadsTo ((A \<inter> f -`` m) \<union> B) |]
 | 
| 
15634
 | 
   543  | 
      ==> F \<in> A leadsTo B"
  | 
| 
46953
 | 
   544  | 
apply (rule_tac A1 = nat and f1 = "%x. x" in wf_measure [THEN leadsTo_wf_induct])
  | 
| 
15634
 | 
   545  | 
apply (simp_all add: nat_measure_field)
  | 
| 
 | 
   546  | 
apply (simp add: ltI Image_inverse_lessThan vimage_def [symmetric])
  | 
| 
 | 
   547  | 
done
  | 
| 
 | 
   548  | 
  | 
| 
 | 
   549  | 
  | 
| 
 | 
   550  | 
(*** wlt ****)
  | 
| 
 | 
   551  | 
  | 
| 
 | 
   552  | 
(*Misra's property W3*)
  | 
| 
 | 
   553  | 
lemma wlt_type: "wlt(F,B) <=state"
  | 
| 
 | 
   554  | 
by (unfold wlt_def, auto)
  | 
| 
 | 
   555  | 
  | 
| 
 | 
   556  | 
lemma wlt_st_set: "st_set(wlt(F, B))"
  | 
| 
 | 
   557  | 
apply (unfold st_set_def)
  | 
| 
 | 
   558  | 
apply (rule wlt_type)
  | 
| 
 | 
   559  | 
done
  | 
| 
 | 
   560  | 
declare wlt_st_set [iff]
  | 
| 
 | 
   561  | 
  | 
| 
46823
 | 
   562  | 
lemma wlt_leadsTo_iff: "F \<in> wlt(F, B) leadsTo B \<longleftrightarrow> (F \<in> program & st_set(B))"
  | 
| 
15634
 | 
   563  | 
apply (unfold wlt_def)
  | 
| 
 | 
   564  | 
apply (blast dest: leadsToD2 intro!: leadsTo_Union)
  | 
| 
 | 
   565  | 
done
  | 
| 
 | 
   566  | 
  | 
| 
 | 
   567  | 
(* [| F \<in> program;  st_set(B) |] ==> F \<in> wlt(F, B) leadsTo B  *)
  | 
| 
45602
 | 
   568  | 
lemmas wlt_leadsTo = conjI [THEN wlt_leadsTo_iff [THEN iffD2]]
  | 
| 
15634
 | 
   569  | 
  | 
| 
46823
 | 
   570  | 
lemma leadsTo_subset: "F \<in> A leadsTo B ==> A \<subseteq> wlt(F, B)"
  | 
| 
15634
 | 
   571  | 
apply (unfold wlt_def)
  | 
| 
 | 
   572  | 
apply (frule leadsToD2)
  | 
| 
 | 
   573  | 
apply (auto simp add: st_set_def)
  | 
| 
 | 
   574  | 
done
  | 
| 
 | 
   575  | 
  | 
| 
 | 
   576  | 
(*Misra's property W2*)
  | 
| 
46823
 | 
   577  | 
lemma leadsTo_eq_subset_wlt: "F \<in> A leadsTo B \<longleftrightarrow> (A \<subseteq> wlt(F,B) & F \<in> program & st_set(B))"
  | 
| 
15634
 | 
   578  | 
apply auto
  | 
| 
 | 
   579  | 
apply (blast dest: leadsToD2 leadsTo_subset intro: leadsTo_weaken_L wlt_leadsTo)+
  | 
| 
 | 
   580  | 
done
  | 
| 
 | 
   581  | 
  | 
| 
 | 
   582  | 
(*Misra's property W4*)
  | 
| 
46823
 | 
   583  | 
lemma wlt_increasing: "[| F \<in> program; st_set(B) |] ==> B \<subseteq> wlt(F,B)"
  | 
| 
15634
 | 
   584  | 
apply (rule leadsTo_subset)
  | 
| 
 | 
   585  | 
apply (simp (no_asm_simp) add: leadsTo_eq_subset_wlt [THEN iff_sym] subset_imp_leadsTo)
  | 
| 
 | 
   586  | 
done
  | 
| 
 | 
   587  | 
  | 
| 
 | 
   588  | 
(*Used in the Trans case below*)
  | 
| 
46953
 | 
   589  | 
lemma leadsTo_123_aux:
  | 
| 
 | 
   590  | 
   "[| B \<subseteq> A2;
  | 
| 
