author | bulwahn |
Mon, 18 Jul 2011 10:34:21 +0200 | |
changeset 43879 | c8308a8faf9f |
parent 32960 | 69916a850301 |
child 45602 | 2a858377c3d2 |
permissions | -rw-r--r-- |
2469 | 1 |
(* Title: ZF/upair.thy |
2 |
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory |
|
3 |
Copyright 1993 University of Cambridge |
|
13259 | 4 |
|
5 |
Observe the order of dependence: |
|
6 |
Upair is defined in terms of Replace |
|
7 |
Un is defined in terms of Upair and Union (similarly for Int) |
|
8 |
cons is defined in terms of Upair and Un |
|
9 |
Ordered pairs and descriptions are defined using cons ("set notation") |
|
2469 | 10 |
*) |
11 |
||
13357 | 12 |
header{*Unordered Pairs*} |
13 |
||
16417 | 14 |
theory upair imports ZF |
15 |
uses "Tools/typechk.ML" begin |
|
6153 | 16 |
|
9907 | 17 |
setup TypeCheck.setup |
6153 | 18 |
|
13780 | 19 |
lemma atomize_ball [symmetric, rulify]: |
20 |
"(!!x. x:A ==> P(x)) == Trueprop (ALL x:A. P(x))" |
|
21 |
by (simp add: Ball_def atomize_all atomize_imp) |
|
13259 | 22 |
|
23 |
||
13357 | 24 |
subsection{*Unordered Pairs: constant @{term Upair}*} |
13259 | 25 |
|
26 |
lemma Upair_iff [simp]: "c : Upair(a,b) <-> (c=a | c=b)" |
|
27 |
by (unfold Upair_def, blast) |
|
28 |
||
29 |
lemma UpairI1: "a : Upair(a,b)" |
|
30 |
by simp |
|
31 |
||
32 |
lemma UpairI2: "b : Upair(a,b)" |
|
33 |
by simp |
|
34 |
||
13780 | 35 |
lemma UpairE: "[| a : Upair(b,c); a=b ==> P; a=c ==> P |] ==> P" |
36 |
by (simp, blast) |
|
13259 | 37 |
|
13357 | 38 |
subsection{*Rules for Binary Union, Defined via @{term Upair}*} |
13259 | 39 |
|
40 |
lemma Un_iff [simp]: "c : A Un B <-> (c:A | c:B)" |
|
41 |
apply (simp add: Un_def) |
|
42 |
apply (blast intro: UpairI1 UpairI2 elim: UpairE) |
|
43 |
done |
|
44 |
||
45 |
lemma UnI1: "c : A ==> c : A Un B" |
|
46 |
by simp |
|
47 |
||
48 |
lemma UnI2: "c : B ==> c : A Un B" |
|
49 |
by simp |
|
50 |
||
13356 | 51 |
declare UnI1 [elim?] UnI2 [elim?] |
52 |
||
13259 | 53 |
lemma UnE [elim!]: "[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P" |
13780 | 54 |
by (simp, blast) |
13259 | 55 |
|
56 |
(*Stronger version of the rule above*) |
|
57 |
lemma UnE': "[| c : A Un B; c:A ==> P; [| c:B; c~:A |] ==> P |] ==> P" |
|
13780 | 58 |
by (simp, blast) |
13259 | 59 |
|
60 |
(*Classical introduction rule: no commitment to A vs B*) |
|
61 |
lemma UnCI [intro!]: "(c ~: B ==> c : A) ==> c : A Un B" |
|
13780 | 62 |
by (simp, blast) |
13259 | 63 |
|
13357 | 64 |
subsection{*Rules for Binary Intersection, Defined via @{term Upair}*} |
13259 | 65 |
|
66 |
lemma Int_iff [simp]: "c : A Int B <-> (c:A & c:B)" |
|
67 |
apply (unfold Int_def) |
|
68 |
apply (blast intro: UpairI1 UpairI2 elim: UpairE) |
|
69 |
done |
|
70 |
||
71 |
lemma IntI [intro!]: "[| c : A; c : B |] ==> c : A Int B" |
|
72 |
by simp |
|
73 |
||
74 |
