| author | paulson <lp15@cam.ac.uk> | 
| Wed, 10 Apr 2019 21:29:32 +0100 | |
| changeset 70113 | c8deb8ba6d05 | 
| parent 67682 | 00c436488398 | 
| child 80768 | c7723cc15de8 | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/LowerPD.thy | 
| 25904 | 2 | Author: Brian Huffman | 
| 3 | *) | |
| 4 | ||
| 62175 | 5 | section \<open>Lower powerdomain\<close> | 
| 25904 | 6 | |
| 7 | theory LowerPD | |
| 41284 | 8 | imports Compact_Basis | 
| 25904 | 9 | begin | 
| 10 | ||
| 62175 | 11 | subsection \<open>Basis preorder\<close> | 
| 25904 | 12 | |
| 13 | definition | |
| 14 | lower_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<flat>" 50) where | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 15 | "lower_le = (\<lambda>u v. \<forall>x\<in>Rep_pd_basis u. \<exists>y\<in>Rep_pd_basis v. x \<sqsubseteq> y)" | 
| 25904 | 16 | |
| 17 | lemma lower_le_refl [simp]: "t \<le>\<flat> t" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 18 | unfolding lower_le_def by fast | 
| 25904 | 19 | |
| 20 | lemma lower_le_trans: "\<lbrakk>t \<le>\<flat> u; u \<le>\<flat> v\<rbrakk> \<Longrightarrow> t \<le>\<flat> v" | |
| 21 | unfolding lower_le_def | |
| 22 | apply (rule ballI) | |
| 23 | apply (drule (1) bspec, erule bexE) | |
| 24 | apply (drule (1) bspec, erule bexE) | |
| 25 | apply (erule rev_bexI) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 26 | apply (erule (1) below_trans) | 
| 25904 | 27 | done | 
| 28 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29990diff
changeset | 29 | interpretation lower_le: preorder lower_le | 
| 25904 | 30 | by (rule preorder.intro, rule lower_le_refl, rule lower_le_trans) | 
| 31 | ||
| 32 | lemma lower_le_minimal [simp]: "PDUnit compact_bot \<le>\<flat> t" | |
| 33 | unfolding lower_le_def Rep_PDUnit | |
| 34 | by (simp, rule Rep_pd_basis_nonempty [folded ex_in_conv]) | |
| 35 | ||
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 36 | lemma PDUnit_lower_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<flat> PDUnit y" | 
| 25904 | 37 | unfolding lower_le_def Rep_PDUnit by fast | 
| 38 | ||
| 39 | lemma PDPlus_lower_mono: "\<lbrakk>s \<le>\<flat> t; u \<le>\<flat> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<flat> PDPlus t v" | |
| 40 | unfolding lower_le_def Rep_PDPlus by fast | |
| 41 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 42 | lemma PDPlus_lower_le: "t \<le>\<flat> PDPlus t u" | 
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 43 | unfolding lower_le_def Rep_PDPlus by fast | 
| 25904 | 44 | |
| 45 | lemma lower_le_PDUnit_PDUnit_iff [simp]: | |
| 40436 | 46 | "(PDUnit a \<le>\<flat> PDUnit b) = (a \<sqsubseteq> b)" | 
| 25904 | 47 | unfolding lower_le_def Rep_PDUnit by fast | 
| 48 | ||
| 49 | lemma lower_le_PDUnit_PDPlus_iff: | |
| 50 | "(PDUnit a \<le>\<flat> PDPlus t u) = (PDUnit a \<le>\<flat> t \<or> PDUnit a \<le>\<flat> u)" | |
| 51 | unfolding lower_le_def Rep_PDPlus Rep_PDUnit by fast | |
| 52 | ||
| 53 | lemma lower_le_PDPlus_iff: "(PDPlus t u \<le>\<flat> v) = (t \<le>\<flat> v \<and> u \<le>\<flat> v)" | |
| 54 | unfolding lower_le_def Rep_PDPlus by fast | |
| 55 | ||
| 56 | lemma lower_le_induct [induct set: lower_le]: | |
| 57 | assumes le: "t \<le>\<flat> u" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 58 | assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)" | 
| 25904 | 59 | assumes 2: "\<And>t u a. P (PDUnit a) t \<Longrightarrow> P (PDUnit a) (PDPlus t u)" | 
| 60 | assumes 3: "\<And>t u v. \<lbrakk>P t v; P u v\<rbrakk> \<Longrightarrow> P (PDPlus t u) v" | |
| 61 | shows "P t u" | |
| 62 | using le | |
| 63 | apply (induct t arbitrary: u rule: pd_basis_induct) | |
| 64 | apply (erule rev_mp) | |
| 65 | apply (induct_tac u rule: pd_basis_induct) | |
| 66 | apply (simp add: 1) | |
| 67 | apply (simp add: lower_le_PDUnit_PDPlus_iff) | |
| 68 | apply (simp add: 2) | |
| 69 | apply (subst PDPlus_commute) | |
| 70 | apply (simp add: 2) | |
| 71 | apply (simp add: lower_le_PDPlus_iff 3) | |
| 72 | done | |
| 73 | ||
| 74 | ||
| 62175 | 75 | subsection \<open>Type definition\<close> | 
| 25904 | 76 | |
| 61998 | 77 | typedef 'a lower_pd  ("('(_')\<flat>)") =
 | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 78 |   "{S::'a pd_basis set. lower_le.ideal S}"
 | 
| 40888 
28cd51cff70c
reformulate lemma preorder.ex_ideal, and use it for typedefs
 huffman parents: 
40774diff
changeset | 79 | by (rule lower_le.ex_ideal) | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 80 | |
| 41288 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 huffman parents: 
41287diff