 | 
   591  | 
       F \<in> (A1 - B) co (A1 \<union> B);
  | 
| 
 | 
   592  | 
       F \<in> (A2 - C) co (A2 \<union> C) |]
  | 
| 
46823
 | 
   593  | 
    ==> F \<in> (A1 \<union> A2 - C) co (A1 \<union> A2 \<union> C)"
  | 
| 
15634
 | 
   594  | 
apply (unfold constrains_def st_set_def, blast)
  | 
| 
 | 
   595  | 
done
  | 
| 
 | 
   596  | 
  | 
| 
 | 
   597  | 
(*Lemma (1,2,3) of Misra's draft book, Chapter 4, "Progress"*)
  | 
| 
 | 
   598  | 
(* slightly different from the HOL one \<in> B here is bounded *)
  | 
| 
46953
 | 
   599  | 
lemma leadsTo_123: "F \<in> A leadsTo A'
  | 
| 
46823
 | 
   600  | 
      ==> \<exists>B \<in> Pow(state). A<=B & F \<in> B leadsTo A' & F \<in> (B-A') co (B \<union> A')"
  | 
| 
15634
 | 
   601  | 
apply (frule leadsToD2)
  | 
| 
 | 
   602  | 
apply (erule leadsTo_induct)
  | 
| 
 | 
   603  | 
  txt{*Basis*}
 | 
| 
 | 
   604  | 
  apply (blast dest: ensuresD constrainsD2 st_setD)
  | 
| 
 | 
   605  | 
 txt{*Trans*}
 | 
| 
 | 
   606  | 
 apply clarify
  | 
| 
46823
 | 
   607  | 
 apply (rule_tac x = "Ba \<union> Bb" in bexI)
  | 
| 
15634
 | 
   608  | 
 apply (blast intro: leadsTo_123_aux leadsTo_Un_Un leadsTo_cancel1 leadsTo_Un_duplicate, blast)
  | 
| 
 | 
   609  | 
txt{*Union*}
 | 
| 
 | 
   610  | 
apply (clarify dest!: ball_conj_distrib [THEN iffD1])
  | 
| 
46823
 | 
   611  | 
apply (subgoal_tac "\<exists>y. y \<in> Pi (S, %A. {Ba \<in> Pow (state) . A<=Ba & F \<in> Ba leadsTo B & F \<in> Ba - B co Ba \<union> B}) ")
 | 
| 
15634
 | 
   612  | 
defer 1
  | 
| 
 | 
   613  | 
apply (rule AC_ball_Pi, safe)
  | 
| 
 | 
   614  | 
apply (rotate_tac 1)
  | 
| 
46953
 | 
   615  | 
apply (drule_tac x = x in bspec, blast, blast)
  | 
| 
15634
 | 
   616  | 
apply (rule_tac x = "\<Union>A \<in> S. y`A" in bexI, safe)
  | 
| 
 | 
   617  | 
apply (rule_tac [3] I1 = S in constrains_UN [THEN constrains_weaken])
  | 
| 
 | 
   618  | 
apply (rule_tac [2] leadsTo_Union)
  | 
| 
 | 
   619  | 
prefer 5 apply (blast dest!: apply_type, simp_all)
  | 
| 
 | 
   620  | 
apply (force dest!: apply_type)+
  | 
| 
 | 
   621  | 
done
  | 
| 
 | 
   622  | 
  | 
| 
 | 
   623  | 
  | 
| 
 | 
   624  | 
(*Misra's property W5*)
  | 
| 
 | 
   625  | 
lemma wlt_constrains_wlt: "[| F \<in> program; st_set(B) |] ==>F \<in> (wlt(F, B) - B) co (wlt(F,B))"
  | 
| 
 | 
   626  | 
apply (cut_tac F = F in wlt_leadsTo [THEN leadsTo_123], assumption, blast)
  | 
| 
 | 
   627  | 
apply clarify
  | 
| 
 | 
   628  | 
apply (subgoal_tac "Ba = wlt (F,B) ")
  | 
| 
 | 
   629  | 
prefer 2 apply (blast dest: leadsTo_eq_subset_wlt [THEN iffD1], clarify)
  | 
| 
 | 
   630  | 
apply (simp add: wlt_increasing [THEN subset_Un_iff2 [THEN iffD1]])