lemma IntD1: "c : A Int B ==> c : A" |
|
75 |
by simp |
|
76 |
||
77 |
lemma IntD2: "c : A Int B ==> c : B" |
|
78 |
by simp |
|
79 |
||
80 |
lemma IntE [elim!]: "[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P" |
|
81 |
by simp |
|
82 |
||
83 |
||
13357 | 84 |
subsection{*Rules for Set Difference, Defined via @{term Upair}*} |
13259 | 85 |
|
86 |
lemma Diff_iff [simp]: "c : A-B <-> (c:A & c~:B)" |
|
87 |
by (unfold Diff_def, blast) |
|
88 |
||
89 |
lemma DiffI [intro!]: "[| c : A; c ~: B |] ==> c : A - B" |
|
90 |
by simp |
|
91 |
||
92 |
lemma DiffD1: "c : A - B ==> c : A" |
|
93 |
by simp |
|
94 |
||
95 |
lemma DiffD2: "c : A - B ==> c ~: B" |
|
96 |
by simp |
|
97 |
||
98 |
lemma DiffE [elim!]: "[| c : A - B; [| c:A; c~:B |] ==> P |] ==> P" |
|
99 |
by simp |
|
100 |
||
101 |
||
13357 | 102 |
subsection{*Rules for @{term cons}*} |
13259 | 103 |
|
104 |
lemma cons_iff [simp]: "a : cons(b,A) <-> (a=b | a:A)" |
|
105 |
apply (unfold cons_def) |
|
106 |
apply (blast intro: UpairI1 UpairI2 elim: UpairE) |
|
107 |
done |
|
108 |
||
109 |
(*risky as a typechecking rule, but solves otherwise unconstrained goals of |
|
110 |
the form x : ?A*) |
|
111 |
lemma consI1 [simp,TC]: "a : cons(a,B)" |
|
112 |
by simp |
|
113 |
||
114 |
||
115 |
lemma consI2: "a : B ==> a : cons(b,B)" |
|
116 |
by simp |
|
117 |
||
13780 | 118 |
lemma consE [elim!]: "[| a : cons(b,A); a=b ==> P; a:A ==> P |] ==> P" |
119 |
by (simp, blast) |
|
13259 | 120 |
|
121 |
(*Stronger version of the rule above*) |
|
122 |
lemma consE': |
|
123 |
"[| a : cons(b,A); a=b ==> P; [| a:A; a~=b |] ==> P |] ==> P" |
|
13780 | 124 |
by (simp, blast) |
13259 | 125 |
|
126 |
(*Classical introduction rule*) |
|
127 |
lemma consCI [intro!]: "(a~:B ==> a=b) ==> a: cons(b,B)" |
|
13780 | 128 |
by (simp, blast) |
13259 | 129 |
|
130 |
lemma cons_not_0 [simp]: "cons(a,B) ~= 0" |
|
131 |
by (blast elim: equalityE) |
|
132 |
||
133 |
lemmas cons_neq_0 = cons_not_0 [THEN notE, standard] |
|
134 |
||
135 |
declare cons_not_0 [THEN not_sym, simp] |
|
136 |
||
137 |
||
13357 | 138 |
subsection{*Singletons*} |
13259 | 139 |
|
140 |
lemma singleton_iff: "a : {b} <-> a=b" |
|
141 |
by simp |
|
142 |
||
143 |
lemma singletonI [intro!]: "a : {a}" |
|
144 |
by (rule consI1) |
|
145 |
||
146 |
lemmas singletonE = singleton_iff [THEN iffD1, elim_format, standard, elim!] |
|
147 |
||
148 |
||
14883 | 149 |
subsection{*Descriptions*} |
13259 | 150 |
|
151 |
lemma the_equality [intro]: |
|
152 |
"[| P(a); !!x. P(x) ==> x=a |] ==> (THE x. P(x)) = a" |
|
153 |
apply (unfold the_def) |
|
154 |
apply (fast dest: subst) |
|
155 |
done |
|
156 |
||
157 |
(* Only use this if you already know EX!x. P(x) *) |
|
158 |
lemma the_equality2: "[| EX! x. P(x); P(a) |] ==> (THE x. P(x)) = a" |
|
159 |
by blast |
|
160 |
||
161 |
