author | bulwahn |
Mon, 18 Jul 2011 10:34:21 +0200 | |
changeset 43879 | c8308a8faf9f |
parent 32960 | 69916a850301 |
child 45602 | 2a858377c3d2 |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/Zorn.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
516 | 3 |
Copyright 1994 University of Cambridge |
4 |
*) |
|
5 |
||
13356 | 6 |
header{*Zorn's Lemma*} |
7 |
||
26056
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
24893
diff
changeset
|
8 |
theory Zorn imports OrderArith AC Inductive_ZF begin |
516 | 9 |
|
13356 | 10 |
text{*Based upon the unpublished article ``Towards the Mechanization of the |
11 |
Proofs of Some Classical Theorems of Set Theory,'' by Abrial and Laffitte.*} |
|
12 |
||
24893 | 13 |
definition |
14 |
Subset_rel :: "i=>i" where |
|
13558 | 15 |
"Subset_rel(A) == {z \<in> A*A . \<exists>x y. z=<x,y> & x<=y & x\<noteq>y}" |
13134 | 16 |
|
24893 | 17 |
definition |
18 |
chain :: "i=>i" where |
|
13558 | 19 |
"chain(A) == {F \<in> Pow(A). \<forall>X\<in>F. \<forall>Y\<in>F. X<=Y | Y<=X}" |
516 | 20 |
|
24893 | 21 |
definition |
22 |
super :: "[i,i]=>i" where |
|
14653 | 23 |
"super(A,c) == {d \<in> chain(A). c<=d & c\<noteq>d}" |
24 |
||
24893 | 25 |
definition |
26 |
maxchain :: "i=>i" where |
|
13558 | 27 |
"maxchain(A) == {c \<in> chain(A). super(A,c)=0}" |
28 |
||
24893 | 29 |
definition |
30 |
increasing :: "i=>i" where |
|
13558 | 31 |
"increasing(A) == {f \<in> Pow(A)->Pow(A). \<forall>x. x<=A --> x<=f`x}" |
516 | 32 |
|
13356 | 33 |
|
13558 | 34 |
text{*Lemma for the inductive definition below*} |
35 |
lemma Union_in_Pow: "Y \<in> Pow(Pow(A)) ==> Union(Y) \<in> Pow(A)" |
|
13356 | 36 |
by blast |
37 |
||
38 |
||
13558 | 39 |
text{*We could make the inductive definition conditional on |
13356 | 40 |
@{term "next \<in> increasing(S)"} |
516 | 41 |
but instead we make this a side-condition of an introduction rule. Thus |
42 |
the induction rule lets us assume that condition! Many inductive proofs |
|
13356 | 43 |
are therefore unconditional.*} |
516 | 44 |
consts |
13134 | 45 |
"TFin" :: "[i,i]=>i" |
516 | 46 |
|
47 |
inductive |
|
48 |
domains "TFin(S,next)" <= "Pow(S)" |
|
13134 | 49 |
intros |
13558 | 50 |
nextI: "[| x \<in> TFin(S,next); next \<in> increasing(S) |] |
51 |
==> next`x \<in> TFin(S,next)" |
|
516 | 52 |
|
13558 | 53 |
Pow_UnionI: "Y \<in> Pow(TFin(S,next)) ==> Union(Y) \<in> TFin(S,next)" |
516 | 54 |
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1478
diff
changeset
|
55 |
monos Pow_mono |
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
1478
diff
changeset
|
56 |
con_defs increasing_def |
13134 | 57 |
type_intros CollectD1 [THEN apply_funtype] Union_in_Pow |
58 |
||
59 |
||
13356 | 60 |
subsection{*Mathematical Preamble *} |
13134 | 61 |
|
13558 | 62 |
lemma Union_lemma0: "(\<forall>x\<in>C. x<=A | B<=x) ==> Union(C)<=A | B<=Union(C)" |
13269 | 63 |
by blast |
13134 | 64 |
|
13356 | 65 |
lemma Inter_lemma0: |
13558 | 66 |
"[| c \<in> C; \<forall>x\<in>C. A<=x | x<=B |] ==> A <= Inter(C) | Inter(C) <= B" |
13269 | 67 |
by blast |
13134 | 68 |
|
69 |
||
13356 | 70 |
