src/HOL/Analysis/Extended_Real_Limits.thy
author wenzelm
Mon, 05 Nov 2018 20:53:16 +0100
changeset 69242 c911716d29bb
parent 69221 21ee588bac7d
child 69260 0a9688695a1b
permissions -rw-r--r--
more robust: avoid isabelle_stack invocation in settings script (potentially slow or failing);
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63627
6ddb43c6b711 rename HOL-Multivariate_Analysis to HOL-Analysis.
hoelzl
parents: 62843
diff changeset
     1
(*  Title:      HOL/Analysis/Extended_Real_Limits.thy
41983
2dc6e382a58b standardized headers;
wenzelm
parents: 41981
diff changeset
     2
    Author:     Johannes Hölzl, TU München
2dc6e382a58b standardized headers;
wenzelm
parents: 41981
diff changeset
     3
    Author:     Robert Himmelmann, TU München
2dc6e382a58b standardized headers;
wenzelm
parents: 41981
diff changeset
     4
    Author:     Armin Heller, TU München
2dc6e382a58b standardized headers;
wenzelm
parents: 41981
diff changeset
     5
    Author:     Bogdan Grechuk, University of Edinburgh
2dc6e382a58b standardized headers;
wenzelm
parents: 41981
diff changeset
     6
*)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
     7
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
     8
section%important \<open>Limits on the Extended real number line\<close> (* TO FIX: perhaps put all Nonstandard Analysis related
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
     9
topics together? *)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    10
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    11
theory Extended_Real_Limits
61560
7c985fd653c5 tuned imports;
wenzelm
parents: 61245
diff changeset
    12
imports
7c985fd653c5 tuned imports;
wenzelm
parents: 61245
diff changeset
    13
  Topology_Euclidean_Space
66453
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 64320
diff changeset
    14
  "HOL-Library.Extended_Real"
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 64320
diff changeset
    15
  "HOL-Library.Extended_Nonnegative_Real"
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 64320
diff changeset
    16
  "HOL-Library.Indicator_Function"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    17
begin
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    18
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
    19
lemma%important compact_UNIV:
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    20
  "compact (UNIV :: 'a::{complete_linorder,linorder_topology,second_countable_topology} set)"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
    21
  using%unimportant compact_complete_linorder
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    22
  by (auto simp: seq_compact_eq_compact[symmetric] seq_compact_def)
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    23
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
    24
lemma%important compact_eq_closed:
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    25
  fixes S :: "'a::{complete_linorder,linorder_topology,second_countable_topology} set"
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    26
  shows "compact S \<longleftrightarrow> closed S"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
    27
  using%unimportant closed_Int_compact[of S, OF _ compact_UNIV] compact_imp_closed
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    28
  by auto
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    29
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
    30
lemma%important closed_contains_Sup_cl:
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    31
  fixes S :: "'a::{complete_linorder,linorder_topology,second_countable_topology} set"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    32
  assumes "closed S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    33
    and "S \<noteq> {}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    34
  shows "Sup S \<in> S"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
    35
proof%unimportant -
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    36
  from compact_eq_closed[of S] compact_attains_sup[of S] assms
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    37
  obtain s where S: "s \<in> S" "\<forall>t\<in>S. t \<le> s"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    38
    by auto
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51641
diff changeset
    39
  then have "Sup S = s"
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    40
    by (auto intro!: Sup_eqI)
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51641
diff changeset
    41
  with S show ?thesis
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    42
    by simp
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    43
qed
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    44
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
    45
lemma%important closed_contains_Inf_cl:
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    46
  fixes S :: "'a::{complete_linorder,linorder_topology,second_countable_topology} set"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    47
  assumes "closed S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    48
    and "S \<noteq> {}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    49
  shows "Inf S \<in> S"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
    50
proof%unimportant -
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    51
  from compact_eq_closed[of S] compact_attains_inf[of S] assms
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    52
  obtain s where S: "s \<in> S" "\<forall>t\<in>S. s \<le> t"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    53
    by auto
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51641
diff changeset
    54
  then have "Inf S = s"
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    55
    by (auto intro!: Inf_eqI)
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51641
diff changeset
    56
  with S show ?thesis
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    57
    by simp
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    58
qed
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    59
64320
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 63627
diff changeset
    60
instance enat :: second_countable_topology
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 63627
diff changeset
    61
proof
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 63627
diff changeset
    62
  show "\<exists>B::enat set set. countable B \<and> open = generate_topology B"
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 63627
diff changeset
    63
  proof (intro exI conjI)
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 63627
diff changeset
    64
    show "countable (range lessThan \<union> range greaterThan::enat set set)"
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 63627
diff changeset
    65
      by auto
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 63627
diff changeset
    66
  qed (simp add: open_enat_def)
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 63627
diff changeset
    67
qed
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 63627
diff changeset
    68
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
    69
instance%important ereal :: second_countable_topology
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
    70
proof%unimportant (standard, intro exI conjI)
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    71
  let ?B = "(\<Union>r\<in>\<rat>. {{..< r}, {r <..}} :: ereal set set)"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    72
  show "countable ?B"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    73
    by (auto intro: countable_rat)
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    74
  show "open = generate_topology ?B"
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    75
  proof (intro ext iffI)
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    76
    fix S :: "ereal set"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    77
    assume "open S"
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    78
    then show "generate_topology ?B S"
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    79
      unfolding open_generated_order
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    80
    proof induct
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    81
      case (Basis b)
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    82
      then obtain e where "b = {..<e} \<or> b = {e<..}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    83
        by auto
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    84
      moreover have "{..<e} = \<Union>{{..<x}|x. x \<in> \<rat> \<and> x < e}" "{e<..} = \<Union>{{x<..}|x. x \<in> \<rat> \<and> e < x}"
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    85
        by (auto dest: ereal_dense3
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    86
                 simp del: ex_simps
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    87
                 simp add: ex_simps[symmetric] conj_commute Rats_def image_iff)
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    88
      ultimately show ?case
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    89
        by (auto intro: generate_topology.intros)
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    90
    qed (auto intro: generate_topology.intros)
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    91
  next
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    92
    fix S
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    93
    assume "generate_topology ?B S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    94
    then show "open S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
    95
      by induct auto
51351
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    96
  qed
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    97
qed
dd1dd470690b generalized lemmas in Extended_Real_Limits
hoelzl
parents: 51340
diff changeset
    98
62375
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
    99
text \<open>This is a copy from \<open>ereal :: second_countable_topology\<close>. Maybe find a common super class of
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   100
topological spaces where the rational numbers are densely embedded ?\<close>
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   101
instance%important ennreal :: second_countable_topology
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   102
proof%unimportant (standard, intro exI conjI)
62375
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   103
  let ?B = "(\<Union>r\<in>\<rat>. {{..< r}, {r <..}} :: ennreal set set)"
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   104
  show "countable ?B"
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   105
    by (auto intro: countable_rat)
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   106
  show "open = generate_topology ?B"
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   107
  proof (intro ext iffI)
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   108
    fix S :: "ennreal set"
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   109
    assume "open S"
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   110
    then show "generate_topology ?B S"
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   111
      unfolding open_generated_order
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   112
    proof induct
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   113
      case (Basis b)
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   114
      then obtain e where "b = {..<e} \<or> b = {e<..}"
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   115
        by auto
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   116
      moreover have "{..<e} = \<Union>{{..<x}|x. x \<in> \<rat> \<and> x < e}" "{e<..} = \<Union>{{x<..}|x. x \<in> \<rat> \<and> e < x}"
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   117
        by (auto dest: ennreal_rat_dense
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   118
                 simp del: ex_simps
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   119
                 simp add: ex_simps[symmetric] conj_commute Rats_def image_iff)
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   120
      ultimately show ?case
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   121
        by (auto intro: generate_topology.intros)
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   122
    qed (auto intro: generate_topology.intros)
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   123
  next
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   124
    fix S
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   125
    assume "generate_topology ?B S"
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   126
    then show "open S"
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   127
      by induct auto
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   128
  qed
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   129
qed
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   130
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   131
lemma%important ereal_open_closed_aux:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   132
  fixes S :: "ereal set"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   133
  assumes "open S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   134
    and "closed S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   135
    and S: "(-\<infinity>) \<notin> S"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   136
  shows "S = {}"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   137
proof%unimportant (rule ccontr)
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   138
  assume "\<not> ?thesis"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   139
  then have *: "Inf S \<in> S"
62375
670063003ad3 add extended nonnegative real numbers
hoelzl
parents: 62049
diff changeset
   140
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   141
    by (metis assms(2) closed_contains_Inf_cl)
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   142
  {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   143
    assume "Inf S = -\<infinity>"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   144
    then have False
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   145
      using * assms(3) by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   146
  }
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   147
  moreover
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   148
  {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   149
    assume "Inf S = \<infinity>"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   150
    then have "S = {\<infinity>}"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 59452
diff changeset
   151
      by (metis Inf_eq_PInfty \<open>S \<noteq> {}\<close>)
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   152
    then have False
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   153
      by (metis assms(1) not_open_singleton)
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   154
  }
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   155
  moreover
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   156
  {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   157
    assume fin: "\<bar>Inf S\<bar> \<noteq> \<infinity>"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   158
    from ereal_open_cont_interval[OF assms(1) * fin]
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   159
    obtain e where e: "e > 0" "{Inf S - e<..<Inf S + e} \<subseteq> S" .