lemma theI: "EX! x. P(x) ==> P(THE x. P(x))" |
|
162 |
apply (erule ex1E) |
|
163 |
apply (subst the_equality) |
|
164 |
apply (blast+) |
|
165 |
done |
|
166 |
||
167 |
(*the_cong is no longer necessary: if (ALL y.P(y)<->Q(y)) then |
|
168 |
(THE x.P(x)) rewrites to (THE x. Q(x)) *) |
|
169 |
||
170 |
(*If it's "undefined", it's zero!*) |
|
171 |
lemma the_0: "~ (EX! x. P(x)) ==> (THE x. P(x))=0" |
|
172 |
apply (unfold the_def) |
|
173 |
apply (blast elim!: ReplaceE) |
|
174 |
done |
|
175 |
||
176 |
(*Easier to apply than theI: conclusion has only one occurrence of P*) |
|
177 |
lemma theI2: |
|
178 |
assumes p1: "~ Q(0) ==> EX! x. P(x)" |
|
179 |
and p2: "!!x. P(x) ==> Q(x)" |
|
180 |
shows "Q(THE x. P(x))" |
|
181 |
apply (rule classical) |
|
182 |
apply (rule p2) |
|
183 |
apply (rule theI) |
|
184 |
apply (rule classical) |
|
185 |
apply (rule p1) |
|
186 |
apply (erule the_0 [THEN subst], assumption) |
|
187 |
done |
|
188 |
||
13357 | 189 |
lemma the_eq_trivial [simp]: "(THE x. x = a) = a" |
190 |
by blast |
|
191 |
||
13544 | 192 |
lemma the_eq_trivial2 [simp]: "(THE x. a = x) = a" |
193 |
by blast |
|
194 |
||
13780 | 195 |
|
13357 | 196 |
subsection{*Conditional Terms: @{text "if-then-else"}*} |
13259 | 197 |
|
198 |
lemma if_true [simp]: "(if True then a else b) = a" |
|
199 |
by (unfold if_def, blast) |
|
200 |
||
201 |
lemma if_false [simp]: "(if False then a else b) = b" |
|
202 |
by (unfold if_def, blast) |
|
203 |
||
204 |
(*Never use with case splitting, or if P is known to be true or false*) |
|
205 |
lemma if_cong: |
|
206 |
"[| P<->Q; Q ==> a=c; ~Q ==> b=d |] |
|
207 |
==> (if P then a else b) = (if Q then c else d)" |
|
208 |
by (simp add: if_def cong add: conj_cong) |
|
209 |
||
210 |
(*Prevents simplification of x and y: faster and allows the execution |
|
211 |
of functional programs. NOW THE DEFAULT.*) |
|
212 |
lemma if_weak_cong: "P<->Q ==> (if P then x else y) = (if Q then x else y)" |
|
213 |
by simp |
|
214 |
||
215 |
(*Not needed for rewriting, since P would rewrite to True anyway*) |
|
216 |
lemma if_P: "P ==> (if P then a else b) = a" |
|
217 |
by (unfold if_def, blast) |
|
218 |
||
219 |
(*Not needed for rewriting, since P would rewrite to False anyway*) |
|
220 |
lemma if_not_P: "~P ==> (if P then a else b) = b" |
|
221 |
by (unfold if_def, blast) |
|
222 |
||
13780 | 223 |
lemma split_if [split]: |
224 |
"P(if Q then x else y) <-> ((Q --> P(x)) & (~Q --> P(y)))" |
|
14153 | 225 |
by (case_tac Q, simp_all) |
13259 | 226 |
|
227 |
(** Rewrite rules for boolean case-splitting: faster than |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
24893
diff
changeset
|
228 |
addsplits[split_if] |
13259 | 229 |
**) |
230 |
||
231 |
lemmas split_if_eq1 = split_if [of "%x. x = b", standard] |
|
232 |
lemmas split_if_eq2 = split_if [of "%x. a = x", standard] |
