| author | blanchet | 
| Thu, 06 Dec 2012 16:49:48 +0100 | |
| changeset 50411 | c9023d78d1a6 | 
| parent 46575 | f1e387195a56 | 
| child 53374 | a14d2a854c02 | 
| permissions | -rw-r--r-- | 
| 19944 | 1  | 
(* Title: HOL/Library/Ramsey.thy  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
2  | 
Author: Tom Ridge. Converted to structured Isar by L C Paulson  | 
| 19944 | 3  | 
*)  | 
4  | 
||
5  | 
header "Ramsey's Theorem"  | 
|
6  | 
||
| 25594 | 7  | 
theory Ramsey  | 
| 30738 | 8  | 
imports Main Infinite_Set  | 
| 25594 | 9  | 
begin  | 
| 19944 | 10  | 
|
| 40695 | 11  | 
subsection{* Finite Ramsey theorem(s) *}
 | 
12  | 
||
13  | 
text{* To distinguish the finite and infinite ones, lower and upper case
 | 
|
14  | 
names are used.  | 
|
15  | 
||
16  | 
This is the most basic version in terms of cliques and independent  | 
|
17  | 
sets, i.e. the version for graphs and 2 colours. *}  | 
|
18  | 
||
19  | 
definition "clique V E = (\<forall>v\<in>V. \<forall>w\<in>V. v\<noteq>w \<longrightarrow> {v,w} : E)"
 | 
|
20  | 
definition "indep V E = (\<forall>v\<in>V. \<forall>w\<in>V. v\<noteq>w \<longrightarrow> \<not> {v,w} : E)"
 | 
|
21  | 
||
22  | 
lemma ramsey2:  | 
|
23  | 
"\<exists>r\<ge>1. \<forall> (V::'a set) (E::'a set set). finite V \<and> card V \<ge> r \<longrightarrow>  | 
|
24  | 
(\<exists> R \<subseteq> V. card R = m \<and> clique R E \<or> card R = n \<and> indep R E)"  | 
|
25  | 
(is "\<exists>r\<ge>1. ?R m n r")  | 
|
26  | 
proof(induct k == "m+n" arbitrary: m n)  | 
|
27  | 
case 0  | 
|
28  | 
show ?case (is "EX r. ?R r")  | 
|
29  | 
proof  | 
|
30  | 
show "?R 1" using 0  | 
|
31  | 
by (clarsimp simp: indep_def)(metis card.empty emptyE empty_subsetI)  | 
|
32  | 
qed  | 
|
33  | 
next  | 
|
34  | 
case (Suc k)  | 
|
35  | 
  { assume "m=0"
 | 
|
36  | 
have ?case (is "EX r. ?R r")  | 
|
37  | 
proof  | 
|
38  | 
show "?R 1" using `m=0`  | 
|
39  | 
by (simp add:clique_def)(metis card.empty emptyE empty_subsetI)  | 
|
40  | 
qed  | 
|
41  | 
} moreover  | 
|
42  | 
  { assume "n=0"
 | 
|
43  | 
have ?case (is "EX r. ?R r")  | 
|
44  | 
proof  | 
|
45  | 
show "?R 1" using `n=0`  | 
|
46  | 
by (simp add:indep_def)(metis card.empty emptyE empty_subsetI)  | 
|
47  | 
qed  | 
|
48  | 
} moreover  | 
|
49  | 
  { assume "m\<noteq>0" "n\<noteq>0"
 | 
|
| 46575 | 50  | 
then have "k = (m - 1) + n" "k = m + (n - 1)" using `Suc k = m+n` by auto  | 
51  | 
from Suc(1)[OF this(1)] Suc(1)[OF this(2)]  | 
|
| 40695 | 52  | 
obtain r1 r2 where "r1\<ge>1" "r2\<ge>1" "?R (m - 1) n r1" "?R m (n - 1) r2"  | 
53  | 
by auto  | 
|
| 46575 | 54  | 
then have "r1+r2 \<ge> 1" by arith  | 
| 40695 | 55  | 
moreover  | 
56  | 
have "?R m n (r1+r2)" (is "ALL V E. _ \<longrightarrow> ?EX V E m n")  | 
|
57  | 
proof clarify  | 
|
58  | 
fix V :: "'a set" and E :: "'a set set"  | 
|
59  | 
assume "finite V" "r1+r2 \<le> card V"  | 
|
60  | 
      with `r1\<ge>1` have "V \<noteq> {}" by auto
 | 
|
61  | 
then obtain v where "v : V" by blast  | 
|
62  | 
      let ?M = "{w : V. w\<noteq>v & {v,w} : E}"
 | 
|
63  | 
      let ?N = "{w : V. w\<noteq>v & {v,w} ~: E}"
 | 