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   160
    then obtain b where b: "Inf S - e < b" "b < Inf S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   161
      using fin ereal_between[of "Inf S" e] dense[of "Inf S - e"]
44918
6a80fbc4e72c tune simpset for Complete_Lattices
noschinl
parents: 44571
diff changeset
   162
      by auto
67613
ce654b0e6d69 more symbols;
wenzelm
parents: 66456
diff changeset
   163
    then have "b \<in> {Inf S - e <..< Inf S + e}"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   164
      using e fin ereal_between[of "Inf S" e]
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   165
      by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   166
    then have "b \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   167
      using e by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   168
    then have False
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   169
      using b by (metis complete_lattice_class.Inf_lower leD)
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   170
  }
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   171
  ultimately show False
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   172
    by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   173
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   174
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   175
lemma%important ereal_open_closed:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   176
  fixes S :: "ereal set"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   177
  shows "open S \<and> closed S \<longleftrightarrow> S = {} \<or> S = UNIV"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   178
proof%unimportant -
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   179
  {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   180
    assume lhs: "open S \<and> closed S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   181
    {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   182
      assume "-\<infinity> \<notin> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   183
      then have "S = {}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   184
        using lhs ereal_open_closed_aux by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   185
    }
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   186
    moreover
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   187
    {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   188
      assume "-\<infinity> \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   189
      then have "- S = {}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   190
        using lhs ereal_open_closed_aux[of "-S"] by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   191
    }
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   192
    ultimately have "S = {} \<or> S = UNIV"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   193
      by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   194
  }
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   195
  then show ?thesis
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   196
    by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   197
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   198
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   199
lemma%important ereal_open_atLeast:
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   200
  fixes x :: ereal
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   201
  shows "open {x..} \<longleftrightarrow> x = -\<infinity>"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   202
proof%unimportant
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   203
  assume "x = -\<infinity>"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   204
  then have "{x..} = UNIV"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   205
    by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   206
  then show "open {x..}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   207
    by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   208
next
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   209
  assume "open {x..}"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   210
  then have "open {x..} \<and> closed {x..}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   211
    by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   212
  then have "{x..} = UNIV"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   213
    unfolding ereal_open_closed by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   214
  then show "x = -\<infinity>"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   215
    by (simp add: bot_ereal_def atLeast_eq_UNIV_iff)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   216
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   217
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   218
lemma%important mono_closed_real:
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   219
  fixes S :: "real set"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   220
  assumes mono: "\<forall>y z. y \<in> S \<and> y \<le> z \<longrightarrow> z \<in> S"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   221
    and "closed S"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   222
  shows "S = {} \<or> S = UNIV \<or> (\<exists>a. S = {a..})"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   223
proof%unimportant -
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   224
  {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   225
    assume "S \<noteq> {}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   226
    { assume ex: "\<exists>B. \<forall>x\<in>S. B \<le> x"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   227
      then have *: "\<forall>x\<in>S. Inf S \<le> x"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   228
        using cInf_lower[of _ S] ex by (metis bdd_below_def)
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   229
      then have "Inf S \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   230
        apply (subst closed_contains_Inf)
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 59452
diff changeset
   231
        using ex \<open>S \<noteq> {}\<close> \<open>closed S\<close>
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   232
        apply auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   233
        done
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   234
      then have "\<forall>x. Inf S \<le> x \<longleftrightarrow> x \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   235
        using mono[rule_format, of "Inf S"] *
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   236
        by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   237
      then have "S = {Inf S ..}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   238
        by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   239
      then have "\<exists>a. S = {a ..}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   240
        by auto
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   241
    }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   242
    moreover
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   243
    {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   244
      assume "\<not> (\<exists>B. \<forall>x\<in>S. B \<le> x)"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   245
      then have nex: "\<forall>B. \<exists>x\<in>S. x < B"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   246
        by (simp add: not_le)
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   247
      {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   248
        fix y
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   249
        obtain x where "x\<in>S" and "x < y"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   250
          using nex by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   251
        then have "y \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   252
          using mono[rule_format, of x y] by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   253
      }
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   254
      then have "S = UNIV"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   255
        by auto
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   256
    }
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   257
    ultimately have "S = UNIV \<or> (\<exists>a. S = {a ..})"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   258
      by blast
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   259
  }
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   260
  then show ?thesis
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   261
    by blast
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   262
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   263
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   264
lemma%important mono_closed_ereal:
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   265
  fixes S :: "real set"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   266
  assumes mono: "\<forall>y z. y \<in> S \<and> y \<le> z \<longrightarrow> z \<in> S"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   267
    and "closed S"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   268
  shows "\<exists>a. S = {x. a \<le> ereal x}"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   269
proof%unimportant -
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   270
  {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   271
    assume "S = {}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   272
    then have ?thesis
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   273
      apply (rule_tac x=PInfty in exI)
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   274
      apply auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   275
      done
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   276
  }
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   277
  moreover
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   278
  {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   279
    assume "S = UNIV"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   280
    then have ?thesis
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   281
      apply (rule_tac x="-\<infinity>" in exI)
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   282
      apply auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   283
      done
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   284
  }
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   285
  moreover
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   286
  {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   287
    assume "\<exists>a. S = {a ..}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   288
    then obtain a where "S = {a ..}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   289
      by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   290
    then have ?thesis
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   291
      apply (rule_tac x="ereal a" in exI)
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   292
      apply auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   293
      done
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   294
  }
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   295
  ultimately show ?thesis
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   296
    using mono_closed_real[of S] assms by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   297
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   298
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   299
lemma%important Liminf_within:
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   300
  fixes f :: "'a::metric_space \<Rightarrow> 'b::complete_lattice"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   301
  shows "Liminf (at x within S) f = (SUP e:{0<..}. INF y:(S \<inter> ball x e - {x}). f y)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51530
diff changeset
   302
  unfolding Liminf_def eventually_at
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   303
proof%unimportant (rule SUP_eq, simp_all add: Ball_def Bex_def, safe)
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   304
  fix P d
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   305
  assume "0 < d" and "\<forall>y. y \<in> S \<longrightarrow> y \<noteq> x \<and> dist y x < d \<longrightarrow> P y"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   306
  then have "S \<inter> ball x d - {x} \<subseteq> {x. P x}"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   307
    by (auto simp: zero_less_dist_iff dist_commute)
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
   308
  then show "\<exists>r>0. INFIMUM (Collect P) f \<le> INFIMUM (S \<inter> ball x r - {x}) f"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 59452
diff changeset
   309
    by (intro exI[of _ d] INF_mono conjI \<open>0 < d\<close>) auto
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   310
next
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   311
  fix d :: real
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   312
  assume "0 < d"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51530
diff changeset
   313
  then show "\<exists>P. (\<exists>d>0. \<forall>xa. xa \<in> S \<longrightarrow> xa \<noteq> x \<and> dist xa x < d \<longrightarrow> P xa) \<and>
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
   314
    INFIMUM (S \<inter> ball x d - {x}) f \<le> INFIMUM (Collect P) f"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   315
    by (intro exI[of _ "\<lambda>y. y \<in> S \<inter> ball x d - {x}"])
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   316
       (auto intro!: INF_mono exI[of _ d] simp: dist_commute)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   317
qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   318
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   319
lemma%important Limsup_within:
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   320
  fixes f :: "'a::metric_space \<Rightarrow> 'b::complete_lattice"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   321
  shows "Limsup (at x within S) f = (INF e:{0<..}. SUP y:(S \<inter> ball x e - {x}). f y)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51530
diff changeset
   322
  unfolding Limsup_def eventually_at
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   323
proof%unimportant (rule INF_eq, simp_all add: Ball_def Bex_def, safe)
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   324
  fix P d
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   325
  assume "0 < d" and "\<forall>y. y \<in> S \<longrightarrow> y \<noteq> x \<and> dist y x < d \<longrightarrow> P y"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   326
  then have "S \<inter> ball x d - {x} \<subseteq> {x. P x}"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   327
    by (auto simp: zero_less_dist_iff dist_commute)
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
   328
  then show "\<exists>r>0. SUPREMUM (S \<inter> ball x r - {x}) f \<le> SUPREMUM (Collect P) f"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 59452
diff changeset
   329
    by (intro exI[of _ d] SUP_mono conjI \<open>0 < d\<close>) auto
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   330
next
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   331
  fix d :: real
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   332
  assume "0 < d"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51530
diff changeset
   333
  then show "\<exists>P. (\<exists>d>0. \<forall>xa. xa \<in> S \<longrightarrow> xa \<noteq> x \<and> dist xa x < d \<longrightarrow> P xa) \<and>
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
   334
    SUPREMUM (Collect P) f \<le> SUPREMUM (S \<inter> ball x d - {x}) f"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   335
    by (intro exI[of _ "\<lambda>y. y \<in> S \<inter> ball x d - {x}"])
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   336
       (auto intro!: SUP_mono exI[of _ d] simp: dist_commute)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   337
qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   338
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   339
lemma Liminf_at:
54257
5c7a3b6b05a9 generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents: 53788
diff changeset
   340
  fixes f :: "'a::metric_space \<Rightarrow> 'b::complete_lattice"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   341
  shows "Liminf (at x) f = (SUP e:{0<..}. INF y:(ball x e - {x}). f y)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   342
  using Liminf_within[of x UNIV f] by simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   343
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   344
lemma Limsup_at:
54257
5c7a3b6b05a9 generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents: 53788
diff changeset
   345
  fixes f :: "'a::metric_space \<Rightarrow> 'b::complete_lattice"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   346
  shows "Limsup (at x) f = (INF e:{0<..}. SUP y:(ball x e - {x}). f y)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   347
  using Limsup_within[of x UNIV f] by simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   348
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   349
lemma min_Liminf_at:
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
   350
  fixes f :: "'a::metric_space \<Rightarrow> 'b::complete_linorder"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   351
  shows "min (f x) (Liminf (at x) f) = (SUP e:{0<..}. INF y:ball x e. f y)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   352
  unfolding inf_min[symmetric] Liminf_at
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   353
  apply (subst inf_commute)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   354
  apply (subst SUP_inf)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   355
  apply (intro SUP_cong[OF refl])
54260
6a967667fd45 use INF and SUP on conditionally complete lattices in multivariate analysis
hoelzl
parents: 54258
diff changeset
   356
  apply (cut_tac A="ball x xa - {x}" and B="{x}" and M=f in INF_union)
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 55522
diff changeset
   357
  apply (drule sym)
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 55522
diff changeset
   358
  apply auto
57865
dcfb33c26f50 tuned proofs -- fewer warnings;
wenzelm
parents: 57447
diff changeset
   359
  apply (metis INF_absorb centre_in_ball)
dcfb33c26f50 tuned proofs -- fewer warnings;
wenzelm
parents: 57447
diff changeset
   360
  done
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   361
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   362
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   363
subsection%important \<open>Extended-Real.thy\<close> (*FIX title *)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   364
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   365
lemma sum_constant_ereal:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   366
  fixes a::ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   367
  shows "(\<Sum>i\<in>I. a) = a * card I"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   368
apply (cases "finite I", induct set: finite, simp_all)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   369
apply (cases a, auto, metis (no_types, hide_lams) add.commute mult.commute semiring_normalization_rules(3))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   370
done
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   371
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   372
lemma real_lim_then_eventually_real:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   373
  assumes "(u \<longlongrightarrow> ereal l) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   374
  shows "eventually (\<lambda>n. u n = ereal(real_of_ereal(u n))) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   375
proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   376
  have "ereal l \<in> {-\<infinity><..<(\<infinity>::ereal)}" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   377
  moreover have "open {-\<infinity><..<(\<infinity>::ereal)}" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   378
  ultimately have "eventually (\<lambda>n. u n \<in> {-\<infinity><..<(\<infinity>::ereal)}) F" using assms tendsto_def by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   379
  moreover have "\<And>x. x \<in> {-\<infinity><..<(\<infinity>::ereal)} \<Longrightarrow> x = ereal(real_of_ereal x)" using ereal_real by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   380
  ultimately show ?thesis by (metis (mono_tags, lifting) eventually_mono)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   381
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   382
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   383
lemma%important ereal_Inf_cmult:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   384
  assumes "c>(0::real)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   385
  shows "Inf {ereal c * x |x. P x} = ereal c * Inf {x. P x}"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   386
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   387
  have "(\<lambda>x::ereal. c * x) (Inf {x::ereal. P x}) = Inf ((\<lambda>x::ereal. c * x)`{x::ereal. P x})"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   388
    apply (rule mono_bij_Inf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   389
    apply (simp add: assms ereal_mult_left_mono less_imp_le mono_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   390
    apply (rule bij_betw_byWitness[of _ "\<lambda>x. (x::ereal) / c"], auto simp add: assms ereal_mult_divide)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   391
    using assms ereal_divide_eq apply auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   392
    done
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   393
  then show ?thesis by (simp only: setcompr_eq_image[symmetric])
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   394
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   395
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   396
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   397
subsubsection%important \<open>Continuity of addition\<close>
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   398
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   399
text \<open>The next few lemmas remove an unnecessary assumption in \verb+tendsto_add_ereal+, culminating
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   400
in \verb+tendsto_add_ereal_general+ which essentially says that the addition
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   401
is continuous on ereal times ereal, except at $(-\infty, \infty)$ and $(\infty, -\infty)$.