subsection{*The Transfinite Construction *} |
13134 | 71 |
|
13558 | 72 |
lemma increasingD1: "f \<in> increasing(A) ==> f \<in> Pow(A)->Pow(A)" |
13134 | 73 |
apply (unfold increasing_def) |
74 |
apply (erule CollectD1) |
|
75 |
done |
|
76 |
||
13558 | 77 |
lemma increasingD2: "[| f \<in> increasing(A); x<=A |] ==> x <= f`x" |
13269 | 78 |
by (unfold increasing_def, blast) |
13134 | 79 |
|
80 |
lemmas TFin_UnionI = PowI [THEN TFin.Pow_UnionI, standard] |
|
81 |
||
82 |
lemmas TFin_is_subset = TFin.dom_subset [THEN subsetD, THEN PowD, standard] |
|
83 |
||
84 |
||
13558 | 85 |
text{*Structural induction on @{term "TFin(S,next)"} *} |
13134 | 86 |
lemma TFin_induct: |
13558 | 87 |
"[| n \<in> TFin(S,next); |
88 |
!!x. [| x \<in> TFin(S,next); P(x); next \<in> increasing(S) |] ==> P(next`x); |
|
89 |
!!Y. [| Y <= TFin(S,next); \<forall>y\<in>Y. P(y) |] ==> P(Union(Y)) |
|
13134 | 90 |
|] ==> P(n)" |
13356 | 91 |
by (erule TFin.induct, blast+) |
13134 | 92 |
|
93 |
||
13356 | 94 |
subsection{*Some Properties of the Transfinite Construction *} |
13134 | 95 |
|
13558 | 96 |
lemmas increasing_trans = subset_trans [OF _ increasingD2, |
13134 | 97 |
OF _ _ TFin_is_subset] |
98 |
||
13558 | 99 |
text{*Lemma 1 of section 3.1*} |
13134 | 100 |
lemma TFin_linear_lemma1: |
13558 | 101 |
"[| n \<in> TFin(S,next); m \<in> TFin(S,next); |
102 |
\<forall>x \<in> TFin(S,next) . x<=m --> x=m | next`x<=m |] |
|
13134 | 103 |
==> n<=m | next`m<=n" |
104 |
apply (erule TFin_induct) |
|
105 |
apply (erule_tac [2] Union_lemma0) (*or just Blast_tac*) |
|
106 |
(*downgrade subsetI from intro! to intro*) |
|
107 |
apply (blast dest: increasing_trans) |
|
108 |
done |
|
109 |
||
13558 | 110 |
text{*Lemma 2 of section 3.2. Interesting in its own right! |
111 |
Requires @{term "next \<in> increasing(S)"} in the second induction step.*} |
|
13134 | 112 |
lemma TFin_linear_lemma2: |
13558 | 113 |
"[| m \<in> TFin(S,next); next \<in> increasing(S) |] |
114 |
==> \<forall>n \<in> TFin(S,next). n<=m --> n=m | next`n <= m" |
|
13134 | 115 |
apply (erule TFin_induct) |
116 |
apply (rule impI [THEN ballI]) |
|
13558 | 117 |
txt{*case split using @{text TFin_linear_lemma1}*} |
13784 | 118 |
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], |
13134 | 119 |
assumption+) |
120 |
apply (blast del: subsetI |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
121 |
intro: increasing_trans subsetI, blast) |
13558 | 122 |
txt{*second induction step*} |
13134 | 123 |
apply (rule impI [THEN ballI]) |
124 |
apply (rule Union_lemma0 [THEN disjE]) |
|
125 |
apply (erule_tac [3] disjI2) |
|
13558 | 126 |
prefer 2 apply blast |
13134 | 127 |
apply (rule ballI) |
13558 | 128 |
apply (drule bspec, assumption) |
129 |
apply (drule subsetD, assumption) |
|
13784 | 130 |
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE], |
13558 | 131 |
assumption+, blast) |
13134 | 132 |
apply (erule increasingD2 [THEN subset_trans, THEN disjI1]) |
133 |
apply (blast dest: TFin_is_subset)+ |
|
134 |
done |
|
135 |
||
13558 | 136 |
text{*a more convenient form for Lemma 2*} |