|
64  | 
have "V = insert v (?M \<union> ?N)" using `v : V` by auto  | 
|
| 46575 | 65  | 
then have "card V = card(insert v (?M \<union> ?N))" by metis  | 
| 40695 | 66  | 
also have "\<dots> = card ?M + card ?N + 1" using `finite V`  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
40695 
diff
changeset
 | 
67  | 
by(fastforce intro: card_Un_disjoint)  | 
| 40695 | 68  | 
finally have "card V = card ?M + card ?N + 1" .  | 
| 46575 | 69  | 
then have "r1+r2 \<le> card ?M + card ?N + 1" using `r1+r2 \<le> card V` by simp  | 
70  | 
then have "r1 \<le> card ?M \<or> r2 \<le> card ?N" by arith  | 
|
| 40695 | 71  | 
moreover  | 
72  | 
      { assume "r1 \<le> card ?M"
 | 
|
73  | 
moreover have "finite ?M" using `finite V` by auto  | 
|
74  | 
ultimately have "?EX ?M E (m - 1) n" using `?R (m - 1) n r1` by blast  | 
|
75  | 
then obtain R where "R \<subseteq> ?M" "v ~: R" and  | 
|
76  | 
CI: "card R = m - 1 \<and> clique R E \<or>  | 
|
77  | 
card R = n \<and> indep R E" (is "?C \<or> ?I")  | 
|
78  | 
by blast  | 
|
79  | 
have "R <= V" using `R <= ?M` by auto  | 
|
80  | 
have "finite R" using `finite V` `R \<subseteq> V` by (metis finite_subset)  | 
|
81  | 
        { assume "?I"
 | 
|
82  | 
with `R <= V` have "?EX V E m n" by blast  | 
|
83  | 
} moreover  | 
|
84  | 
        { assume "?C"
 | 
|
| 46575 | 85  | 
then have "clique (insert v R) E" using `R <= ?M`  | 
| 40695 | 86  | 
by(auto simp:clique_def insert_commute)  | 
87  | 
moreover have "card(insert v R) = m"  | 
|
88  | 
using `?C` `finite R` `v ~: R` `m\<noteq>0` by simp  | 
|
89  | 
ultimately have "?EX V E m n" using `R <= V` `v : V` by blast  | 
|
90  | 
} ultimately have "?EX V E m n" using CI by blast  | 
|
91  | 
} moreover  | 
|
92  | 
      { assume "r2 \<le> card ?N"
 | 
|
93  | 
moreover have "finite ?N" using `finite V` by auto  | 
|
94  | 
ultimately have "?EX ?N E m (n - 1)" using `?R m (n - 1) r2` by blast  | 
|
95  | 
then obtain R where "R \<subseteq> ?N" "v ~: R" and  | 
|
96  | 
CI: "card R = m \<and> clique R E \<or>  | 
|
97  | 
card R = n - 1 \<and> indep R E" (is "?C \<or> ?I")  | 
|
98  | 
by blast  | 
|
99  | 
have "R <= V" using `R <= ?N` by auto  | 
|
100  | 
have "finite R" using `finite V` `R \<subseteq> V` by (metis finite_subset)  | 
|
101  | 
        { assume "?C"
 | 
|
102  | 
with `R <= V` have "?EX V E m n" by blast  | 
|
103  | 
} moreover  | 
|
104  | 
        { assume "?I"
 | 
|
| 46575 | 105  | 
then have "indep (insert v R) E" using `R <= ?N`  | 
| 40695 | 106  | 
by(auto simp:indep_def insert_commute)  | 
107  | 
moreover have "card(insert v R) = n"  | 
|
108  | 
using `?I` `finite R` `v ~: R` `n\<noteq>0` by simp  | 
|
109  | 
ultimately have "?EX V E m n" using `R <= V` `v : V` by blast  | 
|
110  | 
} ultimately have "?EX V E m n" using CI by blast  | 
|
111  | 
} ultimately show "?EX V E m n" by blast  | 
|
112  | 
qed  | 
|
113  | 
ultimately have ?case by blast  | 
|
114  | 
} ultimately show ?case by blast  | 
|
115  | 
qed  | 
|
116  | 
||
117  | 
||
| 22665 | 118  | 
subsection {* Preliminaries *}
 | 
| 19944 | 119  | 
|
| 22665 | 120  | 