changeset | 81 | instantiation lower_pd :: (bifinite) below | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 82 | begin | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 83 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 84 | definition | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 85 | "x \<sqsubseteq> y \<longleftrightarrow> Rep_lower_pd x \<subseteq> Rep_lower_pd y" | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 86 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 87 | instance .. | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 88 | end | 
| 25904 | 89 | |
| 41288 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 huffman parents: 
41287diff
changeset | 90 | instance lower_pd :: (bifinite) po | 
| 39984 | 91 | using type_definition_lower_pd below_lower_pd_def | 
| 92 | by (rule lower_le.typedef_ideal_po) | |
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 93 | |
| 41288 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 huffman parents: 
41287diff
changeset | 94 | instance lower_pd :: (bifinite) cpo | 
| 39984 | 95 | using type_definition_lower_pd below_lower_pd_def | 
| 96 | by (rule lower_le.typedef_ideal_cpo) | |
| 25904 | 97 | |
| 98 | definition | |
| 99 | lower_principal :: "'a pd_basis \<Rightarrow> 'a lower_pd" where | |
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 100 |   "lower_principal t = Abs_lower_pd {u. u \<le>\<flat> t}"
 | 
| 25904 | 101 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29990diff
changeset | 102 | interpretation lower_pd: | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 103 | ideal_completion lower_le lower_principal Rep_lower_pd | 
| 39984 | 104 | using type_definition_lower_pd below_lower_pd_def | 
| 105 | using lower_principal_def pd_basis_countable | |
| 106 | by (rule lower_le.typedef_ideal_completion) | |
| 25904 | 107 | |
| 62175 | 108 | text \<open>Lower powerdomain is pointed\<close> | 
| 25904 | 109 | |
| 110 | lemma lower_pd_minimal: "lower_principal (PDUnit compact_bot) \<sqsubseteq> ys" | |
| 111 | by (induct ys rule: lower_pd.principal_induct, simp, simp) | |
| 112 | ||
| 41288 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 huffman parents: 
41287diff
changeset | 113 | instance lower_pd :: (bifinite) pcpo | 
| 26927 | 114 | by intro_classes (fast intro: lower_pd_minimal) | 
| 25904 | 115 | |
| 116 | lemma inst_lower_pd_pcpo: "\<bottom> = lower_principal (PDUnit compact_bot)" | |
| 41430 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 huffman parents: 
41402diff
changeset | 117 | by (rule lower_pd_minimal [THEN bottomI, symmetric]) | 
| 25904 | 118 | |
| 119 | ||
| 62175 | 120 | subsection \<open>Monadic unit and plus\<close> | 
| 25904 | 121 | |
| 122 | definition | |
| 123 | lower_unit :: "'a \<rightarrow> 'a lower_pd" where | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 124 | "lower_unit = compact_basis.extension (\<lambda>a. lower_principal (PDUnit a))" | 
| 25904 | 125 | |
| 126 | definition | |
| 127 | lower_plus :: "'a lower_pd \<rightarrow> 'a lower_pd \<rightarrow> 'a lower_pd" where | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 128 | "lower_plus = lower_pd.extension (\<lambda>t. lower_pd.extension (\<lambda>u. | 
| 25904 | 129 | lower_principal (PDPlus t u)))" | 
| 130 | ||
| 131 | abbreviation | |
| 132 | lower_add :: "'a lower_pd \<Rightarrow> 'a lower_pd \<Rightarrow> 'a lower_pd" | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 133 | (infixl "\<union>\<flat>" 65) where | 
| 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 134 | "xs \<union>\<flat> ys == lower_plus\<cdot>xs\<cdot>ys" | 
| 25904 | 135 | |
| 26927 | 136 | syntax | 
| 41479 | 137 |   "_lower_pd" :: "args \<Rightarrow> logic" ("{_}\<flat>")
 | 
| 26927 | 138 | |
| 139 | translations | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 140 |   "{x,xs}\<flat>" == "{x}\<flat> \<union>\<flat> {xs}\<flat>"
 | 
| 26927 | 141 |   "{x}\<flat>" == "CONST lower_unit\<cdot>x"
 | 
| 142 | ||
| 143 | lemma lower_unit_Rep_compact_basis [simp]: | |
| 144 |   "{Rep_compact_basis a}\<flat> = lower_principal (PDUnit a)"
 | |
| 145 | unfolding lower_unit_def | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 146 | by (simp add: compact_basis.extension_principal PDUnit_lower_mono) | 
| 26927 | 147 | |
| 25904 | 148 | lemma lower_plus_principal [simp]: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 149 | "lower_principal t \<union>\<flat> lower_principal u = lower_principal (PDPlus t u)" | 
| 25904 | 150 | unfolding lower_plus_def | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 151 | by (simp add: lower_pd.extension_principal | 
| 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 152 | lower_pd.extension_mono PDPlus_lower_mono) | 
| 25904 | 153 | |
| 37770 
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