13134 | 137 |
lemma TFin_subsetD: |
13558 | 138 |
"[| n<=m; m \<in> TFin(S,next); n \<in> TFin(S,next); next \<in> increasing(S) |] |
139 |
==> n=m | next`n <= m" |
|
140 |
by (blast dest: TFin_linear_lemma2 [rule_format]) |
|
13134 | 141 |
|
13558 | 142 |
text{*Consequences from section 3.3 -- Property 3.2, the ordering is total*} |
13134 | 143 |
lemma TFin_subset_linear: |
13558 | 144 |
"[| m \<in> TFin(S,next); n \<in> TFin(S,next); next \<in> increasing(S) |] |
145 |
==> n <= m | m<=n" |
|
146 |
apply (rule disjE) |
|
13134 | 147 |
apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2]) |
148 |
apply (assumption+, erule disjI2) |
|
13558 | 149 |
apply (blast del: subsetI |
13134 | 150 |
intro: subsetI increasingD2 [THEN subset_trans] TFin_is_subset) |
151 |
done |
|
152 |
||
153 |
||
13558 | 154 |
text{*Lemma 3 of section 3.3*} |
13134 | 155 |
lemma equal_next_upper: |
13558 | 156 |
"[| n \<in> TFin(S,next); m \<in> TFin(S,next); m = next`m |] ==> n <= m" |
13134 | 157 |
apply (erule TFin_induct) |
158 |
apply (drule TFin_subsetD) |
|
13784 | 159 |
apply (assumption+, force, blast) |
13134 | 160 |
done |
161 |
||
13558 | 162 |
text{*Property 3.3 of section 3.3*} |
163 |
lemma equal_next_Union: |
|
164 |
"[| m \<in> TFin(S,next); next \<in> increasing(S) |] |
|
13134 | 165 |
==> m = next`m <-> m = Union(TFin(S,next))" |
166 |
apply (rule iffI) |
|
167 |
apply (rule Union_upper [THEN equalityI]) |
|
168 |
apply (rule_tac [2] equal_next_upper [THEN Union_least]) |
|
169 |
apply (assumption+) |
|
170 |
apply (erule ssubst) |
|
13269 | 171 |
apply (rule increasingD2 [THEN equalityI], assumption) |
13134 | 172 |
apply (blast del: subsetI |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
173 |
intro: subsetI TFin_UnionI TFin.nextI TFin_is_subset)+ |
13134 | 174 |
done |
175 |
||
176 |
||
13356 | 177 |
subsection{*Hausdorff's Theorem: Every Set Contains a Maximal Chain*} |
178 |
||
179 |
text{*NOTE: We assume the partial ordering is @{text "\<subseteq>"}, the subset |
|
180 |
relation!*} |
|
13134 | 181 |
|
13558 | 182 |
text{** Defining the "next" operation for Hausdorff's Theorem **} |
13134 | 183 |
|
184 |
lemma chain_subset_Pow: "chain(A) <= Pow(A)" |
|
185 |
apply (unfold chain_def) |
|
186 |
apply (rule Collect_subset) |
|
187 |
done |
|
188 |
||
189 |
lemma super_subset_chain: "super(A,c) <= chain(A)" |
|
190 |
apply (unfold super_def) |
|
191 |
apply (rule Collect_subset) |
|
192 |
done |
|
193 |
||
194 |
lemma maxchain_subset_chain: "maxchain(A) <= chain(A)" |
|
195 |
apply (unfold maxchain_def) |
|
196 |
apply (rule Collect_subset) |
|
197 |
done |
|
198 |
||
13558 | 199 |
lemma choice_super: |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
200 |
"[| ch \<in> (\<Pi> X \<in> Pow(chain(S)) - {0}. X); X \<in> chain(S); X \<notin> maxchain(S) |] |
13558 | 201 |
==> ch ` super(S,X) \<in> super(S,X)" |
13134 | 202 |
apply (erule apply_type) |
13269 | 203 |
apply (unfold super_def maxchain_def, blast) |
13134 | 204 |
done |
205 |
||
206 |
lemma choice_not_equals: |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