subsubsection {* ``Axiom'' of Dependent Choice *}
 | 
| 19944 | 121  | 
|
| 34941 | 122  | 
primrec choice :: "('a => bool) => ('a * 'a) set => nat => 'a" where
 | 
| 19944 | 123  | 
  --{*An integer-indexed chain of choices*}
 | 
| 34941 | 124  | 
choice_0: "choice P r 0 = (SOME x. P x)"  | 
125  | 
| choice_Suc: "choice P r (Suc n) = (SOME y. P y & (choice P r n, y) \<in> r)"  | 
|
| 19944 | 126  | 
|
| 46575 | 127  | 
lemma choice_n:  | 
| 19944 | 128  | 
assumes P0: "P x0"  | 
129  | 
and Pstep: "!!x. P x ==> \<exists>y. P y & (x,y) \<in> r"  | 
|
130  | 
shows "P (choice P r n)"  | 
|
| 19948 | 131  | 
proof (induct n)  | 
| 46575 | 132  | 
case 0 show ?case by (force intro: someI P0)  | 
| 19948 | 133  | 
next  | 
| 46575 | 134  | 
case Suc then show ?case by (auto intro: someI2_ex [OF Pstep])  | 
| 19948 | 135  | 
qed  | 
| 19944 | 136  | 
|
| 46575 | 137  | 
lemma dependent_choice:  | 
| 19944 | 138  | 
assumes trans: "trans r"  | 
139  | 
and P0: "P x0"  | 
|
140  | 
and Pstep: "!!x. P x ==> \<exists>y. P y & (x,y) \<in> r"  | 
|
| 19954 | 141  | 
obtains f :: "nat => 'a" where  | 
142  | 
"!!n. P (f n)" and "!!n m. n < m ==> (f n, f m) \<in> r"  | 
|
143  | 
proof  | 
|
144  | 
fix n  | 
|
145  | 
show "P (choice P r n)" by (blast intro: choice_n [OF P0 Pstep])  | 
|
| 19944 | 146  | 
next  | 
| 46575 | 147  | 
have PSuc: "\<forall>n. (choice P r n, choice P r (Suc n)) \<in> r"  | 
| 19944 | 148  | 
using Pstep [OF choice_n [OF P0 Pstep]]  | 
149  | 
by (auto intro: someI2_ex)  | 
|
| 19954 | 150  | 
fix n m :: nat  | 
151  | 
assume less: "n < m"  | 
|
152  | 
show "(choice P r n, choice P r m) \<in> r" using PSuc  | 
|
153  | 
by (auto intro: less_Suc_induct [OF less] transD [OF trans])  | 
|
154  | 
qed  | 
|
| 19944 | 155  | 
|
156  | 
||
| 22665 | 157  | 
subsubsection {* Partitions of a Set *}
 | 
| 19944 | 158  | 
|
| 46575 | 159  | 
definition part :: "nat => nat => 'a set => ('a set => nat) => bool"
 | 
| 19944 | 160  | 
  --{*the function @{term f} partitions the @{term r}-subsets of the typically
 | 
161  | 
       infinite set @{term Y} into @{term s} distinct categories.*}
 | 
|
| 21634 | 162  | 
where  | 
| 19948 | 163  | 
"part r s Y f = (\<forall>X. X \<subseteq> Y & finite X & card X = r --> f X < s)"  | 
| 19944 | 164  | 
|
165  | 
text{*For induction, we decrease the value of @{term r} in partitions.*}
 | 
|
166  | 
lemma part_Suc_imp_part:  | 
|
| 46575 | 167  | 
"[| infinite Y; part (Suc r) s Y f; y \<in> Y |]  | 
| 19944 | 168  | 
      ==> part r s (Y - {y}) (%u. f (insert y u))"
 | 
169  | 
apply(simp add: part_def, clarify)  | 
|
170  | 
apply(drule_tac x="insert y X" in spec)  | 
|
| 24853 | 171  | 
apply(force)  | 
| 19944 | 172  | 
done  | 
173  | 
||
| 46575 | 174  | 
lemma part_subset: "part r s YY f ==> Y \<subseteq> YY ==> part r s Y f"  | 
| 19948 | 175  | 
unfolding part_def by blast  | 
| 46575 | 176  | 
|
| 19944 | 177  | 
|
| 22665 | 178  | 
subsection {* Ramsey's Theorem: Infinitary Version *}
 | 
| 19944 | 179  | 
|
| 46575 | 180  | 
lemma Ramsey_induction:  | 
| 19954 | 181  | 
fixes s and r::nat  | 
| 19944 | 182  | 
shows  | 
| 46575 | 183  | 