 haftmann parents: 
36635diff
changeset | 154 | interpretation lower_add: semilattice lower_add proof | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 155 | fix xs ys zs :: "'a lower_pd" | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 156 | show "(xs \<union>\<flat> ys) \<union>\<flat> zs = xs \<union>\<flat> (ys \<union>\<flat> zs)" | 
| 41402 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 157 | apply (induct xs rule: lower_pd.principal_induct, simp) | 
| 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 158 | apply (induct ys rule: lower_pd.principal_induct, simp) | 
| 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 159 | apply (induct zs rule: lower_pd.principal_induct, simp) | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 160 | apply (simp add: PDPlus_assoc) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 161 | done | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 162 | show "xs \<union>\<flat> ys = ys \<union>\<flat> xs" | 
| 41402 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 163 | apply (induct xs rule: lower_pd.principal_induct, simp) | 
| 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 164 | apply (induct ys rule: lower_pd.principal_induct, simp) | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 165 | apply (simp add: PDPlus_commute) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 166 | done | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 167 | show "xs \<union>\<flat> xs = xs" | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 168 | apply (induct xs rule: lower_pd.principal_induct, simp) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 169 | apply (simp add: PDPlus_absorb) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 170 | done | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 171 | qed | 
| 26927 | 172 | |
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 173 | lemmas lower_plus_assoc = lower_add.assoc | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 174 | lemmas lower_plus_commute = lower_add.commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 175 | lemmas lower_plus_absorb = lower_add.idem | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 176 | lemmas lower_plus_left_commute = lower_add.left_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
33808diff
changeset | 177 | lemmas lower_plus_left_absorb = lower_add.left_idem | 
| 26927 | 178 | |
| 62175 | 179 | text \<open>Useful for \<open>simp add: lower_plus_ac\<close>\<close> | 
| 29990 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 180 | lemmas lower_plus_ac = | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 181 | lower_plus_assoc lower_plus_commute lower_plus_left_commute | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 182 | |
| 62175 | 183 | text \<open>Useful for \<open>simp only: lower_plus_aci\<close>\<close> | 
| 29990 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 184 | lemmas lower_plus_aci = | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 185 | lower_plus_ac lower_plus_absorb lower_plus_left_absorb | 
| 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 186 | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 187 | lemma lower_plus_below1: "xs \<sqsubseteq> xs \<union>\<flat> ys" | 
| 41402 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 188 | apply (induct xs rule: lower_pd.principal_induct, simp) | 
| 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 189 | apply (induct ys rule: lower_pd.principal_induct, simp) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 190 | apply (simp add: PDPlus_lower_le) | 
| 25904 | 191 | done | 
| 192 | ||
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 193 | lemma lower_plus_below2: "ys \<sqsubseteq> xs \<union>\<flat> ys" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 194 | by (subst lower_plus_commute, rule lower_plus_below1) | 
| 25904 | 195 | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 196 | lemma lower_plus_least: "\<lbrakk>xs \<sqsubseteq> zs; ys \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs \<union>\<flat> ys \<sqsubseteq> zs" | 
| 25904 | 197 | apply (subst lower_plus_absorb [of zs, symmetric]) | 
| 198 | apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) | |
| 199 | done | |
| 200 | ||
| 40734 | 201 | lemma lower_plus_below_iff [simp]: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 202 | "xs \<union>\<flat> ys \<sqsubseteq> zs \<longleftrightarrow> xs \<sqsubseteq> zs \<and> ys \<sqsubseteq> zs" | 
| 25904 | 203 | apply safe | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 204 | apply (erule below_trans [OF lower_plus_below1]) | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 205 | apply (erule below_trans [OF lower_plus_below2]) | 