|
233 |
||
234 |
lemmas split_if_mem1 = split_if [of "%x. x : b", standard] |
|
235 |
lemmas split_if_mem2 = split_if [of "%x. a : x", standard] |
|
236 |
||
237 |
lemmas split_ifs = split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2 |
|
238 |
||
239 |
(*Logically equivalent to split_if_mem2*) |
|
240 |
lemma if_iff: "a: (if P then x else y) <-> P & a:x | ~P & a:y" |
|
13780 | 241 |
by simp |
13259 | 242 |
|
243 |
lemma if_type [TC]: |
|
244 |
"[| P ==> a: A; ~P ==> b: A |] ==> (if P then a else b): A" |
|
13780 | 245 |
by simp |
246 |
||
247 |
(** Splitting IFs in the assumptions **) |
|
248 |
||
249 |
lemma split_if_asm: "P(if Q then x else y) <-> (~((Q & ~P(x)) | (~Q & ~P(y))))" |
|
250 |
by simp |
|
251 |
||
252 |
lemmas if_splits = split_if split_if_asm |
|
13259 | 253 |
|
254 |
||
13357 | 255 |
subsection{*Consequences of Foundation*} |
13259 | 256 |
|
257 |
(*was called mem_anti_sym*) |
|
258 |
lemma mem_asym: "[| a:b; ~P ==> b:a |] ==> P" |
|
259 |
apply (rule classical) |
|
260 |
apply (rule_tac A1 = "{a,b}" in foundation [THEN disjE]) |
|
261 |
apply (blast elim!: equalityE)+ |
|
262 |
done |
|
263 |
||
264 |
(*was called mem_anti_refl*) |
|
265 |
lemma mem_irrefl: "a:a ==> P" |
|
266 |
by (blast intro: mem_asym) |
|
267 |
||
268 |
(*mem_irrefl should NOT be added to default databases: |
|
269 |
it would be tried on most goals, making proofs slower!*) |
|
270 |
||
271 |
lemma mem_not_refl: "a ~: a" |
|
272 |
apply (rule notI) |
|
273 |
apply (erule mem_irrefl) |
|
274 |
done |
|
275 |
||
276 |
(*Good for proving inequalities by rewriting*) |
|
277 |
lemma mem_imp_not_eq: "a:A ==> a ~= A" |
|
278 |
by (blast elim!: mem_irrefl) |
|
279 |
||
13357 | 280 |
lemma eq_imp_not_mem: "a=A ==> a ~: A" |
281 |
by (blast intro: elim: mem_irrefl) |
|
282 |
||
283 |
subsection{*Rules for Successor*} |
|
13259 | 284 |
|
285 |
lemma succ_iff: "i : succ(j) <-> i=j | i:j" |
|
286 |
by (unfold succ_def, blast) |
|
287 |
||
288 |
lemma succI1 [simp]: "i : succ(i)" |
|
289 |
by (simp add: succ_iff) |
|
290 |
||
291 |
lemma succI2: "i : j ==> i : succ(j)" |
|
292 |
by (simp add: succ_iff) |
|
293 |
||
294 |
lemma succE [elim!]: |
|
295 |
"[| i : succ(j); i=j ==> P; i:j ==> P |] ==> P" |
|
296 |
apply (simp add: succ_iff, blast) |
|
297 |
done |
|
298 |
||
299 |
(*Classical introduction rule*) |
|
300 |
lemma succCI [intro!]: "(i~:j ==> i=j) ==> i: succ(j)" |
|
301 |
by (simp add: succ_iff, blast) |
|
302 |
||
303 |
lemma succ_not_0 [simp]: "succ(n) ~= 0" |
|
304 |
by (blast elim!: equalityE) |
|
305 |
||
306 |
lemmas succ_neq_0 = succ_not_0 [THEN notE, standard, elim!] |
|
307 |
||
308 |
declare succ_not_0 [THEN not_sym, simp] |
|
309 |
declare sym [THEN succ_neq_0, elim!] |
|
310 |
||
311 |
(* succ(c) <= B ==> c : B *) |
|
312 |