"!!(YY::'a set) (f::'a set => nat).  | 
| 19944 | 184  | 
[|infinite YY; part r s YY f|]  | 
| 46575 | 185  | 
==> \<exists>Y' t'. Y' \<subseteq> YY & infinite Y' & t' < s &  | 
| 19944 | 186  | 
(\<forall>X. X \<subseteq> Y' & finite X & card X = r --> f X = t')"  | 
187  | 
proof (induct r)  | 
|
188  | 
case 0  | 
|
| 46575 | 189  | 
then show ?case by (auto simp add: part_def card_eq_0_iff cong: conj_cong)  | 
| 19944 | 190  | 
next  | 
| 46575 | 191  | 
case (Suc r)  | 
| 19944 | 192  | 
show ?case  | 
193  | 
proof -  | 
|
194  | 
from Suc.prems infinite_imp_nonempty obtain yy where yy: "yy \<in> YY" by blast  | 
|
195  | 
    let ?ramr = "{((y,Y,t),(y',Y',t')). y' \<in> Y & Y' \<subseteq> Y}"
 | 
|
| 46575 | 196  | 
let ?propr = "%(y,Y,t).  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
197  | 
y \<in> YY & y \<notin> Y & Y \<subseteq> YY & infinite Y & t < s  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
198  | 
& (\<forall>X. X\<subseteq>Y & finite X & card X = r --> (f o insert y) X = t)"  | 
| 19944 | 199  | 
    have infYY': "infinite (YY-{yy})" using Suc.prems by auto
 | 
200  | 
    have partf': "part r s (YY - {yy}) (f \<circ> insert yy)"
 | 
|
201  | 
by (simp add: o_def part_Suc_imp_part yy Suc.prems)  | 
|
| 46575 | 202  | 
have transr: "trans ?ramr" by (force simp add: trans_def)  | 
| 19944 | 203  | 
from Suc.hyps [OF infYY' partf']  | 
204  | 
obtain Y0 and t0  | 
|
205  | 
    where "Y0 \<subseteq> YY - {yy}"  "infinite Y0"  "t0 < s"
 | 
|
206  | 
"\<forall>X. X\<subseteq>Y0 \<and> finite X \<and> card X = r \<longrightarrow> (f \<circ> insert yy) X = t0"  | 
|
| 46575 | 207  | 
by blast  | 
| 19944 | 208  | 
with yy have propr0: "?propr(yy,Y0,t0)" by blast  | 
| 46575 | 209  | 
have proprstep: "\<And>x. ?propr x \<Longrightarrow> \<exists>y. ?propr y \<and> (x, y) \<in> ?ramr"  | 
| 19944 | 210  | 
proof -  | 
211  | 
fix x  | 
|
| 46575 | 212  | 
assume px: "?propr x" then show "?thesis x"  | 
| 19944 | 213  | 
proof (cases x)  | 
214  | 
case (fields yx Yx tx)  | 
|
215  | 
then obtain yx' where yx': "yx' \<in> Yx" using px  | 
|
216  | 
by (blast dest: infinite_imp_nonempty)  | 
|
217  | 
        have infYx': "infinite (Yx-{yx'})" using fields px by auto
 | 
|
218  | 
with fields px yx' Suc.prems  | 
|
219  | 
        have partfx': "part r s (Yx - {yx'}) (f \<circ> insert yx')"
 | 
|
| 35175 | 220  | 
by (simp add: o_def part_Suc_imp_part part_subset [where YY=YY and Y=Yx])  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
221  | 
from Suc.hyps [OF infYx' partfx']  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
222  | 
obtain Y' and t'  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
223  | 
        where Y': "Y' \<subseteq> Yx - {yx'}"  "infinite Y'"  "t' < s"
 | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
224  | 
"\<forall>X. X\<subseteq>Y' \<and> finite X \<and> card X = r \<longrightarrow> (f \<circ> insert yx') X = t'"  | 
| 46575 | 225  | 
by blast  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
226  | 
show ?thesis  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
227  | 