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   402
It is much more convenient in many situations, see for instance the proof of
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   403
\verb+tendsto_sum_ereal+ below.\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   404
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   405
lemma%important tendsto_add_ereal_PInf:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   406
  fixes y :: ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   407
  assumes y: "y \<noteq> -\<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   408
  assumes f: "(f \<longlongrightarrow> \<infinity>) F" and g: "(g \<longlongrightarrow> y) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   409
  shows "((\<lambda>x. f x + g x) \<longlongrightarrow> \<infinity>) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   410
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   411
  have "\<exists>C. eventually (\<lambda>x. g x > ereal C) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   412
  proof (cases y)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   413
    case (real r)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   414
    have "y > y-1" using y real by (simp add: ereal_between(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   415
    then have "eventually (\<lambda>x. g x > y - 1) F" using g y order_tendsto_iff by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   416
    moreover have "y-1 = ereal(real_of_ereal(y-1))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   417
      by (metis real ereal_eq_1(1) ereal_minus(1) real_of_ereal.simps(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   418
    ultimately have "eventually (\<lambda>x. g x > ereal(real_of_ereal(y - 1))) F" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   419
    then show ?thesis by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   420
  next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   421
    case (PInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   422
    have "eventually (\<lambda>x. g x > ereal 0) F" using g PInf by (simp add: tendsto_PInfty)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   423
    then show ?thesis by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   424
  qed (simp add: y)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   425
  then obtain C::real where ge: "eventually (\<lambda>x. g x > ereal C) F" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   426
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   427
  {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   428
    fix M::real
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   429
    have "eventually (\<lambda>x. f x > ereal(M - C)) F" using f by (simp add: tendsto_PInfty)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   430
    then have "eventually (\<lambda>x. (f x > ereal (M-C)) \<and> (g x > ereal C)) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   431
      by (auto simp add: ge eventually_conj_iff)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   432
    moreover have "\<And>x. ((f x > ereal (M-C)) \<and> (g x > ereal C)) \<Longrightarrow> (f x + g x > ereal M)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   433
      using ereal_add_strict_mono2 by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   434
    ultimately have "eventually (\<lambda>x. f x + g x > ereal M) F" using eventually_mono by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   435
  }
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   436
  then show ?thesis by (simp add: tendsto_PInfty)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   437
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   438
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   439
text\<open>One would like to deduce the next lemma from the previous one, but the fact
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   440
that $-(x+y)$ is in general different from $(-x) + (-y)$ in ereal creates difficulties,
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   441
so it is more efficient to copy the previous proof.\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   442
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   443
lemma%important tendsto_add_ereal_MInf:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   444
  fixes y :: ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   445
  assumes y: "y \<noteq> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   446
  assumes f: "(f \<longlongrightarrow> -\<infinity>) F" and g: "(g \<longlongrightarrow> y) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   447
  shows "((\<lambda>x. f x + g x) \<longlongrightarrow> -\<infinity>) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   448
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   449
  have "\<exists>C. eventually (\<lambda>x. g x < ereal C) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   450
  proof (cases y)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   451
    case (real r)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   452
    have "y < y+1" using y real by (simp add: ereal_between(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   453
    then have "eventually (\<lambda>x. g x < y + 1) F" using g y order_tendsto_iff by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   454
    moreover have "y+1 = ereal(real_of_ereal (y+1))" by (simp add: real)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   455
    ultimately have "eventually (\<lambda>x. g x < ereal(real_of_ereal(y + 1))) F" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   456
    then show ?thesis by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   457
  next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   458
    case (MInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   459
    have "eventually (\<lambda>x. g x < ereal 0) F" using g MInf by (simp add: tendsto_MInfty)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   460
    then show ?thesis by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   461
  qed (simp add: y)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   462
  then obtain C::real where ge: "eventually (\<lambda>x. g x < ereal C) F" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   463
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   464
  {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   465
    fix M::real
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   466
    have "eventually (\<lambda>x. f x < ereal(M - C)) F" using f by (simp add: tendsto_MInfty)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   467
    then have "eventually (\<lambda>x. (f x < ereal (M- C)) \<and> (g x < ereal C)) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   468
      by (auto simp add: ge eventually_conj_iff)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   469
    moreover have "\<And>x. ((f x < ereal (M-C)) \<and> (g x < ereal C)) \<Longrightarrow> (f x + g x < ereal M)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   470
      using ereal_add_strict_mono2 by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   471
    ultimately have "eventually (\<lambda>x. f x + g x < ereal M) F" using eventually_mono by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   472
  }
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   473
  then show ?thesis by (simp add: tendsto_MInfty)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   474
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   475
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   476
lemma%important tendsto_add_ereal_general1:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   477
  fixes x y :: ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   478
  assumes y: "\<bar>y\<bar> \<noteq> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   479
  assumes f: "(f \<longlongrightarrow> x) F" and g: "(g \<longlongrightarrow> y) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   480
  shows "((\<lambda>x. f x + g x) \<longlongrightarrow> x + y) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   481
proof%unimportant (cases x)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   482
  case (real r)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   483
  have a: "\<bar>x\<bar> \<noteq> \<infinity>" by (simp add: real)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   484
  show ?thesis by (rule tendsto_add_ereal[OF a, OF y, OF f, OF g])
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   485
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   486
  case PInf
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   487
  then show ?thesis using tendsto_add_ereal_PInf assms by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   488
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   489
  case MInf
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   490
  then show ?thesis using tendsto_add_ereal_MInf assms
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   491
    by (metis abs_ereal.simps(3) ereal_MInfty_eq_plus)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   492
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   493
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   494
lemma%important tendsto_add_ereal_general2:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   495
  fixes x y :: ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   496
  assumes x: "\<bar>x\<bar> \<noteq> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   497
      and f: "(f \<longlongrightarrow> x) F" and g: "(g \<longlongrightarrow> y) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   498
  shows "((\<lambda>x. f x + g x) \<longlongrightarrow> x + y) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   499
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   500
  have "((\<lambda>x. g x + f x) \<longlongrightarrow> x + y) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   501
    using tendsto_add_ereal_general1[OF x, OF g, OF f] add.commute[of "y", of "x"] by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   502
  moreover have "\<And>x. g x + f x = f x + g x" using add.commute by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   503
  ultimately show ?thesis by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   504
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   505
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   506
text \<open>The next lemma says that the addition is continuous on ereal, except at
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   507
the pairs $(-\infty, \infty)$ and $(\infty, -\infty)$.\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   508
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   509
lemma%important tendsto_add_ereal_general [tendsto_intros]:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   510
  fixes x y :: ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   511
  assumes "\<not>((x=\<infinity> \<and> y=-\<infinity>) \<or> (x=-\<infinity> \<and> y=\<infinity>))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   512
      and f: "(f \<longlongrightarrow> x) F" and g: "(g \<longlongrightarrow> y) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   513
  shows "((\<lambda>x. f x + g x) \<longlongrightarrow> x + y) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   514
proof%unimportant (cases x)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   515
  case (real r)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   516
  show ?thesis
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   517
    apply (rule tendsto_add_ereal_general2) using real assms by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   518
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   519
  case (PInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   520
  then have "y \<noteq> -\<infinity>" using assms by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   521
  then show ?thesis using tendsto_add_ereal_PInf PInf assms by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   522
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   523
  case (MInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   524
  then have "y \<noteq> \<infinity>" using assms by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   525
  then show ?thesis using tendsto_add_ereal_MInf MInf f g by (metis ereal_MInfty_eq_plus)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   526
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   527
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   528
subsubsection%important \<open>Continuity of multiplication\<close>
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   529
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   530
text \<open>In the same way as for addition, we prove that the multiplication is continuous on
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   531
ereal times ereal, except at $(\infty, 0)$ and $(-\infty, 0)$ and $(0, \infty)$ and $(0, -\infty)$,
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   532
starting with specific situations.\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   533
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   534
lemma%important tendsto_mult_real_ereal:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   535
  assumes "(u \<longlongrightarrow> ereal l) F" "(v \<longlongrightarrow> ereal m) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   536
  shows "((\<lambda>n. u n * v n) \<longlongrightarrow> ereal l * ereal m) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   537
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   538
  have ureal: "eventually (\<lambda>n. u n = ereal(real_of_ereal(u n))) F" by (rule real_lim_then_eventually_real[OF assms(1)])
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   539
  then have "((\<lambda>n. ereal(real_of_ereal(u n))) \<longlongrightarrow> ereal l) F" using assms by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   540
  then have limu: "((\<lambda>n. real_of_ereal(u n)) \<longlongrightarrow> l) F" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   541
  have vreal: "eventually (\<lambda>n. v n = ereal(real_of_ereal(v n))) F" by (rule real_lim_then_eventually_real[OF assms(2)])
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   542
  then have "((\<lambda>n. ereal(real_of_ereal(v n))) \<longlongrightarrow> ereal m) F" using assms by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   543
  then have limv: "((\<lambda>n. real_of_ereal(v n)) \<longlongrightarrow> m) F" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   544
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   545
  {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   546
    fix n assume "u n = ereal(real_of_ereal(u n))" "v n = ereal(real_of_ereal(v n))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   547
    then have "ereal(real_of_ereal(u n) * real_of_ereal(v n)) = u n * v n" by (metis times_ereal.simps(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   548
  }
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   549
  then have *: "eventually (\<lambda>n. ereal(real_of_ereal(u n) * real_of_ereal(v n)) = u n * v n) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   550
    using eventually_elim2[OF ureal vreal] by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   551
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   552
  have "((\<lambda>n. real_of_ereal(u n) * real_of_ereal(v n)) \<longlongrightarrow> l * m) F" using tendsto_mult[OF limu limv] by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   553
  then have "((\<lambda>n. ereal(real_of_ereal(u n)) * real_of_ereal(v n)) \<longlongrightarrow> ereal(l * m)) F" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   554
  then show ?thesis using * filterlim_cong by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   555
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   556
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   557
lemma%important tendsto_mult_ereal_PInf:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   558
  fixes f g::"_ \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   559
  assumes "(f \<longlongrightarrow> l) F" "l>0" "(g \<longlongrightarrow> \<infinity>) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   560
  shows "((\<lambda>x. f x * g x) \<longlongrightarrow> \<infinity>) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   561
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   562
  obtain a::real where "0 < ereal a" "a < l" using assms(2) using ereal_dense2 by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   563
  have *: "eventually (\<lambda>x. f x > a) F" using \<open>a < l\<close> assms(1) by (simp add: order_tendsto_iff)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   564
  {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   565
    fix K::real
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   566
    define M where "M = max K 1"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   567
    then have "M > 0" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   568
    then have "ereal(M/a) > 0" using \<open>ereal a > 0\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   569
    then have "\<And>x. ((f x > a) \<and> (g x > M/a)) \<Longrightarrow> (f x * g x > ereal a * ereal(M/a))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   570
      using ereal_mult_mono_strict'[where ?c = "M/a", OF \<open>0 < ereal a\<close>] by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   571
    moreover have "ereal a * ereal(M/a) = M" using \<open>ereal a > 0\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   572
    ultimately have "\<And>x. ((f x > a) \<and> (g x > M/a)) \<Longrightarrow> (f x * g x > M)" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   573
    moreover have "M \<ge> K" unfolding M_def by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   574
    ultimately have Imp: "\<And>x. ((f x > a) \<and> (g x > M/a)) \<Longrightarrow> (f x * g x > K)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   575
      using ereal_less_eq(3) le_less_trans by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   576
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   577
    have "eventually (\<lambda>x. g x > M/a) F" using assms(3) by (simp add: tendsto_PInfty)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   578
    then have "eventually (\<lambda>x. (f x > a) \<and> (g x > M/a)) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   579
      using * by (auto simp add: eventually_conj_iff)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   580
    then have "eventually (\<lambda>x. f x * g x > K) F" using eventually_mono Imp by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   581
  }
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   582
  then show ?thesis by (auto simp add: tendsto_PInfty)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   583
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   584
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   585
lemma%important tendsto_mult_ereal_pos:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   586
  fixes f g::"_ \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   587
  assumes "(f \<longlongrightarrow> l) F" "(g \<longlongrightarrow> m) F" "l>0" "m>0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   588
  shows "((\<lambda>x. f x * g x) \<longlongrightarrow> l * m) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   589
proof%unimportant (cases)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   590
  assume *: "l = \<infinity> \<or> m = \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   591
  then show ?thesis
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   592
  proof (cases)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   593
    assume "m = \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   594
    then show ?thesis using tendsto_mult_ereal_PInf assms by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   595
  next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   596
    assume "\<not>(m = \<infinity>)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   597
    then have "l = \<infinity>" using * by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   598
    then have "((\<lambda>x. g x * f x) \<longlongrightarrow> l * m) F" using tendsto_mult_ereal_PInf assms by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   599
    moreover have "\<And>x. g x * f x = f x * g x" using mult.commute by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   600
    ultimately show ?thesis by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   601
  qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   602
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   603
  assume "\<not>(l = \<infinity> \<or> m = \<infinity>)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   604
  then have "l < \<infinity>" "m < \<infinity>" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   605
  then obtain lr mr where "l = ereal lr" "m = ereal mr"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   606
    using \<open>l>0\<close> \<open>m>0\<close> by (metis ereal_cases ereal_less(6) not_less_iff_gr_or_eq)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   607
  then show ?thesis using tendsto_mult_real_ereal assms by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   608
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   609
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   610
text \<open>We reduce the general situation to the positive case by multiplying by suitable signs.