| 25904 | 206 | apply (erule (1) lower_plus_least) | 
| 207 | done | |
| 208 | ||
| 40734 | 209 | lemma lower_unit_below_plus_iff [simp]: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 210 |   "{x}\<flat> \<sqsubseteq> ys \<union>\<flat> zs \<longleftrightarrow> {x}\<flat> \<sqsubseteq> ys \<or> {x}\<flat> \<sqsubseteq> zs"
 | 
| 39970 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 211 | apply (induct x rule: compact_basis.principal_induct, simp) | 
| 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 212 | apply (induct ys rule: lower_pd.principal_induct, simp) | 
| 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 213 | apply (induct zs rule: lower_pd.principal_induct, simp) | 
| 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 214 | apply (simp add: lower_le_PDUnit_PDPlus_iff) | 
| 25904 | 215 | done | 
| 216 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 217 | lemma lower_unit_below_iff [simp]: "{x}\<flat> \<sqsubseteq> {y}\<flat> \<longleftrightarrow> x \<sqsubseteq> y"
 | 
| 39970 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 218 | apply (induct x rule: compact_basis.principal_induct, simp) | 
| 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 219 | apply (induct y rule: compact_basis.principal_induct, simp) | 
| 
9023b897e67a
simplify proofs of powerdomain inequalities
 Brian Huffman <brianh@cs.pdx.edu> parents: 
37770diff
changeset | 220 | apply simp | 
| 26927 | 221 | done | 
| 222 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 223 | lemmas lower_pd_below_simps = | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 224 | lower_unit_below_iff | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 225 | lower_plus_below_iff | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 226 | lower_unit_below_plus_iff | 
| 25904 | 227 | |
| 26927 | 228 | lemma lower_unit_eq_iff [simp]: "{x}\<flat> = {y}\<flat> \<longleftrightarrow> x = y"
 | 
| 29990 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 229 | by (simp add: po_eq_conv) | 
| 26927 | 230 | |
| 231 | lemma lower_unit_strict [simp]: "{\<bottom>}\<flat> = \<bottom>"
 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 232 | using lower_unit_Rep_compact_basis [of compact_bot] | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 233 | by (simp add: inst_lower_pd_pcpo) | 
| 26927 | 234 | |
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40002diff
changeset | 235 | lemma lower_unit_bottom_iff [simp]: "{x}\<flat> = \<bottom> \<longleftrightarrow> x = \<bottom>"
 | 
| 26927 | 236 | unfolding lower_unit_strict [symmetric] by (rule lower_unit_eq_iff) | 
| 237 | ||
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40002diff
changeset | 238 | lemma lower_plus_bottom_iff [simp]: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 239 | "xs \<union>\<flat> ys = \<bottom> \<longleftrightarrow> xs = \<bottom> \<and> ys = \<bottom>" | 
| 26927 | 240 | apply safe | 
| 41430 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 huffman parents: 
41402diff
changeset | 241 | apply (rule bottomI, erule subst, rule lower_plus_below1) | 
| 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 huffman parents: 
41402diff
changeset | 242 | apply (rule bottomI, erule subst, rule lower_plus_below2) | 
| 26927 | 243 | apply (rule lower_plus_absorb) | 
| 244 | done | |
| 245 | ||
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 246 | lemma lower_plus_strict1 [simp]: "\<bottom> \<union>\<flat> ys = ys" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 247 | apply (rule below_antisym [OF _ lower_plus_below2]) | 
| 26927 | 248 | apply (simp add: lower_plus_least) | 
| 249 | done | |
| 250 | ||
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 251 | lemma lower_plus_strict2 [simp]: "xs \<union>\<flat> \<bottom> = xs" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 252 | apply (rule below_antisym [OF _ lower_plus_below1]) | 
| 26927 | 253 | apply (simp add: lower_plus_least) | 
| 254 | done | |
| 255 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 256 | lemma compact_lower_unit: "compact x \<Longrightarrow> compact {x}\<flat>"
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 257 | by (auto dest!: compact_basis.compact_imp_principal) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 258 | |
| 26927 | 259 | lemma compact_lower_unit_iff [simp]: "compact {x}\<flat> \<longleftrightarrow> compact x"
 | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 260 | apply (safe elim!: compact_lower_unit) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 261 | apply (simp only: compact_def lower_unit_below_iff [symmetric]) | 