lemmas succ_subsetD = succI1 [THEN [2] subsetD] |
|
313 |
||
314 |
(* succ(b) ~= b *) |
|
315 |
lemmas succ_neq_self = succI1 [THEN mem_imp_not_eq, THEN not_sym, standard] |
|
316 |
||
317 |
lemma succ_inject_iff [simp]: "succ(m) = succ(n) <-> m=n" |
|
318 |
by (blast elim: mem_asym elim!: equalityE) |
|
319 |
||
320 |
lemmas succ_inject = succ_inject_iff [THEN iffD1, standard, dest!] |
|
321 |
||
13780 | 322 |
|
323 |
subsection{*Miniscoping of the Bounded Universal Quantifier*} |
|
324 |
||
325 |
lemma ball_simps1: |
|
326 |
"(ALL x:A. P(x) & Q) <-> (ALL x:A. P(x)) & (A=0 | Q)" |
|
327 |
"(ALL x:A. P(x) | Q) <-> ((ALL x:A. P(x)) | Q)" |
|
328 |
"(ALL x:A. P(x) --> Q) <-> ((EX x:A. P(x)) --> Q)" |
|
329 |
"(~(ALL x:A. P(x))) <-> (EX x:A. ~P(x))" |
|
330 |
"(ALL x:0.P(x)) <-> True" |
|
331 |
"(ALL x:succ(i).P(x)) <-> P(i) & (ALL x:i. P(x))" |
|
332 |
"(ALL x:cons(a,B).P(x)) <-> P(a) & (ALL x:B. P(x))" |
|
333 |
"(ALL x:RepFun(A,f). P(x)) <-> (ALL y:A. P(f(y)))" |
|
334 |
"(ALL x:Union(A).P(x)) <-> (ALL y:A. ALL x:y. P(x))" |
|
335 |
by blast+ |
|
336 |
||
337 |
lemma ball_simps2: |
|
338 |
"(ALL x:A. P & Q(x)) <-> (A=0 | P) & (ALL x:A. Q(x))" |
|
339 |
"(ALL x:A. P | Q(x)) <-> (P | (ALL x:A. Q(x)))" |
|
340 |
"(ALL x:A. P --> Q(x)) <-> (P --> (ALL x:A. Q(x)))" |
|
341 |
by blast+ |
|
342 |
||
343 |
lemma ball_simps3: |
|
344 |
"(ALL x:Collect(A,Q).P(x)) <-> (ALL x:A. Q(x) --> P(x))" |
|
345 |
by blast+ |
|
346 |
||
347 |
lemmas ball_simps [simp] = ball_simps1 ball_simps2 ball_simps3 |
|
348 |
||
349 |
lemma ball_conj_distrib: |
|
350 |
"(ALL x:A. P(x) & Q(x)) <-> ((ALL x:A. P(x)) & (ALL x:A. Q(x)))" |
|
351 |
by blast |
|
352 |
||
353 |
||
354 |
subsection{*Miniscoping of the Bounded Existential Quantifier*} |
|
355 |
||
356 |
lemma bex_simps1: |
|
357 |
"(EX x:A. P(x) & Q) <-> ((EX x:A. P(x)) & Q)" |
|
358 |
"(EX x:A. P(x) | Q) <-> (EX x:A. P(x)) | (A~=0 & Q)" |
|
359 |
"(EX x:A. P(x) --> Q) <-> ((ALL x:A. P(x)) --> (A~=0 & Q))" |
|
360 |
"(EX x:0.P(x)) <-> False" |
|
361 |
"(EX x:succ(i).P(x)) <-> P(i) | (EX x:i. P(x))" |
|
362 |
"(EX x:cons(a,B).P(x)) <-> P(a) | (EX x:B. P(x))" |
|
363 |
"(EX x:RepFun(A,f). P(x)) <-> (EX y:A. P(f(y)))" |
|
364 |
"(EX x:Union(A).P(x)) <-> (EX y:A. EX x:y. P(x))" |
|
365 |
"(~(EX x:A. P(x))) <-> (ALL x:A. ~P(x))" |
|
366 |
by blast+ |
|
367 |
||
368 |
lemma bex_simps2: |
|
369 |
"(EX x:A. P & Q(x)) <-> (P & (EX x:A. Q(x)))" |
|
370 |
"(EX x:A. P | Q(x)) <-> (A~=0 & P) | (EX x:A. Q(x))" |
|
371 |
"(EX x:A. P --> Q(x)) <-> ((A=0 | P) --> (EX x:A. Q(x)))" |
|
372 |
by blast+ |
|
373 |
||
374 |
lemma bex_simps3: |
|
375 |
"(EX x:Collect(A,Q).P(x)) <-> (EX x:A. Q(x) & P(x))" |
|
376 |
by blast |
|
377 |
||
378 |
lemmas bex_simps [simp] = bex_simps1 bex_simps2 bex_simps3 |
|
379 |
||
380 |
lemma bex_disj_distrib: |
|
381 |