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   611
Unfortunately, as ereal is not a ring, all the neat sign lemmas are not available there. We
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   612
give the bare minimum we need.\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   613
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   614
lemma ereal_sgn_abs:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   615
  fixes l::ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   616
  shows "sgn(l) * l = abs(l)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   617
apply (cases l) by (auto simp add: sgn_if ereal_less_uminus_reorder)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   618
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   619
lemma sgn_squared_ereal:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   620
  assumes "l \<noteq> (0::ereal)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   621
  shows "sgn(l) * sgn(l) = 1"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   622
apply (cases l) using assms by (auto simp add: one_ereal_def sgn_if)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   623
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   624
lemma%important tendsto_mult_ereal [tendsto_intros]:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   625
  fixes f g::"_ \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   626
  assumes "(f \<longlongrightarrow> l) F" "(g \<longlongrightarrow> m) F" "\<not>((l=0 \<and> abs(m) = \<infinity>) \<or> (m=0 \<and> abs(l) = \<infinity>))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   627
  shows "((\<lambda>x. f x * g x) \<longlongrightarrow> l * m) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   628
proof%unimportant (cases)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   629
  assume "l=0 \<or> m=0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   630
  then have "abs(l) \<noteq> \<infinity>" "abs(m) \<noteq> \<infinity>" using assms(3) by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   631
  then obtain lr mr where "l = ereal lr" "m = ereal mr" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   632
  then show ?thesis using tendsto_mult_real_ereal assms by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   633
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   634
  have sgn_finite: "\<And>a::ereal. abs(sgn a) \<noteq> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   635
    by (metis MInfty_neq_ereal(2) PInfty_neq_ereal(2) abs_eq_infinity_cases ereal_times(1) ereal_times(3) ereal_uminus_eq_reorder sgn_ereal.elims)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   636
  then have sgn_finite2: "\<And>a b::ereal. abs(sgn a * sgn b) \<noteq> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   637
    by (metis abs_eq_infinity_cases abs_ereal.simps(2) abs_ereal.simps(3) ereal_mult_eq_MInfty ereal_mult_eq_PInfty)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   638
  assume "\<not>(l=0 \<or> m=0)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   639
  then have "l \<noteq> 0" "m \<noteq> 0" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   640
  then have "abs(l) > 0" "abs(m) > 0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   641
    by (metis abs_ereal_ge0 abs_ereal_less0 abs_ereal_pos ereal_uminus_uminus ereal_uminus_zero less_le not_less)+
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   642
  then have "sgn(l) * l > 0" "sgn(m) * m > 0" using ereal_sgn_abs by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   643
  moreover have "((\<lambda>x. sgn(l) * f x) \<longlongrightarrow> (sgn(l) * l)) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   644
    by (rule tendsto_cmult_ereal, auto simp add: sgn_finite assms(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   645
  moreover have "((\<lambda>x. sgn(m) * g x) \<longlongrightarrow> (sgn(m) * m)) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   646
    by (rule tendsto_cmult_ereal, auto simp add: sgn_finite assms(2))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   647
  ultimately have *: "((\<lambda>x. (sgn(l) * f x) * (sgn(m) * g x)) \<longlongrightarrow> (sgn(l) * l) * (sgn(m) * m)) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   648
    using tendsto_mult_ereal_pos by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   649
  have "((\<lambda>x. (sgn(l) * sgn(m)) * ((sgn(l) * f x) * (sgn(m) * g x))) \<longlongrightarrow> (sgn(l) * sgn(m)) * ((sgn(l) * l) * (sgn(m) * m))) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   650
    by (rule tendsto_cmult_ereal, auto simp add: sgn_finite2 *)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   651
  moreover have "\<And>x. (sgn(l) * sgn(m)) * ((sgn(l) * f x) * (sgn(m) * g x)) = f x * g x"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   652
    by (metis mult.left_neutral sgn_squared_ereal[OF \<open>l \<noteq> 0\<close>] sgn_squared_ereal[OF \<open>m \<noteq> 0\<close>] mult.assoc mult.commute)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   653
  moreover have "(sgn(l) * sgn(m)) * ((sgn(l) * l) * (sgn(m) * m)) = l * m"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   654
    by (metis mult.left_neutral sgn_squared_ereal[OF \<open>l \<noteq> 0\<close>] sgn_squared_ereal[OF \<open>m \<noteq> 0\<close>] mult.assoc mult.commute)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   655
  ultimately show ?thesis by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   656
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   657
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   658
lemma tendsto_cmult_ereal_general [tendsto_intros]:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   659
  fixes f::"_ \<Rightarrow> ereal" and c::ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   660
  assumes "(f \<longlongrightarrow> l) F" "\<not> (l=0 \<and> abs(c) = \<infinity>)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   661
  shows "((\<lambda>x. c * f x) \<longlongrightarrow> c * l) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   662
by (cases "c = 0", auto simp add: assms tendsto_mult_ereal)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   663
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   664
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   665
subsubsection%important \<open>Continuity of division\<close>
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   666
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   667
lemma%important tendsto_inverse_ereal_PInf:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   668
  fixes u::"_ \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   669
  assumes "(u \<longlongrightarrow> \<infinity>) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   670
  shows "((\<lambda>x. 1/ u x) \<longlongrightarrow> 0) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   671
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   672
  {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   673
    fix e::real assume "e>0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   674
    have "1/e < \<infinity>" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   675
    then have "eventually (\<lambda>n. u n > 1/e) F" using assms(1) by (simp add: tendsto_PInfty)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   676
    moreover
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   677
    {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   678
      fix z::ereal assume "z>1/e"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   679
      then have "z>0" using \<open>e>0\<close> using less_le_trans not_le by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   680
      then have "1/z \<ge> 0" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   681
      moreover have "1/z < e" using \<open>e>0\<close> \<open>z>1/e\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   682
        apply (cases z) apply auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   683
        by (metis (mono_tags, hide_lams) less_ereal.simps(2) less_ereal.simps(4) divide_less_eq ereal_divide_less_pos ereal_less(4)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   684
            ereal_less_eq(4) less_le_trans mult_eq_0_iff not_le not_one_less_zero times_ereal.simps(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   685
      ultimately have "1/z \<ge> 0" "1/z < e" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   686
    }
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   687
    ultimately have "eventually (\<lambda>n. 1/u n<e) F" "eventually (\<lambda>n. 1/u n\<ge>0) F" by (auto simp add: eventually_mono)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   688
  } note * = this
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   689
  show ?thesis
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   690
  proof (subst order_tendsto_iff, auto)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   691
    fix a::ereal assume "a<0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   692
    then show "eventually (\<lambda>n. 1/u n > a) F" using *(2) eventually_mono less_le_trans linordered_field_no_ub by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   693
  next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   694
    fix a::ereal assume "a>0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   695
    then obtain e::real where "e>0" "a>e" using ereal_dense2 ereal_less(2) by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   696
    then have "eventually (\<lambda>n. 1/u n < e) F" using *(1) by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   697
    then show "eventually (\<lambda>n. 1/u n < a) F" using \<open>a>e\<close> by (metis (mono_tags, lifting) eventually_mono less_trans)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   698
  qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   699
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   700
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   701
text \<open>The next lemma deserves to exist by itself, as it is so common and useful.\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   702
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   703
lemma tendsto_inverse_real [tendsto_intros]:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   704
  fixes u::"_ \<Rightarrow> real"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   705
  shows "(u \<longlongrightarrow> l) F \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> ((\<lambda>x. 1/ u x) \<longlongrightarrow> 1/l) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   706
  using tendsto_inverse unfolding inverse_eq_divide .