| 40327 | 262 | apply (erule adm_subst [OF cont_Rep_cfun2]) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 263 | done | 
| 26927 | 264 | |
| 265 | lemma compact_lower_plus [simp]: | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 266 | "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs \<union>\<flat> ys)" | 
| 27289 | 267 | by (auto dest!: lower_pd.compact_imp_principal) | 
| 26927 | 268 | |
| 25904 | 269 | |
| 62175 | 270 | subsection \<open>Induction rules\<close> | 
| 25904 | 271 | |
| 272 | lemma lower_pd_induct1: | |
| 273 | assumes P: "adm P" | |
| 26927 | 274 |   assumes unit: "\<And>x. P {x}\<flat>"
 | 
| 25904 | 275 | assumes insert: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 276 |     "\<And>x ys. \<lbrakk>P {x}\<flat>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<flat> \<union>\<flat> ys)"
 | 
| 25904 | 277 | shows "P (xs::'a lower_pd)" | 
| 27289 | 278 | apply (induct xs rule: lower_pd.principal_induct, rule P) | 
| 279 | apply (induct_tac a rule: pd_basis_induct1) | |
| 25904 | 280 | apply (simp only: lower_unit_Rep_compact_basis [symmetric]) | 
| 281 | apply (rule unit) | |
| 282 | apply (simp only: lower_unit_Rep_compact_basis [symmetric] | |
| 283 | lower_plus_principal [symmetric]) | |
| 284 | apply (erule insert [OF unit]) | |
| 285 | done | |
| 286 | ||
| 40576 
fa5e0cacd5e7
declare {upper,lower,convex}_pd_induct as default induction rules
 huffman parents: 
40497diff
changeset | 287 | lemma lower_pd_induct | 
| 
fa5e0cacd5e7
declare {upper,lower,convex}_pd_induct as default induction rules
 huffman parents: 
40497diff
changeset | 288 | [case_names adm lower_unit lower_plus, induct type: lower_pd]: | 
| 25904 | 289 | assumes P: "adm P" | 
| 26927 | 290 |   assumes unit: "\<And>x. P {x}\<flat>"
 | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 291 | assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs \<union>\<flat> ys)" | 
| 25904 | 292 | shows "P (xs::'a lower_pd)" | 
| 27289 | 293 | apply (induct xs rule: lower_pd.principal_induct, rule P) | 
| 294 | apply (induct_tac a rule: pd_basis_induct) | |
| 25904 | 295 | apply (simp only: lower_unit_Rep_compact_basis [symmetric] unit) | 
| 296 | apply (simp only: lower_plus_principal [symmetric] plus) | |
| 297 | done | |
| 298 | ||
| 299 | ||
| 62175 | 300 | subsection \<open>Monadic bind\<close> | 
| 25904 | 301 | |
| 302 | definition | |
| 303 | lower_bind_basis :: | |
| 304 |   "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b lower_pd) \<rightarrow> 'b lower_pd" where
 | |
| 305 | "lower_bind_basis = fold_pd | |
| 306 | (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a)) | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 307 | (\<lambda>x y. \<Lambda> f. x\<cdot>f \<union>\<flat> y\<cdot>f)" | 
| 25904 | 308 | |
| 26927 | 309 | lemma ACI_lower_bind: | 
| 51489 | 310 | "semilattice (\<lambda>x y. \<Lambda> f. x\<cdot>f \<union>\<flat> y\<cdot>f)" | 
| 25904 | 311 | apply unfold_locales | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 312 | apply (simp add: lower_plus_assoc) | 
| 25904 | 313 | apply (simp add: lower_plus_commute) | 
| 29990 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 huffman parents: 
29672diff
changeset | 314 | apply (simp add: eta_cfun) | 
| 25904 | 315 | done | 
| 316 | ||
| 317 | lemma lower_bind_basis_simps [simp]: | |
| 318 | "lower_bind_basis (PDUnit a) = | |
| 319 | (\<Lambda> f. f\<cdot>(Rep_compact_basis a))" | |
| 320 | "lower_bind_basis (PDPlus t u) = | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 321 | (\<Lambda> f. lower_bind_basis t\<cdot>f \<union>\<flat> lower_bind_basis u\<cdot>f)" | 
| 25904 | 322 | unfolding lower_bind_basis_def | 
| 323 | apply - | |
| 26927 | 324 | apply (rule fold_pd_PDUnit [OF ACI_lower_bind]) | 
| 325 | apply (rule fold_pd_PDPlus [OF ACI_lower_bind]) | |
| 25904 | 326 | done | 
| 327 | ||
| 328 | lemma lower_bind_basis_mono: | |
| 329 | "t \<le>\<flat> u \<Longrightarrow> lower_bind_basis t \<sqsubseteq> lower_bind_basis u" | |
| 40002 
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
 huffman parents: 
39989diff
changeset | 330 | unfolding cfun_below_iff | 
| 25904 | 331 | apply (erule lower_le_induct, safe) | 
| 27289 | 332 | apply (simp add: monofun_cfun) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 333 | apply (simp add: rev_below_trans [OF lower_plus_below1]) | 
| 40734 | 334 | apply simp | 
| 25904 | 335 | done | 
| 336 | ||
| 337 | definition | |
| 338 |   lower_bind :: "'a lower_pd \<rightarrow> ('a \<rightarrow> 'b lower_pd) \<rightarrow> 'b lower_pd" where
 | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 339 | "lower_bind = lower_pd.extension lower_bind_basis" | 