207 |
"[| ch \<in> (\<Pi> X \<in> Pow(chain(S)) - {0}. X); X \<in> chain(S); X \<notin> maxchain(S) |] |
13558 | 208 |
==> ch ` super(S,X) \<noteq> X" |
13134 | 209 |
apply (rule notI) |
13784 | 210 |
apply (drule choice_super, assumption, assumption) |
13134 | 211 |
apply (simp add: super_def) |
212 |
done |
|
213 |
||
13558 | 214 |
text{*This justifies Definition 4.4*} |
13134 | 215 |
lemma Hausdorff_next_exists: |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
216 |
"ch \<in> (\<Pi> X \<in> Pow(chain(S))-{0}. X) ==> |
13558 | 217 |
\<exists>next \<in> increasing(S). \<forall>X \<in> Pow(S). |
218 |
next`X = if(X \<in> chain(S)-maxchain(S), ch`super(S,X), X)" |
|
219 |
apply (rule_tac x="\<lambda>X\<in>Pow(S). |
|
220 |
if X \<in> chain(S) - maxchain(S) then ch ` super(S, X) else X" |
|
13175
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
221 |
in bexI) |
13558 | 222 |
apply force |
13134 | 223 |
apply (unfold increasing_def) |
224 |
apply (rule CollectI) |
|
225 |
apply (rule lam_type) |
|
226 |
apply (simp (no_asm_simp)) |
|
13558 | 227 |
apply (blast dest: super_subset_chain [THEN subsetD] |
228 |
chain_subset_Pow [THEN subsetD] choice_super) |
|
229 |
txt{*Now, verify that it increases*} |
|
13134 | 230 |
apply (simp (no_asm_simp) add: Pow_iff subset_refl) |
231 |
apply safe |
|
232 |
apply (drule choice_super) |
|
233 |
apply (assumption+) |
|
13269 | 234 |
apply (simp add: super_def, blast) |
13134 | 235 |
done |
236 |
||
13558 | 237 |
text{*Lemma 4*} |
13134 | 238 |
lemma TFin_chain_lemma4: |
13558 | 239 |
"[| c \<in> TFin(S,next); |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
240 |
ch \<in> (\<Pi> X \<in> Pow(chain(S))-{0}. X); |
13558 | 241 |
next \<in> increasing(S); |
242 |
\<forall>X \<in> Pow(S). next`X = |
|
243 |
if(X \<in> chain(S)-maxchain(S), ch`super(S,X), X) |] |
|
244 |
==> c \<in> chain(S)" |
|
13134 | 245 |
apply (erule TFin_induct) |
13558 | 246 |
apply (simp (no_asm_simp) add: chain_subset_Pow [THEN subsetD, THEN PowD] |
13134 | 247 |
choice_super [THEN super_subset_chain [THEN subsetD]]) |
248 |
apply (unfold chain_def) |
|
13269 | 249 |
apply (rule CollectI, blast, safe) |
13558 | 250 |
apply (rule_tac m1=B and n1=Ba in TFin_subset_linear [THEN disjE], fast+) |
251 |
txt{*@{text "Blast_tac's"} slow*} |
|
13134 | 252 |
done |
253 |
||
13558 | 254 |
theorem Hausdorff: "\<exists>c. c \<in> maxchain(S)" |
13134 | 255 |
apply (rule AC_Pi_Pow [THEN exE]) |
13269 | 256 |
apply (rule Hausdorff_next_exists [THEN bexE], assumption) |
13134 | 257 |
apply (rename_tac ch "next") |
13558 | 258 |
apply (subgoal_tac "Union (TFin (S,next)) \<in> chain (S) ") |
13134 | 259 |
prefer 2 |
260 |
apply (blast intro!: TFin_chain_lemma4 subset_refl [THEN TFin_UnionI]) |
|
261 |
apply (rule_tac x = "Union (TFin (S,next))" in exI) |
|
262 |
apply (rule classical) |
|
263 |
apply (subgoal_tac "next ` Union (TFin (S,next)) = Union (TFin (S,next))") |
|
264 |
apply (rule_tac [2] equal_next_Union [THEN iffD2, symmetric]) |
|
265 |
apply (rule_tac [2] subset_refl [THEN TFin_UnionI]) |
|
13269 | 266 |