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   707
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   708
lemma%important tendsto_inverse_ereal [tendsto_intros]:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   709
  fixes u::"_ \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   710
  assumes "(u \<longlongrightarrow> l) F" "l \<noteq> 0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   711
  shows "((\<lambda>x. 1/ u x) \<longlongrightarrow> 1/l) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   712
proof%unimportant (cases l)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   713
  case (real r)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   714
  then have "r \<noteq> 0" using assms(2) by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   715
  then have "1/l = ereal(1/r)" using real by (simp add: one_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   716
  define v where "v = (\<lambda>n. real_of_ereal(u n))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   717
  have ureal: "eventually (\<lambda>n. u n = ereal(v n)) F" unfolding v_def using real_lim_then_eventually_real assms(1) real by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   718
  then have "((\<lambda>n. ereal(v n)) \<longlongrightarrow> ereal r) F" using assms real v_def by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   719
  then have *: "((\<lambda>n. v n) \<longlongrightarrow> r) F" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   720
  then have "((\<lambda>n. 1/v n) \<longlongrightarrow> 1/r) F" using \<open>r \<noteq> 0\<close> tendsto_inverse_real by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   721
  then have lim: "((\<lambda>n. ereal(1/v n)) \<longlongrightarrow> 1/l) F" using \<open>1/l = ereal(1/r)\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   722
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   723
  have "r \<in> -{0}" "open (-{(0::real)})" using \<open>r \<noteq> 0\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   724
  then have "eventually (\<lambda>n. v n \<in> -{0}) F" using * using topological_tendstoD by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   725
  then have "eventually (\<lambda>n. v n \<noteq> 0) F" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   726
  moreover
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   727
  {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   728
    fix n assume H: "v n \<noteq> 0" "u n = ereal(v n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   729
    then have "ereal(1/v n) = 1/ereal(v n)" by (simp add: one_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   730
    then have "ereal(1/v n) = 1/u n" using H(2) by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   731
  }
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   732
  ultimately have "eventually (\<lambda>n. ereal(1/v n) = 1/u n) F" using ureal eventually_elim2 by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   733
  with Lim_transform_eventually[OF this lim] show ?thesis by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   734
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   735
  case (PInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   736
  then have "1/l = 0" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   737
  then show ?thesis using tendsto_inverse_ereal_PInf assms PInf by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   738
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   739
  case (MInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   740
  then have "1/l = 0" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   741
  have "1/z = -1/ -z" if "z < 0" for z::ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   742
    apply (cases z) using divide_ereal_def \<open> z < 0 \<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   743
  moreover have "eventually (\<lambda>n. u n < 0) F" by (metis (no_types) MInf assms(1) tendsto_MInfty zero_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   744
  ultimately have *: "eventually (\<lambda>n. -1/-u n = 1/u n) F" by (simp add: eventually_mono)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   745
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   746
  define v where "v = (\<lambda>n. - u n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   747
  have "(v \<longlongrightarrow> \<infinity>) F" unfolding v_def using MInf assms(1) tendsto_uminus_ereal by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   748
  then have "((\<lambda>n. 1/v n) \<longlongrightarrow> 0) F" using tendsto_inverse_ereal_PInf by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   749
  then have "((\<lambda>n. -1/v n) \<longlongrightarrow> 0) F" using tendsto_uminus_ereal by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   750
  then show ?thesis unfolding v_def using Lim_transform_eventually[OF *] \<open> 1/l = 0 \<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   751
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   752
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   753
lemma%important tendsto_divide_ereal [tendsto_intros]:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   754
  fixes f g::"_ \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   755
  assumes "(f \<longlongrightarrow> l) F" "(g \<longlongrightarrow> m) F" "m \<noteq> 0" "\<not>(abs(l) = \<infinity> \<and> abs(m) = \<infinity>)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   756
  shows "((\<lambda>x. f x / g x) \<longlongrightarrow> l / m) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   757
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   758
  define h where "h = (\<lambda>x. 1/ g x)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   759
  have *: "(h \<longlongrightarrow> 1/m) F" unfolding h_def using assms(2) assms(3) tendsto_inverse_ereal by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   760
  have "((\<lambda>x. f x * h x) \<longlongrightarrow> l * (1/m)) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   761
    apply (rule tendsto_mult_ereal[OF assms(1) *]) using assms(3) assms(4) by (auto simp add: divide_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   762
  moreover have "f x * h x = f x / g x" for x unfolding h_def by (simp add: divide_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   763
  moreover have "l * (1/m) = l/m" by (simp add: divide_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   764
  ultimately show ?thesis unfolding h_def using Lim_transform_eventually by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   765
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   766
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   767
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   768
subsubsection%important \<open>Further limits\<close>
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   769
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   770
text \<open>The assumptions of @{thm tendsto_diff_ereal} are too strong, we weaken them here.\<close>
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   771
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   772
lemma%important tendsto_diff_ereal_general [tendsto_intros]:
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   773
  fixes u v::"'a \<Rightarrow> ereal"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   774
  assumes "(u \<longlongrightarrow> l) F" "(v \<longlongrightarrow> m) F" "\<not>((l = \<infinity> \<and> m = \<infinity>) \<or> (l = -\<infinity> \<and> m = -\<infinity>))"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   775
  shows "((\<lambda>n. u n - v n) \<longlongrightarrow> l - m) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   776
proof%unimportant -
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   777
  have "((\<lambda>n. u n + (-v n)) \<longlongrightarrow> l + (-m)) F"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   778
    apply (intro tendsto_intros assms) using assms by (auto simp add: ereal_uminus_eq_reorder)
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   779
  then show ?thesis by (simp add: minus_ereal_def)
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   780
qed
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   781
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   782
lemma id_nat_ereal_tendsto_PInf [tendsto_intros]:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   783
  "(\<lambda> n::nat. real n) \<longlonglongrightarrow> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   784
by (simp add: filterlim_real_sequentially tendsto_PInfty_eq_at_top)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   785
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   786
lemma%important tendsto_at_top_pseudo_inverse [tendsto_intros]:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   787
  fixes u::"nat \<Rightarrow> nat"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   788
  assumes "LIM n sequentially. u n :> at_top"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   789
  shows "LIM n sequentially. Inf {N. u N \<ge> n} :> at_top"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   790
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   791
  {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   792
    fix C::nat
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   793
    define M where "M = Max {u n| n. n \<le> C}+1"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   794
    {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   795
      fix n assume "n \<ge> M"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   796
      have "eventually (\<lambda>N. u N \<ge> n) sequentially" using assms
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   797
        by (simp add: filterlim_at_top)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   798
      then have *: "{N. u N \<ge> n} \<noteq> {}" by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   799
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   800
      have "N > C" if "u N \<ge> n" for N
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   801
      proof (rule ccontr)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   802
        assume "\<not>(N > C)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   803
        have "u N \<le> Max {u n| n. n \<le> C}"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   804
          apply (rule Max_ge) using \<open>\<not>(N > C)\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   805
        then show False using \<open>u N \<ge> n\<close> \<open>n \<ge> M\<close> unfolding M_def by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   806
      qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   807
      then have **: "{N. u N \<ge> n} \<subseteq> {C..}" by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   808
      have "Inf {N. u N \<ge> n} \<ge> C"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   809
        by (metis "*" "**" Inf_nat_def1 atLeast_iff subset_eq)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   810
    }
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   811
    then have "eventually (\<lambda>n. Inf {N. u N \<ge> n} \<ge> C) sequentially"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   812
      using eventually_sequentially by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   813
  }
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   814
  then show ?thesis using filterlim_at_top by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   815
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   816
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   817
lemma%important pseudo_inverse_finite_set:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   818
  fixes u::"nat \<Rightarrow> nat"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   819
  assumes "LIM n sequentially. u n :> at_top"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   820
  shows "finite {N. u N \<le> n}"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   821
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   822
  fix n
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   823
  have "eventually (\<lambda>N. u N \<ge> n+1) sequentially" using assms
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   824
    by (simp add: filterlim_at_top)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   825
  then obtain N1 where N1: "\<And>N. N \<ge> N1 \<Longrightarrow> u N \<ge> n + 1"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   826
    using eventually_sequentially by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   827
  have "{N. u N \<le> n} \<subseteq> {..<N1}"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   828
    apply auto using N1 by (metis Suc_eq_plus1 not_less not_less_eq_eq)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   829
  then show "finite {N. u N \<le> n}" by (simp add: finite_subset)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   830
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   831
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   832
lemma tendsto_at_top_pseudo_inverse2 [tendsto_intros]:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   833
  fixes u::"nat \<Rightarrow> nat"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   834
  assumes "LIM n sequentially. u n :> at_top"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   835
  shows "LIM n sequentially. Max {N. u N \<le> n} :> at_top"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   836
proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   837
  {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   838
    fix N0::nat
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   839
    have "N0 \<le> Max {N. u N \<le> n}" if "n \<ge> u N0" for n
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   840
      apply (rule Max.coboundedI) using pseudo_inverse_finite_set[OF assms] that by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   841
    then have "eventually (\<lambda>n. N0 \<le> Max {N. u N \<le> n}) sequentially"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   842
      using eventually_sequentially by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   843
  }
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   844
  then show ?thesis using filterlim_at_top by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   845
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   846
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   847
lemma ereal_truncation_top [tendsto_intros]:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   848
  fixes x::ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   849
  shows "(\<lambda>n::nat. min x n) \<longlonglongrightarrow> x"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   850
proof (cases x)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   851
  case (real r)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   852
  then obtain K::nat where "K>0" "K > abs(r)" using reals_Archimedean2 gr0I by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   853
  then have "min x n = x" if "n \<ge> K" for n apply (subst real, subst real, auto) using that eq_iff by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   854
  then have "eventually (\<lambda>n. min x n = x) sequentially" using eventually_at_top_linorder by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   855
  then show ?thesis by (simp add: Lim_eventually)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   856
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   857
  case (PInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   858
  then have "min x n = n" for n::nat by (auto simp add: min_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   859
  then show ?thesis using id_nat_ereal_tendsto_PInf PInf by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   860
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   861
  case (MInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   862
  then have "min x n = x" for n::nat by (auto simp add: min_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   863
  then show ?thesis by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   864
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   865
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   866
lemma%important ereal_truncation_real_top [tendsto_intros]:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   867
  fixes x::ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   868
  assumes "x \<noteq> - \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   869
  shows "(\<lambda>n::nat. real_of_ereal(min x n)) \<longlonglongrightarrow> x"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   870
proof%unimportant (cases x)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   871
  case (real r)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   872