| 25904 | 340 | |
| 41036 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 341 | syntax | 
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 342 | "_lower_bind" :: "[logic, logic, logic] \<Rightarrow> logic" | 
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 343 |     ("(3\<Union>\<flat>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 344 | |
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 345 | translations | 
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 346 | "\<Union>\<flat>x\<in>xs. e" == "CONST lower_bind\<cdot>xs\<cdot>(\<Lambda> x. e)" | 
| 
4acbacd6c5bc
add set-union-like syntax for powerdomain bind operators
 huffman parents: 
40888diff
changeset | 347 | |
| 25904 | 348 | lemma lower_bind_principal [simp]: | 
| 349 | "lower_bind\<cdot>(lower_principal t) = lower_bind_basis t" | |
| 350 | unfolding lower_bind_def | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41289diff
changeset | 351 | apply (rule lower_pd.extension_principal) | 
| 25904 | 352 | apply (erule lower_bind_basis_mono) | 
| 353 | done | |
| 354 | ||
| 355 | lemma lower_bind_unit [simp]: | |
| 26927 | 356 |   "lower_bind\<cdot>{x}\<flat>\<cdot>f = f\<cdot>x"
 | 
| 27289 | 357 | by (induct x rule: compact_basis.principal_induct, simp, simp) | 
| 25904 | 358 | |
| 359 | lemma lower_bind_plus [simp]: | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 360 | "lower_bind\<cdot>(xs \<union>\<flat> ys)\<cdot>f = lower_bind\<cdot>xs\<cdot>f \<union>\<flat> lower_bind\<cdot>ys\<cdot>f" | 
| 41402 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 361 | by (induct xs rule: lower_pd.principal_induct, simp, | 
| 
b647212cee03
remove lemma ideal_completion.principal_induct2, use principal_induct twice instead
 huffman parents: 
41399diff
changeset | 362 | induct ys rule: lower_pd.principal_induct, simp, simp) | 
| 25904 | 363 | |
| 364 | lemma lower_bind_strict [simp]: "lower_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>" | |
| 365 | unfolding lower_unit_strict [symmetric] by (rule lower_bind_unit) | |
| 366 | ||
| 40589 | 367 | lemma lower_bind_bind: | 
| 368 | "lower_bind\<cdot>(lower_bind\<cdot>xs\<cdot>f)\<cdot>g = lower_bind\<cdot>xs\<cdot>(\<Lambda> x. lower_bind\<cdot>(f\<cdot>x)\<cdot>g)" | |
| 369 | by (induct xs, simp_all) | |
| 370 | ||
| 25904 | 371 | |
| 62175 | 372 | subsection \<open>Map\<close> | 
| 25904 | 373 | |
| 374 | definition | |
| 375 |   lower_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a lower_pd \<rightarrow> 'b lower_pd" where
 | |
| 26927 | 376 |   "lower_map = (\<Lambda> f xs. lower_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<flat>))"
 | 
| 25904 | 377 | |
| 378 | lemma lower_map_unit [simp]: | |
| 26927 | 379 |   "lower_map\<cdot>f\<cdot>{x}\<flat> = {f\<cdot>x}\<flat>"
 | 
| 25904 | 380 | unfolding lower_map_def by simp | 
| 381 | ||
| 382 | lemma lower_map_plus [simp]: | |
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 383 | "lower_map\<cdot>f\<cdot>(xs \<union>\<flat> ys) = lower_map\<cdot>f\<cdot>xs \<union>\<flat> lower_map\<cdot>f\<cdot>ys" | 
| 25904 | 384 | unfolding lower_map_def by simp | 
| 385 | ||
| 40577 | 386 | lemma lower_map_bottom [simp]: "lower_map\<cdot>f\<cdot>\<bottom> = {f\<cdot>\<bottom>}\<flat>"
 | 
| 387 | unfolding lower_map_def by simp | |
| 388 | ||
| 25904 | 389 | lemma lower_map_ident: "lower_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs" | 
| 390 | by (induct xs rule: lower_pd_induct, simp_all) | |
| 391 | ||
| 33808 | 392 | lemma lower_map_ID: "lower_map\<cdot>ID = ID" | 
| 40002 
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
 huffman parents: 
39989diff
changeset | 393 | by (simp add: cfun_eq_iff ID_def lower_map_ident) | 
| 33808 | 394 | |
| 25904 | 395 | lemma lower_map_map: | 
| 396 | "lower_map\<cdot>f\<cdot>(lower_map\<cdot>g\<cdot>xs) = lower_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs" | |
| 397 | by (induct xs rule: lower_pd_induct, simp_all) | |
| 398 | ||
| 41110 | 399 | lemma lower_bind_map: | 
| 400 | "lower_bind\<cdot>(lower_map\<cdot>f\<cdot>xs)\<cdot>g = lower_bind\<cdot>xs\<cdot>(\<Lambda> x. g\<cdot>(f\<cdot>x))" | |
| 401 | by (simp add: lower_map_def lower_bind_bind) | |
| 402 | ||
| 403 | lemma lower_map_bind: | |
| 404 | "lower_map\<cdot>f\<cdot>(lower_bind\<cdot>xs\<cdot>g) = lower_bind\<cdot>xs\<cdot>(\<Lambda> x. lower_map\<cdot>f\<cdot>(g\<cdot>x))" | |
| 405 | by (simp add: lower_map_def lower_bind_bind) | |
| 406 | ||
| 33585 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 407 | lemma ep_pair_lower_map: "ep_pair e p \<Longrightarrow> ep_pair (lower_map\<cdot>e) (lower_map\<cdot>p)" | 
| 61169 | 408 | apply standard | 