prefer 2 apply assumption |
13134 | 267 |
apply (rule_tac [2] refl) |
13558 | 268 |
apply (simp add: subset_refl [THEN TFin_UnionI, |
13134 | 269 |
THEN TFin.dom_subset [THEN subsetD, THEN PowD]]) |
270 |
apply (erule choice_not_equals [THEN notE]) |
|
271 |
apply (assumption+) |
|
272 |
done |
|
273 |
||
274 |
||
13558 | 275 |
subsection{*Zorn's Lemma: If All Chains in S Have Upper Bounds In S, |
276 |
then S contains a Maximal Element*} |
|
13356 | 277 |
|
13558 | 278 |
text{*Used in the proof of Zorn's Lemma*} |
279 |
lemma chain_extend: |
|
280 |
"[| c \<in> chain(A); z \<in> A; \<forall>x \<in> c. x<=z |] ==> cons(z,c) \<in> chain(A)" |
|
13356 | 281 |
by (unfold chain_def, blast) |
13134 | 282 |
|
13558 | 283 |
lemma Zorn: "\<forall>c \<in> chain(S). Union(c) \<in> S ==> \<exists>y \<in> S. \<forall>z \<in> S. y<=z --> y=z" |
13134 | 284 |
apply (rule Hausdorff [THEN exE]) |
285 |
apply (simp add: maxchain_def) |
|
286 |
apply (rename_tac c) |
|
287 |
apply (rule_tac x = "Union (c)" in bexI) |
|
13269 | 288 |
prefer 2 apply blast |
13134 | 289 |
apply safe |
290 |
apply (rename_tac z) |
|
291 |
apply (rule classical) |
|
13558 | 292 |
apply (subgoal_tac "cons (z,c) \<in> super (S,c) ") |
13134 | 293 |
apply (blast elim: equalityE) |
13269 | 294 |
apply (unfold super_def, safe) |
13134 | 295 |
apply (fast elim: chain_extend) |
296 |
apply (fast elim: equalityE) |
|
297 |
done |
|
298 |
||
27704 | 299 |
text {* Alternative version of Zorn's Lemma *} |
300 |
||
301 |
theorem Zorn2: |
|
302 |
"\<forall>c \<in> chain(S). \<exists>y \<in> S. \<forall>x \<in> c. x <= y ==> \<exists>y \<in> S. \<forall>z \<in> S. y<=z --> y=z" |
|
303 |
apply (cut_tac Hausdorff maxchain_subset_chain) |
|
304 |
apply (erule exE) |
|
305 |
apply (drule subsetD, assumption) |
|
306 |
apply (drule bspec, assumption, erule bexE) |
|
307 |
apply (rule_tac x = y in bexI) |
|
308 |
prefer 2 apply assumption |
|
309 |
apply clarify |
|
310 |
apply rule apply assumption |
|
311 |
apply rule |
|
312 |
apply (rule ccontr) |
|
313 |
apply (frule_tac z=z in chain_extend) |
|
314 |
apply (assumption, blast) |
|
315 |
apply (unfold maxchain_def super_def) |
|
316 |
apply (blast elim!: equalityCE) |
|
317 |
done |
|
318 |
||
13134 | 319 |
|
13356 | 320 |
subsection{*Zermelo's Theorem: Every Set can be Well-Ordered*} |
13134 | 321 |
|
13558 | 322 |
text{*Lemma 5*} |
13134 | 323 |
lemma TFin_well_lemma5: |
13558 | 324 |
"[| n \<in> TFin(S,next); Z <= TFin(S,next); z:Z; ~ Inter(Z) \<in> Z |] |
325 |
==> \<forall>m \<in> Z. n <= m" |
|
13134 | 326 |
apply (erule TFin_induct) |
13558 | 327 |
prefer 2 apply blast txt{*second induction step is easy*} |
13134 | 328 |
apply (rule ballI) |
13558 | 329 |
apply (rule bspec [THEN TFin_subsetD, THEN disjE], auto) |
13134 | 330 |
apply (subgoal_tac "m = Inter (Z) ") |
331 |
apply blast+ |
|
332 |
done |
|
333 |
||
13558 | 334 |
text{*Well-ordering of @{term "TFin(S,next)"} *} |
335 |
lemma well_ord_TFin_lemma: "[| Z <= TFin(S,next); z \<in> Z |] ==> Inter(Z) \<in> Z" |
|
13134 | 336 |
apply (rule classical) |
337 |