  then obtain K::nat where "K>0" "K > abs(r)" using reals_Archimedean2 gr0I by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   873
  then have "min x n = x" if "n \<ge> K" for n apply (subst real, subst real, auto) using that eq_iff by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   874
  then have "real_of_ereal(min x n) = r" if "n \<ge> K" for n using real that by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   875
  then have "eventually (\<lambda>n. real_of_ereal(min x n) = r) sequentially" using eventually_at_top_linorder by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   876
  then have "(\<lambda>n. real_of_ereal(min x n)) \<longlonglongrightarrow> r" by (simp add: Lim_eventually)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   877
  then show ?thesis using real by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   878
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   879
  case (PInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   880
  then have "real_of_ereal(min x n) = n" for n::nat by (auto simp add: min_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   881
  then show ?thesis using id_nat_ereal_tendsto_PInf PInf by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   882
qed (simp add: assms)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   883
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   884
lemma%important ereal_truncation_bottom [tendsto_intros]:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   885
  fixes x::ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   886
  shows "(\<lambda>n::nat. max x (- real n)) \<longlonglongrightarrow> x"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   887
proof%unimportant (cases x)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   888
  case (real r)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   889
  then obtain K::nat where "K>0" "K > abs(r)" using reals_Archimedean2 gr0I by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   890
  then have "max x (-real n) = x" if "n \<ge> K" for n apply (subst real, subst real, auto) using that eq_iff by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   891
  then have "eventually (\<lambda>n. max x (-real n) = x) sequentially" using eventually_at_top_linorder by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   892
  then show ?thesis by (simp add: Lim_eventually)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   893
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   894
  case (MInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   895
  then have "max x (-real n) = (-1)* ereal(real n)" for n::nat by (auto simp add: max_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   896
  moreover have "(\<lambda>n. (-1)* ereal(real n)) \<longlonglongrightarrow> -\<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   897
    using tendsto_cmult_ereal[of "-1", OF _ id_nat_ereal_tendsto_PInf] by (simp add: one_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   898
  ultimately show ?thesis using MInf by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   899
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   900
  case (PInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   901
  then have "max x (-real n) = x" for n::nat by (auto simp add: max_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   902
  then show ?thesis by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   903
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   904
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   905
lemma%important ereal_truncation_real_bottom [tendsto_intros]:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   906
  fixes x::ereal
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   907
  assumes "x \<noteq> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   908
  shows "(\<lambda>n::nat. real_of_ereal(max x (- real n))) \<longlonglongrightarrow> x"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   909
proof%unimportant (cases x)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   910
  case (real r)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   911
  then obtain K::nat where "K>0" "K > abs(r)" using reals_Archimedean2 gr0I by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   912
  then have "max x (-real n) = x" if "n \<ge> K" for n apply (subst real, subst real, auto) using that eq_iff by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   913
  then have "real_of_ereal(max x (-real n)) = r" if "n \<ge> K" for n using real that by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   914
  then have "eventually (\<lambda>n. real_of_ereal(max x (-real n)) = r) sequentially" using eventually_at_top_linorder by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   915
  then have "(\<lambda>n. real_of_ereal(max x (-real n))) \<longlonglongrightarrow> r" by (simp add: Lim_eventually)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   916
  then show ?thesis using real by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   917
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   918
  case (MInf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   919
  then have "real_of_ereal(max x (-real n)) = (-1)* ereal(real n)" for n::nat by (auto simp add: max_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   920
  moreover have "(\<lambda>n. (-1)* ereal(real n)) \<longlonglongrightarrow> -\<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   921
    using tendsto_cmult_ereal[of "-1", OF _ id_nat_ereal_tendsto_PInf] by (simp add: one_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   922
  ultimately show ?thesis using MInf by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   923
qed (simp add: assms)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   924
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   925
text \<open>the next one is copied from \verb+tendsto_sum+.\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   926
lemma tendsto_sum_ereal [tendsto_intros]:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   927
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   928
  assumes "\<And>i. i \<in> S \<Longrightarrow> (f i \<longlongrightarrow> a i) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   929
          "\<And>i. abs(a i) \<noteq> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   930
  shows "((\<lambda>x. \<Sum>i\<in>S. f i x) \<longlongrightarrow> (\<Sum>i\<in>S. a i)) F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   931
proof (cases "finite S")
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   932
  assume "finite S" then show ?thesis using assms
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   933
    by (induct, simp, simp add: tendsto_add_ereal_general2 assms)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   934
qed(simp)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   935
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   936
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   937
lemma%important continuous_ereal_abs:
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   938
  "continuous_on (UNIV::ereal set) abs"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   939
proof%unimportant -
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   940
  have "continuous_on ({..0} \<union> {(0::ereal)..}) abs"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   941
    apply (rule continuous_on_closed_Un, auto)
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   942
    apply (rule iffD1[OF continuous_on_cong, of "{..0}" _ "\<lambda>x. -x"])
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   943
    using less_eq_ereal_def apply (auto simp add: continuous_uminus_ereal)
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   944
    apply (rule iffD1[OF continuous_on_cong, of "{0..}" _ "\<lambda>x. x"])
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   945
      apply (auto simp add: continuous_on_id)
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   946
    done
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   947
  moreover have "(UNIV::ereal set) = {..0} \<union> {(0::ereal)..}" by auto
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   948
  ultimately show ?thesis by auto
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   949
qed
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   950
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   951
lemmas continuous_on_compose_ereal_abs[continuous_intros] =
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   952
  continuous_on_compose2[OF continuous_ereal_abs _ subset_UNIV]
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   953
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   954
lemma tendsto_abs_ereal [tendsto_intros]:
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   955
  assumes "(u \<longlongrightarrow> (l::ereal)) F"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   956
  shows "((\<lambda>n. abs(u n)) \<longlongrightarrow> abs l) F"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   957
using continuous_ereal_abs assms by (metis UNIV_I continuous_on tendsto_compose)
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   958
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   959
lemma ereal_minus_real_tendsto_MInf [tendsto_intros]:
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   960
  "(\<lambda>x. ereal (- real x)) \<longlonglongrightarrow> - \<infinity>"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   961
by (subst uminus_ereal.simps(1)[symmetric], intro tendsto_intros)
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   962
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   963
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   964
subsection%important \<open>Extended-Nonnegative-Real.thy\<close> (*FIX title *)
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   965
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   966
lemma tendsto_diff_ennreal_general [tendsto_intros]:
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   967
  fixes u v::"'a \<Rightarrow> ennreal"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   968
  assumes "(u \<longlongrightarrow> l) F" "(v \<longlongrightarrow> m) F" "\<not>(l = \<infinity> \<and> m = \<infinity>)"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   969
  shows "((\<lambda>n. u n - v n) \<longlongrightarrow> l - m) F"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   970
proof -
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   971
  have "((\<lambda>n. e2ennreal(enn2ereal(u n) - enn2ereal(v n))) \<longlongrightarrow> e2ennreal(enn2ereal l - enn2ereal m)) F"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   972
    apply (intro tendsto_intros) using assms by  auto
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   973
  then show ?thesis by auto
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   974
qed
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   975
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   976
lemma%important tendsto_mult_ennreal [tendsto_intros]:
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   977
  fixes l m::ennreal
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   978
  assumes "(u \<longlongrightarrow> l) F" "(v \<longlongrightarrow> m) F" "\<not>((l = 0 \<and> m = \<infinity>) \<or> (l = \<infinity> \<and> m = 0))"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   979
  shows "((\<lambda>n. u n * v n) \<longlongrightarrow> l * m) F"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   980
proof%unimportant -
67727
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   981
  have "((\<lambda>n. e2ennreal(enn2ereal (u n) * enn2ereal (v n))) \<longlongrightarrow> e2ennreal(enn2ereal l * enn2ereal m)) F"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   982
    apply (intro tendsto_intros) using assms apply auto
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   983
    using enn2ereal_inject zero_ennreal.rep_eq by fastforce+
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   984
  moreover have "e2ennreal(enn2ereal (u n) * enn2ereal (v n)) = u n * v n" for n
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   985
    by (subst times_ennreal.abs_eq[symmetric], auto simp add: eq_onp_same_args)
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   986
  moreover have "e2ennreal(enn2ereal l * enn2ereal m)  = l * m"
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   987
    by (subst times_ennreal.abs_eq[symmetric], auto simp add: eq_onp_same_args)
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   988
  ultimately show ?thesis
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   989
    by auto
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   990
qed
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   991
ce3e87a51488 moved Lipschitz continuity from AFP/Ordinary_Differential_Equations and AFP/Gromov_Hyperbolicity; moved lemmas from AFP/Gromov_Hyperbolicity/Library_Complements
immler
parents: 67613
diff changeset
   992
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   993
subsection%important \<open>monoset\<close>
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   994
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
   995
definition%important (in order) mono_set:
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   996
  "mono_set S \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> x \<in> S \<longrightarrow> y \<in> S)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   997
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   998
lemma (in order) mono_greaterThan [intro, simp]: "mono_set {B<..}" unfolding mono_set by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   999
lemma (in order) mono_atLeast [intro, simp]: "mono_set {B..}" unfolding mono_set by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1000
lemma (in order) mono_UNIV [intro, simp]: "mono_set UNIV" unfolding mono_set by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1001
lemma (in order) mono_empty [intro, simp]: "mono_set {}" unfolding mono_set by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1002
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1003
lemma%important (in complete_linorder) mono_set_iff:
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1004
  fixes S :: "'a set"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1005
  defines "a \<equiv> Inf S"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1006
  shows "mono_set S \<longleftrightarrow> S = {a <..} \<or> S = {a..}" (is "_ = ?c")
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1007
proof%unimportant
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1008
  assume "mono_set S"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1009
  then have mono: "\<And>x y. x \<le> y \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1010
    by (auto simp: mono_set)
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1011
  show ?c
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1012
  proof cases
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1013
    assume "a \<in> S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1014
    show ?c
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 59452
diff changeset
  1015
      using mono[OF _ \<open>a \<in> S\<close>]
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1016
      by (auto intro: Inf_lower simp: a_def)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1017
  next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1018
    assume "a \<notin> S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1019
    have "S = {a <..}"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1020
    proof safe
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1021
      fix x assume "x \<in> S"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1022
      then have "a \<le> x"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1023
        unfolding a_def by (rule Inf_lower)
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1024
      then show "a < x"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 59452
diff changeset
  1025
        using \<open>x \<in> S\<close> \<open>a \<notin> S\<close> by (cases "a = x") auto
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1026
    next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1027
      fix x assume "a < x"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1028
      then obtain y where "y < x" "y \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1029
        unfolding a_def Inf_less_iff ..
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1030
      with mono[of y x] show "x \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1031
        by auto
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1032
    qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1033
    then show ?c ..