proof  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
228  | 
show "?propr (yx',Y',t') & (x, (yx',Y',t')) \<in> ?ramr"  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
229  | 
using fields Y' yx' px by blast  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
230  | 
qed  | 
| 19944 | 231  | 
qed  | 
232  | 
qed  | 
|
233  | 
from dependent_choice [OF transr propr0 proprstep]  | 
|
| 19946 | 234  | 
obtain g where pg: "!!n::nat. ?propr (g n)"  | 
| 19954 | 235  | 
and rg: "!!n m. n<m ==> (g n, g m) \<in> ?ramr" by blast  | 
| 28741 | 236  | 
let ?gy = "fst o g"  | 
237  | 
let ?gt = "snd o snd o g"  | 
|
| 19944 | 238  | 
    have rangeg: "\<exists>k. range ?gt \<subseteq> {..<k}"
 | 
239  | 
proof (intro exI subsetI)  | 
|
240  | 
fix x  | 
|
241  | 
assume "x \<in> range ?gt"  | 
|
242  | 
then obtain n where "x = ?gt n" ..  | 
|
243  | 
      with pg [of n] show "x \<in> {..<s}" by (cases "g n") auto
 | 
|
244  | 
qed  | 
|
| 20810 | 245  | 
have "finite (range ?gt)"  | 
246  | 
by (simp add: finite_nat_iff_bounded rangeg)  | 
|
| 19944 | 247  | 
then obtain s' and n'  | 
| 20810 | 248  | 
where s': "s' = ?gt n'"  | 
249  | 
        and infeqs': "infinite {n. ?gt n = s'}"
 | 
|
250  | 
by (rule inf_img_fin_domE) (auto simp add: vimage_def intro: nat_infinite)  | 
|
| 19944 | 251  | 
with pg [of n'] have less': "s'<s" by (cases "g n'") auto  | 
252  | 
have inj_gy: "inj ?gy"  | 
|
253  | 
proof (rule linorder_injI)  | 
|
| 19949 | 254  | 
fix m m' :: nat assume less: "m < m'" show "?gy m \<noteq> ?gy m'"  | 
| 19948 | 255  | 
using rg [OF less] pg [of m] by (cases "g m", cases "g m'") auto  | 
| 19944 | 256  | 
qed  | 
257  | 
show ?thesis  | 
|
258  | 
proof (intro exI conjI)  | 
|
259  | 
      show "?gy ` {n. ?gt n = s'} \<subseteq> YY" using pg
 | 
|
| 46575 | 260  | 
by (auto simp add: Let_def split_beta)  | 
| 19944 | 261  | 
      show "infinite (?gy ` {n. ?gt n = s'})" using infeqs'
 | 
| 46575 | 262  | 
by (blast intro: inj_gy [THEN subset_inj_on] dest: finite_imageD)  | 
| 19944 | 263  | 
show "s' < s" by (rule less')  | 
| 46575 | 264  | 
      show "\<forall>X. X \<subseteq> ?gy ` {n. ?gt n = s'} & finite X & card X = Suc r
 | 
| 19944 | 265  | 
--> f X = s'"  | 
266  | 
proof -  | 
|
| 46575 | 267  | 
        {fix X
 | 
| 19944 | 268  | 
         assume "X \<subseteq> ?gy ` {n. ?gt n = s'}"
 | 
269  | 
and cardX: "finite X" "card X = Suc r"  | 
|
| 46575 | 270  | 
         then obtain AA where AA: "AA \<subseteq> {n. ?gt n = s'}" and Xeq: "X = ?gy`AA"
 | 
271  | 
by (auto simp add: subset_image_iff)  | 
|
| 19944 | 272  | 
         with cardX have "AA\<noteq>{}" by auto
 | 
| 46575 | 273  | 
then have AAleast: "(LEAST x. x \<in> AA) \<in> AA" by (auto intro: LeastI_ex)  | 
| 19944 | 274  | 
have "f X = s'"  | 
| 46575 | 275  | 
proof (cases "g (LEAST x. x \<in> AA)")  | 
| 19944 | 276  | 
case (fields ya Ya ta)  | 
| 46575 | 277  | 
with AAleast Xeq  | 
278  | 
have ya: "ya \<in> X" by (force intro!: rev_image_eqI)  | 
|
279  | 
           then have "f X = f (insert ya (X - {ya}))" by (simp add: insert_absorb)
 | 
|
280  | 
also have "... = ta"  | 
|
| 19944 | 281  | 