apply (subgoal_tac "Z = {Union (TFin (S,next))}") |
|
338 |
apply (simp (no_asm_simp) add: Inter_singleton) |
|
339 |
apply (erule equal_singleton) |
|
340 |
apply (rule Union_upper [THEN equalityI]) |
|
13269 | 341 |
apply (rule_tac [2] subset_refl [THEN TFin_UnionI, THEN TFin_well_lemma5, THEN bspec], blast+) |
13134 | 342 |
done |
343 |
||
13558 | 344 |
text{*This theorem just packages the previous result*} |
13134 | 345 |
lemma well_ord_TFin: |
13558 | 346 |
"next \<in> increasing(S) |
347 |
==> well_ord(TFin(S,next), Subset_rel(TFin(S,next)))" |
|
13134 | 348 |
apply (rule well_ordI) |
349 |
apply (unfold Subset_rel_def linear_def) |
|
13558 | 350 |
txt{*Prove the well-foundedness goal*} |
13134 | 351 |
apply (rule wf_onI) |
13269 | 352 |
apply (frule well_ord_TFin_lemma, assumption) |
353 |
apply (drule_tac x = "Inter (Z) " in bspec, assumption) |
|
13134 | 354 |
apply blast |
13558 | 355 |
txt{*Now prove the linearity goal*} |
13134 | 356 |
apply (intro ballI) |
357 |
apply (case_tac "x=y") |
|
13269 | 358 |
apply blast |
13558 | 359 |
txt{*The @{term "x\<noteq>y"} case remains*} |
13134 | 360 |
apply (rule_tac n1=x and m1=y in TFin_subset_linear [THEN disjE], |
13269 | 361 |
assumption+, blast+) |
13134 | 362 |
done |
363 |
||
13558 | 364 |
text{** Defining the "next" operation for Zermelo's Theorem **} |
13134 | 365 |
|
366 |
lemma choice_Diff: |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
367 |
"[| ch \<in> (\<Pi> X \<in> Pow(S) - {0}. X); X \<subseteq> S; X\<noteq>S |] ==> ch ` (S-X) \<in> S-X" |
13134 | 368 |
apply (erule apply_type) |
369 |
apply (blast elim!: equalityE) |
|
370 |
done |
|
371 |
||
13558 | 372 |
text{*This justifies Definition 6.1*} |
13134 | 373 |
lemma Zermelo_next_exists: |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
374 |
"ch \<in> (\<Pi> X \<in> Pow(S)-{0}. X) ==> |
13558 | 375 |
\<exists>next \<in> increasing(S). \<forall>X \<in> Pow(S). |
13175
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
376 |
next`X = (if X=S then S else cons(ch`(S-X), X))" |
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
377 |
apply (rule_tac x="\<lambda>X\<in>Pow(S). if X=S then S else cons(ch`(S-X), X)" |
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
13134
diff
changeset
|
378 |
in bexI) |
13558 | 379 |
apply force |
13134 | 380 |
apply (unfold increasing_def) |
381 |
apply (rule CollectI) |
|
382 |
apply (rule lam_type) |
|
13558 | 383 |
txt{*Type checking is surprisingly hard!*} |
13134 | 384 |
apply (simp (no_asm_simp) add: Pow_iff cons_subset_iff subset_refl) |
385 |
apply (blast intro!: choice_Diff [THEN DiffD1]) |
|
13558 | 386 |
txt{*Verify that it increases*} |
387 |
apply (intro allI impI) |
|
13134 | 388 |
apply (simp add: Pow_iff subset_consI subset_refl) |
389 |
done |
|
390 |
||
391 |
||
13558 | 392 |
text{*The construction of the injection*} |
13134 | 393 |
lemma choice_imp_injection: |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13784
diff
changeset
|
394 |
"[| ch \<in> (\<Pi> X \<in> Pow(S)-{0}. X); |
13558 | 395 |
next \<in> increasing(S); |
396 |