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1034
  qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1035
qed auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1036
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1037
lemma ereal_open_mono_set:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1038
  fixes S :: "ereal set"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1039
  shows "open S \<and> mono_set S \<longleftrightarrow> S = UNIV \<or> S = {Inf S <..}"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1040
  by (metis Inf_UNIV atLeast_eq_UNIV_iff ereal_open_atLeast
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1041
    ereal_open_closed mono_set_iff open_ereal_greaterThan)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1042
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1043
lemma ereal_closed_mono_set:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1044
  fixes S :: "ereal set"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1045
  shows "closed S \<and> mono_set S \<longleftrightarrow> S = {} \<or> S = {Inf S ..}"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1046
  by (metis Inf_UNIV atLeast_eq_UNIV_iff closed_ereal_atLeast
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1047
    ereal_open_closed mono_empty mono_set_iff open_ereal_greaterThan)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1048
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1049
lemma%important ereal_Liminf_Sup_monoset:
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1050
  fixes f :: "'a \<Rightarrow> ereal"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1051
  shows "Liminf net f =
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1052
    Sup {l. \<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net}"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1053
    (is "_ = Sup ?A")
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1054
proof%unimportant (safe intro!: Liminf_eqI complete_lattice_class.Sup_upper complete_lattice_class.Sup_least)
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1055
  fix P
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1056
  assume P: "eventually P net"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1057
  fix S
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
  1058
  assume S: "mono_set S" "INFIMUM (Collect P) f \<in> S"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1059
  {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1060
    fix x
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1061
    assume "P x"
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
  1062
    then have "INFIMUM (Collect P) f \<le> f x"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1063
      by (intro complete_lattice_class.INF_lower) simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1064
    with S have "f x \<in> S"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1065
      by (simp add: mono_set)
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1066
  }
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1067
  with P show "eventually (\<lambda>x. f x \<in> S) net"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61560
diff changeset
  1068
    by (auto elim: eventually_mono)
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1069
next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1070
  fix y l
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1071
  assume S: "\<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> l \<in> S \<longrightarrow> eventually  (\<lambda>x. f x \<in> S) net"
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
  1072
  assume P: "\<forall>P. eventually P net \<longrightarrow> INFIMUM (Collect P) f \<le> y"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1073
  show "l \<le> y"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1074
  proof (rule dense_le)
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1075
    fix B
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1076
    assume "B < l"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1077
    then have "eventually (\<lambda>x. f x \<in> {B <..}) net"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1078
      by (intro S[rule_format]) auto
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
  1079
    then have "INFIMUM {x. B < f x} f \<le> y"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1080
      using P by auto
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
  1081
    moreover have "B \<le> INFIMUM {x. B < f x} f"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1082
      by (intro INF_greatest) auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1083
    ultimately show "B \<le> y"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1084
      by simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1085
  qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1086
qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1087
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1088
lemma%important ereal_Limsup_Inf_monoset:
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1089
  fixes f :: "'a \<Rightarrow> ereal"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1090
  shows "Limsup net f =
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1091
    Inf {l. \<forall>S. open S \<longrightarrow> mono_set (uminus ` S) \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net}"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1092
    (is "_ = Inf ?A")
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1093
proof%unimportant (safe intro!: Limsup_eqI complete_lattice_class.Inf_lower complete_lattice_class.Inf_greatest)
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1094
  fix P
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1095
  assume P: "eventually P net"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1096
  fix S
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
  1097
  assume S: "mono_set (uminus`S)" "SUPREMUM (Collect P) f \<in> S"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1098
  {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1099
    fix x
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1100
    assume "P x"
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
  1101
    then have "f x \<le> SUPREMUM (Collect P) f"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1102
      by (intro complete_lattice_class.SUP_upper) simp
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
  1103
    with S(1)[unfolded mono_set, rule_format, of "- SUPREMUM (Collect P) f" "- f x"] S(2)
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1104
    have "f x \<in> S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1105
      by (simp add: inj_image_mem_iff) }
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1106
  with P show "eventually (\<lambda>x. f x \<in> S) net"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61560
diff changeset
  1107
    by (auto elim: eventually_mono)
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1108
next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1109
  fix y l
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1110
  assume S: "\<forall>S. open S \<longrightarrow> mono_set (uminus ` S) \<longrightarrow> l \<in> S \<longrightarrow> eventually  (\<lambda>x. f x \<in> S) net"
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
  1111
  assume P: "\<forall>P. eventually P net \<longrightarrow> y \<le> SUPREMUM (Collect P) f"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1112
  show "y \<le> l"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1113
  proof (rule dense_ge)
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1114
    fix B
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1115
    assume "l < B"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1116
    then have "eventually (\<lambda>x. f x \<in> {..< B}) net"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1117
      by (intro S[rule_format]) auto
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
  1118
    then have "y \<le> SUPREMUM {x. f x < B} f"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1119
      using P by auto
56218
1c3f1f2431f9 elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
haftmann
parents: 56212
diff changeset
  1120
    moreover have "SUPREMUM {x. f x < B} f \<le> B"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1121
      by (intro SUP_least) auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1122
    ultimately show "y \<le> B"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1123
      by simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1124
  qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1125
qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1126
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1127
lemma%important liminf_bounded_open:
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1128
  fixes x :: "nat \<Rightarrow> ereal"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1129
  shows "x0 \<le> liminf x \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> x0 \<in> S \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. x n \<in> S))"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1130
  (is "_ \<longleftrightarrow> ?P x0")
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1131
proof%unimportant
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1132
  assume "?P x0"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1133
  then show "x0 \<le> liminf x"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1134
    unfolding ereal_Liminf_Sup_monoset eventually_sequentially
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1135
    by (intro complete_lattice_class.Sup_upper) auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1136
next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1137
  assume "x0 \<le> liminf x"
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1138
  {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1139
    fix S :: "ereal set"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1140
    assume om: "open S" "mono_set S" "x0 \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1141
    {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1142
      assume "S = UNIV"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1143
      then have "\<exists>N. \<forall>n\<ge>N. x n \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1144
        by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1145
    }
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1146
    moreover
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1147
    {
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1148
      assume "S \<noteq> UNIV"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1149
      then obtain B where B: "S = {B<..}"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1150
        using om ereal_open_mono_set by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1151
      then have "B < x0"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1152
        using om by auto
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1153
      then have "\<exists>N. \<forall>n\<ge>N. x n \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1154
        unfolding B
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 59452
diff changeset
  1155
        using \<open>x0 \<le> liminf x\<close> liminf_bounded_iff
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1156
        by auto
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1157
    }
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1158
    ultimately have "\<exists>N. \<forall>n\<ge>N. x n \<in> S"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1159
      by auto
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1160
  }
53788
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1161
  then show "?P x0"
b319a0c8b8a2 tuned proofs;
wenzelm
parents: 53374
diff changeset
  1162
    by auto
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1163
qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1164
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1165
lemma%important limsup_finite_then_bounded:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1166
  fixes u::"nat \<Rightarrow> real"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1167
  assumes "limsup u < \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1168
  shows "\<exists>C. \<forall>n. u n \<le> C"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1169
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1170
  obtain C where C: "limsup u < C" "C < \<infinity>" using assms ereal_dense2 by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1171
  then have "C = ereal(real_of_ereal C)" using ereal_real by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1172
  have "eventually (\<lambda>n. u n < C) sequentially" using C(1) unfolding Limsup_def
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1173
    apply (auto simp add: INF_less_iff)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1174
    using SUP_lessD eventually_mono by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1175
  then obtain N where N: "\<And>n. n \<ge> N \<Longrightarrow> u n < C" using eventually_sequentially by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1176
  define D where "D = max (real_of_ereal C) (Max {u n |n. n \<le> N})"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1177
  have "\<And>n. u n \<le> D"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1178
  proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1179
    fix n show "u n \<le> D"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1180
    proof (cases)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1181
      assume *: "n \<le> N"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1182
      have "u n \<le> Max {u n |n. n \<le> N}" by (rule Max_ge, auto simp add: *)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1183
      then show "u n \<le> D" unfolding D_def by linarith
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1184
    next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1185
      assume "\<not>(n \<le> N)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1186
      then have "n \<ge> N" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1187
      then have "u n < C" using N by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1188
      then have "u n < real_of_ereal C" using \<open>C = ereal(real_of_ereal C)\<close> less_ereal.simps(1) by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1189
      then show "u n \<le> D" unfolding D_def by linarith
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1190
    qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1191
  qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1192
  then show ?thesis by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1193
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1194
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1195
lemma liminf_finite_then_bounded_below:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1196
  fixes u::"nat \<Rightarrow> real"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1197
  assumes "liminf u > -\<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1198
  shows "\<exists>C. \<forall>n. u n \<ge> C"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1199
proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1200
  obtain C where C: "liminf u > C" "C > -\<infinity>" using assms using ereal_dense2 by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1201
  then have "C = ereal(real_of_ereal C)" using ereal_real by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1202
  have "eventually (\<lambda>n. u n > C) sequentially" using C(1) unfolding Liminf_def
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1203
    apply (auto simp add: less_SUP_iff)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1204
    using eventually_elim2 less_INF_D by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1205
  then obtain N where N: "\<And>n. n \<ge> N \<Longrightarrow> u n > C" using eventually_sequentially by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1206
  define D where "D = min (real_of_ereal C) (Min {u n |n. n \<le> N})"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1207
  have "\<And>n. u n \<ge> D"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1208
  proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1209
    fix n show "u n \<ge> D"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1210
    proof (cases)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1211
      assume *: "n \<le> N"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1212
      have "u n \<ge> Min {u n |n. n \<le> N}" by (rule Min_le, auto simp add: *)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1213
      then show "u n \<ge> D" unfolding D_def by linarith
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1214
    next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1215
      assume "\<not>(n \<le> N)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1216
      then have "n \<ge> N" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1217
      then have "u n > C" using N by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1218
      then have "u n > real_of_ereal C" using \<open>C = ereal(real_of_ereal C)\<close> less_ereal.simps(1) by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1219
      then show "u n \<ge> D" unfolding D_def by linarith
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1220
    qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1221
  qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1222
  then show ?thesis by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1223
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1224
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1225
lemma liminf_upper_bound:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1226
  fixes u:: "nat \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1227
  assumes "liminf u < l"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1228
  shows "\<exists>N>k. u N < l"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1229
by (metis assms gt_ex less_le_trans liminf_bounded_iff not_less)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1230
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1231
lemma limsup_shift:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1232
  "limsup (\<lambda>n. u (n+1)) = limsup u"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1233
proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1234
  have "(SUP m:{n+1..}. u m) = (SUP m:{n..}. u (m + 1))" for n
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1235
    apply (rule SUP_eq) using Suc_le_D by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1236
  then have a: "(INF n. SUP m:{n..}. u (m + 1)) = (INF n. (SUP m:{n+1..}. u m))" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1237
  have b: "(INF n. (SUP m:{n+1..}. u m)) = (INF n:{1..}. (SUP m:{n..}. u m))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1238
    apply (rule INF_eq) using Suc_le_D by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1239
  have "(INF n:{1..}. v n) = (INF n. v n)" if "decseq v" for v::"nat \<Rightarrow> 'a"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1240
    apply (rule INF_eq) using \<open>decseq v\<close> decseq_Suc_iff by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1241
  moreover have "decseq (\<lambda>n. (SUP m:{n..}. u m))" by (simp add: SUP_subset_mono decseq_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1242