proof -  | 
282  | 
             have "X - {ya} \<subseteq> Ya"
 | 
|
| 46575 | 283  | 
proof  | 
| 19954 | 284  | 
               fix x assume x: "x \<in> X - {ya}"
 | 
| 46575 | 285  | 
then obtain a' where xeq: "x = ?gy a'" and a': "a' \<in> AA"  | 
286  | 
by (auto simp add: Xeq)  | 
|
287  | 
then have "a' \<noteq> (LEAST x. x \<in> AA)" using x fields by auto  | 
|
288  | 
then have lessa': "(LEAST x. x \<in> AA) < a'"  | 
|
| 19944 | 289  | 
using Least_le [of "%x. x \<in> AA", OF a'] by arith  | 
290  | 
show "x \<in> Ya" using xeq fields rg [OF lessa'] by auto  | 
|
291  | 
qed  | 
|
292  | 
moreover  | 
|
293  | 
             have "card (X - {ya}) = r"
 | 
|
| 24853 | 294  | 
by (simp add: cardX ya)  | 
| 46575 | 295  | 
ultimately show ?thesis  | 
| 19944 | 296  | 
using pg [of "LEAST x. x \<in> AA"] fields cardX  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30738 
diff
changeset
 | 
297  | 
by (clarsimp simp del:insert_Diff_single)  | 
| 19944 | 298  | 
qed  | 
299  | 
also have "... = s'" using AA AAleast fields by auto  | 
|
300  | 
finally show ?thesis .  | 
|
301  | 
qed}  | 
|
| 46575 | 302  | 
then show ?thesis by blast  | 
303  | 
qed  | 
|
304  | 
qed  | 
|
| 19944 | 305  | 
qed  | 
306  | 
qed  | 
|
307  | 
||
308  | 
||
309  | 
theorem Ramsey:  | 
|
| 19949 | 310  | 
fixes s r :: nat and Z::"'a set" and f::"'a set => nat"  | 
| 19944 | 311  | 
shows  | 
312  | 
"[|infinite Z;  | 
|
313  | 
\<forall>X. X \<subseteq> Z & finite X & card X = r --> f X < s|]  | 
|
| 46575 | 314  | 
==> \<exists>Y t. Y \<subseteq> Z & infinite Y & t < s  | 
| 19944 | 315  | 
& (\<forall>X. X \<subseteq> Y & finite X & card X = r --> f X = t)"  | 
| 19954 | 316  | 
by (blast intro: Ramsey_induction [unfolded part_def])  | 
317  | 
||
318  | 
||
319  | 
corollary Ramsey2:  | 
|
320  | 
fixes s::nat and Z::"'a set" and f::"'a set => nat"  | 
|
321  | 
assumes infZ: "infinite Z"  | 
|
322  | 
      and part: "\<forall>x\<in>Z. \<forall>y\<in>Z. x\<noteq>y --> f{x,y} < s"
 | 
|
323  | 
shows  | 
|
324  | 
   "\<exists>Y t. Y \<subseteq> Z & infinite Y & t < s & (\<forall>x\<in>Y. \<forall>y\<in>Y. x\<noteq>y --> f{x,y} = t)"
 | 
|
325  | 
proof -  | 
|
326  | 
have part2: "\<forall>X. X \<subseteq> Z & finite X & card X = 2 --> f X < s"  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
40695 
diff
changeset
 | 
327  | 
using part by (fastforce simp add: eval_nat_numeral card_Suc_eq)  | 
| 46575 | 328  | 
obtain Y t  | 
| 19954 | 329  | 
where "Y \<subseteq> Z" "infinite Y" "t < s"  | 
330  | 
"(\<forall>X. X \<subseteq> Y & finite X & card X = 2 --> f X = t)"  | 
|
331  | 
by (insert Ramsey [OF infZ part2]) auto  | 
|
332  | 
  moreover from this have  "\<forall>x\<in>Y. \<forall>y\<in>Y. x \<noteq> y \<longrightarrow> f {x, y} = t" by auto
 | 
|
333  | 
ultimately show ?thesis by iprover  | 
|
334  | 
qed  | 
|
335  | 
||
336  | 
||
| 22665 | 337  | 
subsection {* Disjunctive Well-Foundedness *}
 | 
| 19954 | 338  | 
|
| 22367 | 339  | 
text {*
 | 
340  | 
An application of Ramsey's theorem to program termination. See  | 
|
341  | 
  \cite{Podelski-Rybalchenko}.