  | 
| 
 | 
   631  | 
done
  | 
| 
 | 
   632  | 
  | 
| 
 | 
   633  | 
  | 
| 
 | 
   634  | 
subsection{*Completion: Binary and General Finite versions*}
 | 
| 
 | 
   635  | 
  | 
| 
46953
 | 
   636  | 
lemma completion_aux: "[| W = wlt(F, (B' \<union> C));
  | 
| 
 | 
   637  | 
       F \<in> A leadsTo (A' \<union> C);  F \<in> A' co (A' \<union> C);
  | 
| 
 | 
   638  | 
       F \<in> B leadsTo (B' \<union> C);  F \<in> B' co (B' \<union> C) |]
  | 
| 
46823
 | 
   639  | 
    ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B') \<union> C)"
  | 
| 
15634
 | 
   640  | 
apply (subgoal_tac "st_set (C) &st_set (W) &st_set (W-C) &st_set (A') &st_set (A) & st_set (B) & st_set (B') & F \<in> program")
  | 
| 
46953
 | 
   641  | 
 prefer 2
  | 
| 
 | 
   642  | 
 apply simp
  | 
| 
15634
 | 
   643  | 
 apply (blast dest!: leadsToD2)
  | 
| 
46823
 | 
   644  | 
apply (subgoal_tac "F \<in> (W-C) co (W \<union> B' \<union> C) ")
  | 
| 
15634
 | 
   645  | 
 prefer 2
  | 
| 
 | 
   646  | 
 apply (blast intro!: constrains_weaken [OF constrains_Un [OF _ wlt_constrains_wlt]])
  | 
| 
 | 
   647  | 
apply (subgoal_tac "F \<in> (W-C) co W")
  | 
| 
 | 
   648  | 
 prefer 2
  | 
| 
 | 
   649  | 
 apply (simp add: wlt_increasing [THEN subset_Un_iff2 [THEN iffD1]] Un_assoc)
  | 
| 
46823
 | 
   650  | 
apply (subgoal_tac "F \<in> (A \<inter> W - C) leadsTo (A' \<inter> W \<union> C) ")
  | 
| 
15634
 | 
   651  | 
 prefer 2 apply (blast intro: wlt_leadsTo psp [THEN leadsTo_weaken])
  | 
| 
 | 
   652  | 
(** step 13 **)
  | 
| 
46823
 | 
   653  | 
apply (subgoal_tac "F \<in> (A' \<inter> W \<union> C) leadsTo (A' \<inter> B' \<union> C) ")
  | 
| 
15634
 | 
   654  | 
apply (drule leadsTo_Diff)
  | 
| 
 | 
   655  | 
apply (blast intro: subset_imp_leadsTo dest: leadsToD2 constrainsD2)
  | 
| 
 | 
   656  | 
apply (force simp add: st_set_def)
  | 
| 
46823
 | 
   657  | 
apply (subgoal_tac "A \<inter> B \<subseteq> A \<inter> W")
  | 
| 
15634
 | 
   658  | 
prefer 2 apply (blast dest!: leadsTo_subset intro!: subset_refl [THEN Int_mono])
  | 
| 
 | 
   659  | 
apply (blast intro: leadsTo_Trans subset_imp_leadsTo)
  | 
| 
 | 
   660  | 
txt{*last subgoal*}
 | 
| 
 | 
   661  | 
apply (rule_tac leadsTo_Un_duplicate2)
  | 
| 
 | 
   662  | 
apply (rule_tac leadsTo_Un_Un)
  | 
| 
 | 
   663  | 
 prefer 2 apply (blast intro: leadsTo_refl)
  | 
| 
46823
 | 
   664  | 
apply (rule_tac A'1 = "B' \<union> C" in wlt_leadsTo[THEN psp2, THEN leadsTo_weaken])
  | 
| 
15634
 | 
   665  | 
apply blast+
  | 
| 
 | 
   666  | 
done
  | 
| 
 | 
   667  | 
  | 
| 
45602
 | 
   668  | 
lemmas completion = refl [THEN completion_aux]
  | 
| 
15634
 | 
   669  | 
  | 
| 
 | 
   670  | 