"(EX x:A. P(x) | Q(x)) <-> ((EX x:A. P(x)) | (EX x:A. Q(x)))" |
|
382 |
by blast |
|
383 |
||
384 |
||
385 |
(** One-point rule for bounded quantifiers: see HOL/Set.ML **) |
|
386 |
||
387 |
lemma bex_triv_one_point1 [simp]: "(EX x:A. x=a) <-> (a:A)" |
|
388 |
by blast |
|
389 |
||
390 |
lemma bex_triv_one_point2 [simp]: "(EX x:A. a=x) <-> (a:A)" |
|
391 |
by blast |
|
392 |
||
393 |
lemma bex_one_point1 [simp]: "(EX x:A. x=a & P(x)) <-> (a:A & P(a))" |
|
394 |
by blast |
|
395 |
||
396 |
lemma bex_one_point2 [simp]: "(EX x:A. a=x & P(x)) <-> (a:A & P(a))" |
|
397 |
by blast |
|
398 |
||
399 |
lemma ball_one_point1 [simp]: "(ALL x:A. x=a --> P(x)) <-> (a:A --> P(a))" |
|
400 |
by blast |
|
401 |
||
402 |
lemma ball_one_point2 [simp]: "(ALL x:A. a=x --> P(x)) <-> (a:A --> P(a))" |
|
403 |
by blast |
|
404 |
||
405 |
||
406 |
subsection{*Miniscoping of the Replacement Operator*} |
|
407 |
||
408 |
text{*These cover both @{term Replace} and @{term Collect}*} |
|
409 |
lemma Rep_simps [simp]: |
|
410 |
"{x. y:0, R(x,y)} = 0" |
|
411 |
"{x:0. P(x)} = 0" |
|
412 |
"{x:A. Q} = (if Q then A else 0)" |
|
413 |
"RepFun(0,f) = 0" |
|
414 |
"RepFun(succ(i),f) = cons(f(i), RepFun(i,f))" |
|
415 |
"RepFun(cons(a,B),f) = cons(f(a), RepFun(B,f))" |
|
416 |
by (simp_all, blast+) |
|
417 |
||
418 |
||
419 |
subsection{*Miniscoping of Unions*} |
|
420 |
||
421 |
lemma UN_simps1: |
|
422 |
"(UN x:C. cons(a, B(x))) = (if C=0 then 0 else cons(a, UN x:C. B(x)))" |
|
423 |
"(UN x:C. A(x) Un B') = (if C=0 then 0 else (UN x:C. A(x)) Un B')" |
|
424 |
"(UN x:C. A' Un B(x)) = (if C=0 then 0 else A' Un (UN x:C. B(x)))" |
|
425 |
"(UN x:C. A(x) Int B') = ((UN x:C. A(x)) Int B')" |
|
426 |
"(UN x:C. A' Int B(x)) = (A' Int (UN x:C. B(x)))" |
|
427 |
"(UN x:C. A(x) - B') = ((UN x:C. A(x)) - B')" |
|
428 |
"(UN x:C. A' - B(x)) = (if C=0 then 0 else A' - (INT x:C. B(x)))" |
|
429 |
apply (simp_all add: Inter_def) |
|
430 |
apply (blast intro!: equalityI )+ |
|
431 |
done |
|
432 |
||
433 |
lemma UN_simps2: |
|
434 |
"(UN x: Union(A). B(x)) = (UN y:A. UN x:y. B(x))" |
|
435 |
"(UN z: (UN x:A. B(x)). C(z)) = (UN x:A. UN z: B(x). C(z))" |
|
436 |
"(UN x: RepFun(A,f). B(x)) = (UN a:A. B(f(a)))" |
|
437 |
by blast+ |
|
438 |
||
439 |
lemmas UN_simps [simp] = UN_simps1 UN_simps2 |
|
440 |
||
441 |
text{*Opposite of miniscoping: pull the operator out*} |
|
442 |
||
443 |
lemma UN_extend_simps1: |
|
444 |
"(UN x:C. A(x)) Un B = (if C=0 then B else (UN x:C. A(x) Un B))" |
|
445 |
"((UN x:C. A(x)) Int B) = (UN x:C. A(x) Int B)" |
|
446 |
"((UN x:C. A(x)) - B) = (UN x:C. A(x) - B)" |
|
447 |
apply simp_all |
|
448 |
apply blast+ |
|
449 |
done |
|
450 |
||
451 |
lemma UN_extend_simps2: |
|
452 |
"cons(a, UN x:C. B(x)) = (if C=0 then {a} else (UN x:C. cons(a, B(x))))" |
|
453 |
"A Un (UN x:C. B(x)) = (if C=0 then A else (UN x:C. A Un B(x)))" |