\<forall>X \<in> Pow(S). next`X = if(X=S, S, cons(ch`(S-X), X)) |] |
|
397 |
==> (\<lambda> x \<in> S. Union({y \<in> TFin(S,next). x \<notin> y})) |
|
398 |
\<in> inj(S, TFin(S,next) - {S})" |
|
13134 | 399 |
apply (rule_tac d = "%y. ch` (S-y) " in lam_injective) |
400 |
apply (rule DiffI) |
|
401 |
apply (rule Collect_subset [THEN TFin_UnionI]) |
|
402 |
apply (blast intro!: Collect_subset [THEN TFin_UnionI] elim: equalityE) |
|
13558 | 403 |
apply (subgoal_tac "x \<notin> Union ({y \<in> TFin (S,next) . x \<notin> y}) ") |
13134 | 404 |
prefer 2 apply (blast elim: equalityE) |
13558 | 405 |
apply (subgoal_tac "Union ({y \<in> TFin (S,next) . x \<notin> y}) \<noteq> S") |
13134 | 406 |
prefer 2 apply (blast elim: equalityE) |
13558 | 407 |
txt{*For proving @{text "x \<in> next`Union(...)"}. |
408 |
Abrial and Laffitte's justification appears to be faulty.*} |
|
409 |
apply (subgoal_tac "~ next ` Union ({y \<in> TFin (S,next) . x \<notin> y}) |
|
410 |
<= Union ({y \<in> TFin (S,next) . x \<notin> y}) ") |
|
411 |
prefer 2 |
|
412 |
apply (simp del: Union_iff |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
413 |
add: Collect_subset [THEN TFin_UnionI, THEN TFin_is_subset] |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
414 |
Pow_iff cons_subset_iff subset_refl choice_Diff [THEN DiffD2]) |
13558 | 415 |
apply (subgoal_tac "x \<in> next ` Union ({y \<in> TFin (S,next) . x \<notin> y}) ") |
416 |
prefer 2 |
|
417 |
apply (blast intro!: Collect_subset [THEN TFin_UnionI] TFin.nextI) |
|
418 |
txt{*End of the lemmas!*} |
|
13134 | 419 |
apply (simp add: Collect_subset [THEN TFin_UnionI, THEN TFin_is_subset]) |
420 |
done |
|
421 |
||
13558 | 422 |
text{*The wellordering theorem*} |
423 |
theorem AC_well_ord: "\<exists>r. well_ord(S,r)" |
|
13134 | 424 |
apply (rule AC_Pi_Pow [THEN exE]) |
13269 | 425 |
apply (rule Zermelo_next_exists [THEN bexE], assumption) |
13134 | 426 |
apply (rule exI) |
427 |
apply (rule well_ord_rvimage) |
|
428 |
apply (erule_tac [2] well_ord_TFin) |
|
13269 | 429 |
apply (rule choice_imp_injection [THEN inj_weaken_type], blast+) |
13134 | 430 |
done |
13558 | 431 |
|
27704 | 432 |
|
433 |
subsection {* Zorn's Lemma for Partial Orders *} |
|
434 |
||
435 |
text {* Reimported from HOL by Clemens Ballarin. *} |
|
436 |
||
437 |
||
438 |
definition Chain :: "i => i" where |
|
439 |
"Chain(r) = {A : Pow(field(r)). ALL a:A. ALL b:A. <a, b> : r | <b, a> : r}" |
|
440 |
||
441 |
lemma mono_Chain: |
|
442 |
"r \<subseteq> s ==> Chain(r) \<subseteq> Chain(s)" |
|
443 |
unfolding Chain_def |
|
444 |
by blast |
|
445 |
||
446 |
theorem Zorn_po: |
|
447 |
assumes po: "Partial_order(r)" |
|
448 |
and u: "ALL C:Chain(r). EX u:field(r). ALL a:C. <a, u> : r" |
|
449 |
shows "EX m:field(r). ALL a:field(r). <m, a> : r --> a = m" |
|
450 |
proof - |
|
451 |
have "Preorder(r)" using po by (simp add: partial_order_on_def) |
|
452 |
--{* Mirror r in the set of subsets below (wrt r) elements of A (?). *} |
|
453 |
let ?B = "lam x:field(r). r -`` {x}" let ?S = "?B `` field(r)" |
|
454 |
have "ALL C:chain(?S). EX U:?S. ALL A:C. A \<subseteq> U" |