| 33585 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 409 | apply (induct_tac x rule: lower_pd_induct, simp_all add: ep_pair.e_inverse) | 
| 35901 
12f09bf2c77f
fix LaTeX overfull hbox warnings in HOLCF document
 huffman parents: 
34973diff
changeset | 410 | apply (induct_tac y rule: lower_pd_induct) | 
| 40734 | 411 | apply (simp_all add: ep_pair.e_p_below monofun_cfun del: lower_plus_below_iff) | 
| 33585 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 412 | done | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 413 | |
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 414 | lemma deflation_lower_map: "deflation d \<Longrightarrow> deflation (lower_map\<cdot>d)" | 
| 61169 | 415 | apply standard | 
| 33585 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 416 | apply (induct_tac x rule: lower_pd_induct, simp_all add: deflation.idem) | 
| 35901 
12f09bf2c77f
fix LaTeX overfull hbox warnings in HOLCF document
 huffman parents: 
34973diff
changeset | 417 | apply (induct_tac x rule: lower_pd_induct) | 
| 40734 | 418 | apply (simp_all add: deflation.below monofun_cfun del: lower_plus_below_iff) | 
| 33585 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 419 | done | 
| 
8d39394fe5cf
ep_pair and deflation lemmas for powerdomain map functions
 huffman parents: 
31076diff
changeset | 420 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 421 | (* FIXME: long proof! *) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 422 | lemma finite_deflation_lower_map: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 423 | assumes "finite_deflation d" shows "finite_deflation (lower_map\<cdot>d)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 424 | proof (rule finite_deflation_intro) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 425 | interpret d: finite_deflation d by fact | 
| 67682 
00c436488398
tuned proofs -- prefer explicit names for facts from 'interpret';
 wenzelm parents: 
62175diff
changeset | 426 | from d.deflation_axioms show "deflation (lower_map\<cdot>d)" | 
| 
00c436488398
tuned proofs -- prefer explicit names for facts from 'interpret';
 wenzelm parents: 
62175diff
changeset | 427 | by (rule deflation_lower_map) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 428 | have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 429 | hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 430 | by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 431 | hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 432 | hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 433 | by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 434 | hence *: "finite (lower_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 435 | hence "finite (range (\<lambda>xs. lower_map\<cdot>d\<cdot>xs))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 436 | apply (rule rev_finite_subset) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 437 | apply clarsimp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 438 | apply (induct_tac xs rule: lower_pd.principal_induct) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 439 | apply (simp add: adm_mem_finite *) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 440 | apply (rename_tac t, induct_tac t rule: pd_basis_induct) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 441 | apply (simp only: lower_unit_Rep_compact_basis [symmetric] lower_map_unit) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 442 | apply simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 443 | apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b") | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 444 | apply clarsimp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 445 | apply (rule imageI) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 446 | apply (rule vimageI2) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 447 | apply (simp add: Rep_PDUnit) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 448 | apply (rule range_eqI) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 449 | apply (erule sym) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 450 | apply (rule exI) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 451 | apply (rule Abs_compact_basis_inverse [symmetric]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 452 | apply (simp add: d.compact) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 453 | apply (simp only: lower_plus_principal [symmetric] lower_map_plus) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 454 | apply clarsimp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 455 | apply (rule imageI) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 456 | apply (rule vimageI2) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 457 | apply (simp add: Rep_PDPlus) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 458 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 459 |   thus "finite {xs. lower_map\<cdot>d\<cdot>xs = xs}"