|
454 |
"(A Int (UN x:C. B(x))) = (UN x:C. A Int B(x))" |
|
455 |
"A - (INT x:C. B(x)) = (if C=0 then A else (UN x:C. A - B(x)))" |
|
456 |
"(UN y:A. UN x:y. B(x)) = (UN x: Union(A). B(x))" |
|
457 |
"(UN a:A. B(f(a))) = (UN x: RepFun(A,f). B(x))" |
|
458 |
apply (simp_all add: Inter_def) |
|
459 |
apply (blast intro!: equalityI)+ |
|
460 |
done |
|
461 |
||
462 |
lemma UN_UN_extend: |
|
463 |
"(UN x:A. UN z: B(x). C(z)) = (UN z: (UN x:A. B(x)). C(z))" |
|
464 |
by blast |
|
465 |
||
466 |
lemmas UN_extend_simps = UN_extend_simps1 UN_extend_simps2 UN_UN_extend |
|
467 |
||
468 |
||
469 |
subsection{*Miniscoping of Intersections*} |
|
470 |
||
471 |
lemma INT_simps1: |
|
472 |
"(INT x:C. A(x) Int B) = (INT x:C. A(x)) Int B" |
|
473 |
"(INT x:C. A(x) - B) = (INT x:C. A(x)) - B" |
|
474 |
"(INT x:C. A(x) Un B) = (if C=0 then 0 else (INT x:C. A(x)) Un B)" |
|
475 |
by (simp_all add: Inter_def, blast+) |
|
476 |
||
477 |
lemma INT_simps2: |
|
478 |
"(INT x:C. A Int B(x)) = A Int (INT x:C. B(x))" |
|
479 |
"(INT x:C. A - B(x)) = (if C=0 then 0 else A - (UN x:C. B(x)))" |
|
480 |
"(INT x:C. cons(a, B(x))) = (if C=0 then 0 else cons(a, INT x:C. B(x)))" |
|
481 |
"(INT x:C. A Un B(x)) = (if C=0 then 0 else A Un (INT x:C. B(x)))" |
|
482 |
apply (simp_all add: Inter_def) |
|
483 |
apply (blast intro!: equalityI)+ |
|
484 |
done |
|
485 |
||
486 |
lemmas INT_simps [simp] = INT_simps1 INT_simps2 |
|
487 |
||
488 |
text{*Opposite of miniscoping: pull the operator out*} |
|
489 |
||
490 |
||
491 |
lemma INT_extend_simps1: |
|
492 |
"(INT x:C. A(x)) Int B = (INT x:C. A(x) Int B)" |
|
493 |
"(INT x:C. A(x)) - B = (INT x:C. A(x) - B)" |
|
494 |
"(INT x:C. A(x)) Un B = (if C=0 then B else (INT x:C. A(x) Un B))" |
|
495 |
apply (simp_all add: Inter_def, blast+) |
|
496 |
done |
|
497 |
||
498 |
lemma INT_extend_simps2: |
|
499 |
"A Int (INT x:C. B(x)) = (INT x:C. A Int B(x))" |
|
500 |
"A - (UN x:C. B(x)) = (if C=0 then A else (INT x:C. A - B(x)))" |
|
501 |
"cons(a, INT x:C. B(x)) = (if C=0 then {a} else (INT x:C. cons(a, B(x))))" |
|
502 |
"A Un (INT x:C. B(x)) = (if C=0 then A else (INT x:C. A Un B(x)))" |
|
503 |
apply (simp_all add: Inter_def) |
|
504 |
apply (blast intro!: equalityI)+ |
|
505 |
done |
|
506 |
||
507 |
lemmas INT_extend_simps = INT_extend_simps1 INT_extend_simps2 |
|
508 |
||
509 |
||
510 |
subsection{*Other simprules*} |
|
511 |
||
512 |
||
513 |
(*** Miniscoping: pushing in big Unions, Intersections, quantifiers, etc. ***) |
|
514 |
||
515 |
lemma misc_simps [simp]: |
|
516 |
"0 Un A = A" |
|
517 |
"A Un 0 = A" |
|
518 |
"0 Int A = 0" |
|
519 |
"A Int 0 = 0" |
|
520 |
"0 - A = 0" |
|
521 |
"A - 0 = A" |
|
522 |
"Union(0) = 0" |
|
523 |
"Union(cons(b,A)) = b Un Union(A)" |
|
524 |
"Inter({b}) = b" |
|
525 |
by blast+ |
|
526 |
||
6153 | 527 |
end |