 | 
|
| 19954 | 342  | 
*}  | 
343  | 
||
| 46575 | 344  | 
definition disj_wf :: "('a * 'a)set => bool"
 | 
345  | 
where "disj_wf r = (\<exists>T. \<exists>n::nat. (\<forall>i<n. wf(T i)) & r = (\<Union>i<n. T i))"  | 
|
| 19954 | 346  | 
|
| 46575 | 347  | 
definition transition_idx :: "[nat => 'a, nat => ('a*'a)set, nat set] => nat"
 | 
348  | 
where  | 
|
349  | 
"transition_idx s T A =  | 
|
350  | 
      (LEAST k. \<exists>i j. A = {i,j} & i<j & (s j, s i) \<in> T k)"
 | 
|
| 19954 | 351  | 
|
352  | 
||
353  | 
lemma transition_idx_less:  | 
|
354  | 
    "[|i<j; (s j, s i) \<in> T k; k<n|] ==> transition_idx s T {i,j} < n"
 | 
|
| 46575 | 355  | 
apply (subgoal_tac "transition_idx s T {i, j} \<le> k", simp)
 | 
356  | 
apply (simp add: transition_idx_def, blast intro: Least_le)  | 
|
| 19954 | 357  | 
done  | 
358  | 
||
359  | 
lemma transition_idx_in:  | 
|
360  | 
    "[|i<j; (s j, s i) \<in> T k|] ==> (s j, s i) \<in> T (transition_idx s T {i,j})"
 | 
|
| 46575 | 361  | 
apply (simp add: transition_idx_def doubleton_eq_iff conj_disj_distribR  | 
362  | 
cong: conj_cong)  | 
|
363  | 
apply (erule LeastI)  | 
|
| 19954 | 364  | 
done  | 
365  | 
||
366  | 
text{*To be equal to the union of some well-founded relations is equivalent
 | 
|
367  | 
to being the subset of such a union.*}  | 
|
368  | 
lemma disj_wf:  | 
|
369  | 
"disj_wf(r) = (\<exists>T. \<exists>n::nat. (\<forall>i<n. wf(T i)) & r \<subseteq> (\<Union>i<n. T i))"  | 
|
| 46575 | 370  | 
apply (auto simp add: disj_wf_def)  | 
371  | 
apply (rule_tac x="%i. T i Int r" in exI)  | 
|
372  | 
apply (rule_tac x=n in exI)  | 
|
373  | 
apply (force simp add: wf_Int1)  | 
|
| 19954 | 374  | 
done  | 
375  | 
||
376  | 
theorem trans_disj_wf_implies_wf:  | 
|
377  | 
assumes transr: "trans r"  | 
|
378  | 
and dwf: "disj_wf(r)"  | 
|
379  | 
shows "wf r"  | 
|
380  | 
proof (simp only: wf_iff_no_infinite_down_chain, rule notI)  | 
|
381  | 
assume "\<exists>s. \<forall>i. (s (Suc i), s i) \<in> r"  | 
|
382  | 
then obtain s where sSuc: "\<forall>i. (s (Suc i), s i) \<in> r" ..  | 
|
383  | 
have s: "!!i j. i < j ==> (s j, s i) \<in> r"  | 
|
384  | 
proof -  | 
|
385  | 
fix i and j::nat  | 
|
386  | 
assume less: "i<j"  | 
|
| 46575 | 387  | 
then show "(s j, s i) \<in> r"  | 
| 19954 | 388  | 
proof (rule less_Suc_induct)  | 
| 46575 | 389  | 
show "\<And>i. (s (Suc i), s i) \<in> r" by (simp add: sSuc)  | 
| 19954 | 390  | 
show "\<And>i j k. \<lbrakk>(s j, s i) \<in> r; (s k, s j) \<in> r\<rbrakk> \<Longrightarrow> (s k, s i) \<in> r"  | 