|
455 |
proof (clarsimp simp: chain_def Subset_rel_def bex_image_simp) |
|
456 |
fix C |
|
457 |
assume 1: "C \<subseteq> ?S" and 2: "ALL A:C. ALL B:C. A \<subseteq> B | B \<subseteq> A" |
|
458 |
let ?A = "{x : field(r). EX M:C. M = ?B`x}" |
|
459 |
have "C = ?B `` ?A" using 1 |
|
460 |
apply (auto simp: image_def) |
|
461 |
apply rule |
|
462 |
apply rule |
|
463 |
apply (drule subsetD) apply assumption |
|
464 |
apply (erule CollectE) |
|
465 |
apply rule apply assumption |
|
466 |
apply (erule bexE) |
|
467 |
apply rule prefer 2 apply assumption |
|
468 |
apply rule |
|
469 |
apply (erule lamE) apply simp |
|
470 |
apply assumption |
|
471 |
||
472 |
apply (thin_tac "C \<subseteq> ?X") |
|
473 |
apply (fast elim: lamE) |
|
474 |
done |
|
475 |
have "?A : Chain(r)" |
|
476 |
proof (simp add: Chain_def subsetI, intro conjI ballI impI) |
|
477 |
fix a b |
|
478 |
assume "a : field(r)" "r -`` {a} : C" "b : field(r)" "r -`` {b} : C" |
|
479 |
hence "r -`` {a} \<subseteq> r -`` {b} | r -`` {b} \<subseteq> r -`` {a}" using 2 by auto |
|
480 |
then show "<a, b> : r | <b, a> : r" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
481 |
using `Preorder(r)` `a : field(r)` `b : field(r)` |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
482 |
by (simp add: subset_vimage1_vimage1_iff) |
27704 | 483 |
qed |
484 |
then obtain u where uA: "u : field(r)" "ALL a:?A. <a, u> : r" |
|
485 |
using u |
|
486 |
apply auto |
|
487 |
apply (drule bspec) apply assumption |
|
488 |
apply auto |
|
489 |
done |
|
490 |
have "ALL A:C. A \<subseteq> r -`` {u}" |
|
491 |
proof (auto intro!: vimageI) |
|
492 |
fix a B |
|
493 |
assume aB: "B : C" "a : B" |
|
494 |
with 1 obtain x where "x : field(r)" "B = r -`` {x}" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
495 |
apply - |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
496 |
apply (drule subsetD) apply assumption |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
497 |
apply (erule imageE) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
498 |
apply (erule lamE) |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
499 |
apply simp |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
500 |
done |
27704 | 501 |
then show "<a, u> : r" using uA aB `Preorder(r)` |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27704
diff
changeset
|
502 |
by (auto simp: preorder_on_def refl_def) (blast dest: trans_onD)+ |
27704 | 503 |
qed |
504 |
then show "EX U:field(r). ALL A:C. A \<subseteq> r -`` {U}" |
|
505 |
using `u : field(r)` .. |
|
506 |
qed |
|
507 |
from Zorn2 [OF this] |
|
508 |
obtain m B where "m : field(r)" "B = r -`` {m}" |
|
509 |
"ALL x:field(r). B \<subseteq> r -`` {x} --> B = r -`` {x}" |
|
510 |
by (auto elim!: lamE simp: ball_image_simp) |
|
511 |
then have "ALL a:field(r). <m, a> : r --> a = m" |
|
512 |
using po `Preorder(r)` `m : field(r)` |
|
513 |
by (auto simp: subset_vimage1_vimage1_iff Partial_order_eq_vimage1_vimage1_iff) |
|
514 |
then show ?thesis using `m : field(r)` by blast |
|
515 |
qed |
|
516 |
||
516 | 517 |
end |