lemma finite_completion_aux:
  | 
| 
46953
 | 
   671  | 
     "[| I \<in> Fin(X); F \<in> program; st_set(C) |] ==>
  | 
| 
 | 
   672  | 
       (\<forall>i \<in> I. F \<in> (A(i)) leadsTo (A'(i) \<union> C)) \<longrightarrow>
  | 
| 
 | 
   673  | 
                     (\<forall>i \<in> I. F \<in> (A'(i)) co (A'(i) \<union> C)) \<longrightarrow>
  | 
| 
46823
 | 
   674  | 
                   F \<in> (\<Inter>i \<in> I. A(i)) leadsTo ((\<Inter>i \<in> I. A'(i)) \<union> C)"
  | 
| 
15634
 | 
   675  | 
apply (erule Fin_induct)
  | 
| 
 | 
   676  | 
apply (auto simp add: Inter_0)
  | 
| 
 | 
   677  | 
apply (rule completion)
  | 
| 
 | 
   678  | 
apply (auto simp del: INT_simps simp add: INT_extend_simps)
  | 
| 
 | 
   679  | 
apply (blast intro: constrains_INT)
  | 
| 
 | 
   680  | 
done
  | 
| 
 | 
   681  | 
  | 
| 
46953
 | 
   682  | 
lemma finite_completion:
  | 
| 
 | 
   683  | 
     "[| I \<in> Fin(X);
  | 
| 
 | 
   684  | 
         !!i. i \<in> I ==> F \<in> A(i) leadsTo (A'(i) \<union> C);
  | 
| 
 | 
   685  | 
         !!i. i \<in> I ==> F \<in> A'(i) co (A'(i) \<union> C); F \<in> program; st_set(C)|]
  | 
| 
46823
 | 
   686  | 
      ==> F \<in> (\<Inter>i \<in> I. A(i)) leadsTo ((\<Inter>i \<in> I. A'(i)) \<union> C)"
  | 
| 
15634
 | 
   687  | 
by (blast intro: finite_completion_aux [THEN mp, THEN mp])
  | 
| 
 | 
   688  | 
  | 
| 
46953
 | 
   689  | 
lemma stable_completion:
  | 
| 
 | 
   690  | 
     "[| F \<in> A leadsTo A';  F \<in> stable(A');
  | 
| 
 | 
   691  | 
         F \<in> B leadsTo B';  F \<in> stable(B') |]
  | 
| 
46823
 | 
   692  | 
    ==> F \<in> (A \<inter> B) leadsTo (A' \<inter> B')"
  | 
| 
15634
 | 
   693  | 
apply (unfold stable_def)
  | 
| 
 | 
   694  | 
apply (rule_tac C1 = 0 in completion [THEN leadsTo_weaken_R], simp+)
  | 
| 
 | 
   695  | 
apply (blast dest: leadsToD2)
  | 
| 
 | 
   696  | 
done
  | 
| 
 | 
   697  | 
  | 
| 
 | 
   698  | 
  | 
| 
46953
 | 
   699  | 
lemma finite_stable_completion:
  | 
| 
 | 
   700  | 
     "[| I \<in> Fin(X);
  | 
| 
 | 
   701  | 
         (!!i. i \<in> I ==> F \<in> A(i) leadsTo A'(i));
  | 
| 
 | 
   702  | 
         (!!i. i \<in> I ==> F \<in> stable(A'(i)));  F \<in> program |]
  | 
| 
15634
 | 
   703  | 
      ==> F \<in> (\<Inter>i \<in> I. A(i)) leadsTo (\<Inter>i \<in> I. A'(i))"
  | 
| 
 | 
   704  | 
apply (unfold stable_def)
  | 
| 
 | 
   705  | 
apply (subgoal_tac "st_set (\<Inter>i \<in> I. A' (i))")
  | 
| 
 | 
   706  | 
prefer 2 apply (blast dest: leadsToD2)
  | 
| 
46953
 | 
   707  | 
apply (rule_tac C1 = 0 in finite_completion [THEN leadsTo_weaken_R], auto)
  | 
| 
15634
 | 
   708  | 
done
  | 
| 
 | 
   709  | 
  | 
| 
11479
 | 
   710  | 
end
  |