| 46575 | 391  | 
using transr by (unfold trans_def, blast)  | 
| 19954 | 392  | 
qed  | 
| 46575 | 393  | 
qed  | 
| 19954 | 394  | 
from dwf  | 
395  | 
obtain T and n::nat where wfT: "\<forall>k<n. wf(T k)" and r: "r = (\<Union>k<n. T k)"  | 
|
396  | 
by (auto simp add: disj_wf_def)  | 
|
397  | 
have s_in_T: "\<And>i j. i<j ==> \<exists>k. (s j, s i) \<in> T k & k<n"  | 
|
398  | 
proof -  | 
|
399  | 
fix i and j::nat  | 
|
400  | 
assume less: "i<j"  | 
|
| 46575 | 401  | 
then have "(s j, s i) \<in> r" by (rule s [of i j])  | 
402  | 
then show "\<exists>k. (s j, s i) \<in> T k & k<n" by (auto simp add: r)  | 
|
403  | 
qed  | 
|
| 19954 | 404  | 
  have trless: "!!i j. i\<noteq>j ==> transition_idx s T {i,j} < n"
 | 
405  | 
apply (auto simp add: linorder_neq_iff)  | 
|
| 46575 | 406  | 
apply (blast dest: s_in_T transition_idx_less)  | 
407  | 
apply (subst insert_commute)  | 
|
408  | 
apply (blast dest: s_in_T transition_idx_less)  | 
|
| 19954 | 409  | 
done  | 
410  | 
have  | 
|
| 46575 | 411  | 
"\<exists>K k. K \<subseteq> UNIV & infinite K & k < n &  | 
| 19954 | 412  | 
          (\<forall>i\<in>K. \<forall>j\<in>K. i\<noteq>j --> transition_idx s T {i,j} = k)"
 | 
| 46575 | 413  | 
by (rule Ramsey2) (auto intro: trless nat_infinite)  | 
414  | 
then obtain K and k  | 
|
| 19954 | 415  | 
where infK: "infinite K" and less: "k < n" and  | 
416  | 
          allk: "\<forall>i\<in>K. \<forall>j\<in>K. i\<noteq>j --> transition_idx s T {i,j} = k"
 | 
|
417  | 
by auto  | 
|
418  | 
have "\<forall>m. (s (enumerate K (Suc m)), s(enumerate K m)) \<in> T k"  | 
|
419  | 
proof  | 
|
420  | 
fix m::nat  | 
|
421  | 
let ?j = "enumerate K (Suc m)"  | 
|
422  | 
let ?i = "enumerate K m"  | 
|
| 46575 | 423  | 
have jK: "?j \<in> K" by (simp add: enumerate_in_set infK)  | 
424  | 
have iK: "?i \<in> K" by (simp add: enumerate_in_set infK)  | 
|
425  | 
have ij: "?i < ?j" by (simp add: enumerate_step infK)  | 
|
426  | 
    have ijk: "transition_idx s T {?i,?j} = k" using iK jK ij
 | 
|
| 19954 | 427  | 
by (simp add: allk)  | 
| 46575 | 428  | 
obtain k' where "(s ?j, s ?i) \<in> T k'" "k'<n"  | 
| 19954 | 429  | 
using s_in_T [OF ij] by blast  | 
| 46575 | 430  | 
then show "(s ?j, s ?i) \<in> T k"  | 
431  | 
by (simp add: ijk [symmetric] transition_idx_in ij)  | 
|
| 19954 | 432  | 
qed  | 
| 46575 | 433  | 
then have "~ wf(T k)" by (force simp add: wf_iff_no_infinite_down_chain)  | 
434  | 
then show False using wfT less by blast  | 
|
| 19954 | 435  | 
qed  | 
436  | 
||
| 19944 | 437  | 
end  |