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 460 | by (rule finite_range_imp_finite_fixes) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 461 | qed | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 462 | |
| 62175 | 463 | subsection \<open>Lower powerdomain is bifinite\<close> | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 464 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 465 | lemma approx_chain_lower_map: | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 466 | assumes "approx_chain a" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 467 | shows "approx_chain (\<lambda>i. lower_map\<cdot>(a i))" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 468 | using assms unfolding approx_chain_def | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 469 | by (simp add: lub_APP lower_map_ID finite_deflation_lower_map) | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 470 | |
| 41288 
a19edebad961
powerdomain theories require class 'bifinite' instead of 'domain'
 huffman parents: 
41287diff
changeset | 471 | instance lower_pd :: (bifinite) bifinite | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 472 | proof | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 473 | show "\<exists>(a::nat \<Rightarrow> 'a lower_pd \<rightarrow> 'a lower_pd). approx_chain a" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 474 | using bifinite [where 'a='a] | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 475 | by (fast intro!: approx_chain_lower_map) | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 476 | qed | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41284diff
changeset | 477 | |
| 62175 | 478 | subsection \<open>Join\<close> | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 479 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 480 | definition | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 481 | lower_join :: "'a lower_pd lower_pd \<rightarrow> 'a lower_pd" where | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 482 | "lower_join = (\<Lambda> xss. lower_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 483 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 484 | lemma lower_join_unit [simp]: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 485 |   "lower_join\<cdot>{xs}\<flat> = xs"
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 486 | unfolding lower_join_def by simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 487 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 488 | lemma lower_join_plus [simp]: | 
| 41399 
ad093e4638e2
changed syntax of powerdomain binary union operators
 huffman parents: 
41394diff
changeset | 489 | "lower_join\<cdot>(xss \<union>\<flat> yss) = lower_join\<cdot>xss \<union>\<flat> lower_join\<cdot>yss" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 490 | unfolding lower_join_def by simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 491 | |
| 40577 | 492 | lemma lower_join_bottom [simp]: "lower_join\<cdot>\<bottom> = \<bottom>" | 
| 493 | unfolding lower_join_def by simp | |
| 494 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 495 | lemma lower_join_map_unit: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 496 | "lower_join\<cdot>(lower_map\<cdot>lower_unit\<cdot>xs) = xs" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 497 | by (induct xs rule: lower_pd_induct, simp_all) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 498 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 499 | lemma lower_join_map_join: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 500 | "lower_join\<cdot>(lower_map\<cdot>lower_join\<cdot>xsss) = lower_join\<cdot>(lower_join\<cdot>xsss)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 501 | by (induct xsss rule: lower_pd_induct, simp_all) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 502 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 503 | lemma lower_join_map_map: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 504 | "lower_join\<cdot>(lower_map\<cdot>(lower_map\<cdot>f)\<cdot>xss) = | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 505 | lower_map\<cdot>f\<cdot>(lower_join\<cdot>xss)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 506 | by (induct xss rule: lower_pd_induct, simp_all) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 507 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39970diff
changeset | 508 | end |