  ultimately have c: "(INF n:{1..}. (SUP m:{n..}. u m)) = (INF n. (SUP m:{n..}. u m))" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1243
  have "(INF n. SUPREMUM {n..} u) = (INF n. SUP m:{n..}. u (m + 1))" using a b c by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1244
  then show ?thesis by (auto cong: limsup_INF_SUP)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1245
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1246
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1247
lemma limsup_shift_k:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1248
  "limsup (\<lambda>n. u (n+k)) = limsup u"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1249
proof (induction k)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1250
  case (Suc k)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1251
  have "limsup (\<lambda>n. u (n+k+1)) = limsup (\<lambda>n. u (n+k))" using limsup_shift[where ?u="\<lambda>n. u(n+k)"] by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1252
  then show ?case using Suc.IH by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1253
qed (auto)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1254
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1255
lemma liminf_shift:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1256
  "liminf (\<lambda>n. u (n+1)) = liminf u"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1257
proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1258
  have "(INF m:{n+1..}. u m) = (INF m:{n..}. u (m + 1))" for n
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1259
    apply (rule INF_eq) using Suc_le_D by (auto)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1260
  then have a: "(SUP n. INF m:{n..}. u (m + 1)) = (SUP n. (INF m:{n+1..}. u m))" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1261
  have b: "(SUP n. (INF m:{n+1..}. u m)) = (SUP n:{1..}. (INF m:{n..}. u m))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1262
    apply (rule SUP_eq) using Suc_le_D by (auto)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1263
  have "(SUP n:{1..}. v n) = (SUP n. v n)" if "incseq v" for v::"nat \<Rightarrow> 'a"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1264
    apply (rule SUP_eq) using \<open>incseq v\<close> incseq_Suc_iff by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1265
  moreover have "incseq (\<lambda>n. (INF m:{n..}. u m))" by (simp add: INF_superset_mono mono_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1266
  ultimately have c: "(SUP n:{1..}. (INF m:{n..}. u m)) = (SUP n. (INF m:{n..}. u m))" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1267
  have "(SUP n. INFIMUM {n..} u) = (SUP n. INF m:{n..}. u (m + 1))" using a b c by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1268
  then show ?thesis by (auto cong: liminf_SUP_INF)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1269
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1270
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1271
lemma liminf_shift_k:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1272
  "liminf (\<lambda>n. u (n+k)) = liminf u"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1273
proof (induction k)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1274
  case (Suc k)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1275
  have "liminf (\<lambda>n. u (n+k+1)) = liminf (\<lambda>n. u (n+k))" using liminf_shift[where ?u="\<lambda>n. u(n+k)"] by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1276
  then show ?case using Suc.IH by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1277
qed (auto)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1278
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1279
lemma%important Limsup_obtain:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1280
  fixes u::"_ \<Rightarrow> 'a :: complete_linorder"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1281
  assumes "Limsup F u > c"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1282
  shows "\<exists>i. u i > c"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1283
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1284
  have "(INF P:{P. eventually P F}. SUP x:{x. P x}. u x) > c" using assms by (simp add: Limsup_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1285
  then show ?thesis by (metis eventually_True mem_Collect_eq less_INF_D less_SUP_iff)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1286
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1287
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1288
text \<open>The next lemma is extremely useful, as it often makes it possible to reduce statements
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1289
about limsups to statements about limits.\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1290
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1291
lemma%important limsup_subseq_lim:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1292
  fixes u::"nat \<Rightarrow> 'a :: {complete_linorder, linorder_topology}"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1293
  shows "\<exists>r::nat\<Rightarrow>nat. strict_mono r \<and> (u o r) \<longlonglongrightarrow> limsup u"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1294
proof%unimportant (cases)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1295
  assume "\<forall>n. \<exists>p>n. \<forall>m\<ge>p. u m \<le> u p"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1296
  then have "\<exists>r. \<forall>n. (\<forall>m\<ge>r n. u m \<le> u (r n)) \<and> r n < r (Suc n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1297
    by (intro dependent_nat_choice) (auto simp: conj_commute)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1298
  then obtain r :: "nat \<Rightarrow> nat" where "strict_mono r" and mono: "\<And>n m. r n \<le> m \<Longrightarrow> u m \<le> u (r n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1299
    by (auto simp: strict_mono_Suc_iff)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1300
  define umax where "umax = (\<lambda>n. (SUP m:{n..}. u m))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1301
  have "decseq umax" unfolding umax_def by (simp add: SUP_subset_mono antimono_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1302
  then have "umax \<longlonglongrightarrow> limsup u" unfolding umax_def by (metis LIMSEQ_INF limsup_INF_SUP)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1303
  then have *: "(umax o r) \<longlonglongrightarrow> limsup u" by (simp add: LIMSEQ_subseq_LIMSEQ \<open>strict_mono r\<close>)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1304
  have "\<And>n. umax(r n) = u(r n)" unfolding umax_def using mono
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1305
    by (metis SUP_le_iff antisym atLeast_def mem_Collect_eq order_refl)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1306
  then have "umax o r = u o r" unfolding o_def by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1307
  then have "(u o r) \<longlonglongrightarrow> limsup u" using * by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1308
  then show ?thesis using \<open>strict_mono r\<close> by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1309
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1310
  assume "\<not> (\<forall>n. \<exists>p>n. (\<forall>m\<ge>p. u m \<le> u p))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1311
  then obtain N where N: "\<And>p. p > N \<Longrightarrow> \<exists>m>p. u p < u m" by (force simp: not_le le_less)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1312
  have "\<exists>r. \<forall>n. N < r n \<and> r n < r (Suc n) \<and> (\<forall>i\<in> {N<..r (Suc n)}. u i \<le> u (r (Suc n)))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1313
  proof (rule dependent_nat_choice)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1314
    fix x assume "N < x"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1315
    then have a: "finite {N<..x}" "{N<..x} \<noteq> {}" by simp_all
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1316
    have "Max {u i |i. i \<in> {N<..x}} \<in> {u i |i. i \<in> {N<..x}}" apply (rule Max_in) using a by (auto)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1317
    then obtain p where "p \<in> {N<..x}" and upmax: "u p = Max{u i |i. i \<in> {N<..x}}" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1318
    define U where "U = {m. m > p \<and> u p < u m}"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1319
    have "U \<noteq> {}" unfolding U_def using N[of p] \<open>p \<in> {N<..x}\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1320
    define y where "y = Inf U"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1321
    then have "y \<in> U" using \<open>U \<noteq> {}\<close> by (simp add: Inf_nat_def1)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1322
    have a: "\<And>i. i \<in> {N<..x} \<Longrightarrow> u i \<le> u p"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1323
    proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1324
      fix i assume "i \<in> {N<..x}"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1325
      then have "u i \<in> {u i |i. i \<in> {N<..x}}" by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1326
      then show "u i \<le> u p" using upmax by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1327
    qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1328
    moreover have "u p < u y" using \<open>y \<in> U\<close> U_def by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1329
    ultimately have "y \<notin> {N<..x}" using not_le by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1330
    moreover have "y > N" using \<open>y \<in> U\<close> U_def \<open>p \<in> {N<..x}\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1331
    ultimately have "y > x" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1332
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1333
    have "\<And>i. i \<in> {N<..y} \<Longrightarrow> u i \<le> u y"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1334
    proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1335
      fix i assume "i \<in> {N<..y}" show "u i \<le> u y"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1336
      proof (cases)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1337
        assume "i = y"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1338
        then show ?thesis by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1339
      next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1340
        assume "\<not>(i=y)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1341
        then have i:"i \<in> {N<..<y}" using \<open>i \<in> {N<..y}\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1342
        have "u i \<le> u p"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1343
        proof (cases)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1344
          assume "i \<le> x"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1345
          then have "i \<in> {N<..x}" using i by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1346
          then show ?thesis using a by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1347
        next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1348
          assume "\<not>(i \<le> x)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1349
          then have "i > x" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1350
          then have *: "i > p" using \<open>p \<in> {N<..x}\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1351
          have "i < Inf U" using i y_def by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1352
          then have "i \<notin> U" using Inf_nat_def not_less_Least by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1353
          then show ?thesis using U_def * by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1354
        qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1355
        then show "u i \<le> u y" using \<open>u p < u y\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1356
      qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1357
    qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1358
    then have "N < y \<and> x < y \<and> (\<forall>i\<in>{N<..y}. u i \<le> u y)" using \<open>y > x\<close> \<open>y > N\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1359
    then show "\<exists>y>N. x < y \<and> (\<forall>i\<in>{N<..y}. u i \<le> u y)" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1360
  qed (auto)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1361
  then obtain r where r: "\<forall>n. N < r n \<and> r n < r (Suc n) \<and> (\<forall>i\<in> {N<..r (Suc n)}. u i \<le> u (r (Suc n)))" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1362
  have "strict_mono r" using r by (auto simp: strict_mono_Suc_iff)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1363
  have "incseq (u o r)" unfolding o_def using r by (simp add: incseq_SucI order.strict_implies_order)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1364
  then have "(u o r) \<longlonglongrightarrow> (SUP n. (u o r) n)" using LIMSEQ_SUP by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1365
  then have "limsup (u o r) = (SUP n. (u o r) n)" by (simp add: lim_imp_Limsup)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1366
  moreover have "limsup (u o r) \<le> limsup u" using \<open>strict_mono r\<close> by (simp add: limsup_subseq_mono)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1367
  ultimately have "(SUP n. (u o r) n) \<le> limsup u" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1368
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1369
  {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1370
    fix i assume i: "i \<in> {N<..}"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1371
    obtain n where "i < r (Suc n)" using \<open>strict_mono r\<close> using Suc_le_eq seq_suble by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1372
    then have "i \<in> {N<..r(Suc n)}" using i by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1373
    then have "u i \<le> u (r(Suc n))" using r by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1374
    then have "u i \<le> (SUP n. (u o r) n)" unfolding o_def by (meson SUP_upper2 UNIV_I)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1375
  }
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1376
  then have "(SUP i:{N<..}. u i) \<le> (SUP n. (u o r) n)" using SUP_least by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1377
  then have "limsup u \<le> (SUP n. (u o r) n)" unfolding Limsup_def
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1378
    by (metis (mono_tags, lifting) INF_lower2 atLeast_Suc_greaterThan atLeast_def eventually_ge_at_top mem_Collect_eq)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1379
  then have "limsup u = (SUP n. (u o r) n)" using \<open>(SUP n. (u o r) n) \<le> limsup u\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1380
  then have "(u o r) \<longlonglongrightarrow> limsup u" using \<open>(u o r) \<longlonglongrightarrow> (SUP n. (u o r) n)\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1381
  then show ?thesis using \<open>strict_mono r\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1382
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1383
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1384
lemma%important liminf_subseq_lim:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1385
  fixes u::"nat \<Rightarrow> 'a :: {complete_linorder, linorder_topology}"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1386
  shows "\<exists>r::nat\<Rightarrow>nat. strict_mono r \<and> (u o r) \<longlonglongrightarrow> liminf u"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1387
proof%unimportant (cases)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1388
  assume "\<forall>n. \<exists>p>n. \<forall>m\<ge>p. u m \<ge> u p"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1389
  then have "\<exists>r. \<forall>n. (\<forall>m\<ge>r n. u m \<ge> u (r n)) \<and> r n < r (Suc n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1390
    by (intro dependent_nat_choice) (auto simp: conj_commute)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1391
  then obtain r :: "nat \<Rightarrow> nat" where "strict_mono r" and mono: "\<And>n m. r n \<le> m \<Longrightarrow> u m \<ge> u (r n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1392
    by (auto simp: strict_mono_Suc_iff)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1393
  define umin where "umin = (\<lambda>n. (INF m:{n..}. u m))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1394
  have "incseq umin" unfolding umin_def by (simp add: INF_superset_mono incseq_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1395
  then have "umin \<longlonglongrightarrow> liminf u" unfolding umin_def by (metis LIMSEQ_SUP liminf_SUP_INF)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1396
  then have *: "(umin o r) \<longlonglongrightarrow> liminf u" by (simp add: LIMSEQ_subseq_LIMSEQ \<open>strict_mono r\<close>)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1397
  have "\<And>n. umin(r n) = u(r n)" unfolding umin_def using mono
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1398
    by (metis le_INF_iff antisym atLeast_def mem_Collect_eq order_refl)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1399
  then have "umin o r = u o r" unfolding o_def by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1400
  then have "(u o r) \<longlonglongrightarrow> liminf u" using * by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1401
  then show ?thesis using \<open>strict_mono r\<close> by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1402
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1403
  assume "\<not> (\<forall>n. \<exists>p>n. (\<forall>m\<ge>p. u m \<ge> u p))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1404
  then obtain N where N: "\<And>p. p > N \<Longrightarrow> \<exists>m>p. u p > u m" by (force simp: not_le le_less)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1405
  have "\<exists>r. \<forall>n. N < r n \<and> r n < r (Suc n) \<and> (\<forall>i\<in> {N<..r (Suc n)}. u i \<ge> u (r (Suc n)))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1406
  proof (rule dependent_nat_choice)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1407
    fix x assume "N < x"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1408
    then have a: "finite {N<..x}" "{N<..x} \<noteq> {}" by simp_all
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1409
    have "Min {u i |i. i \<in> {N<..x}} \<in> {u i |i. i \<in> {N<..x}}" apply (rule Min_in) using a by (auto)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1410
    then obtain p where "p \<in> {N<..x}" and upmin: "u p = Min{u i |i. i \<in> {N<..x}}" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1411
    define U where "U = {m. m > p \<and> u p > u m}"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1412
    have "U \<noteq> {}" unfolding U_def using N[of p] \<open>p \<in> {N<..x}\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1413
    define y where "y = Inf U"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1414
    then have "y \<in> U" using \<open>U \<noteq> {}\<close> by (simp add: Inf_nat_def1)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1415
    have a: "\<And>i. i \<in> {N<..x} \<Longrightarrow> u i \<ge> u p"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1416
    proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1417
      fix i assume "i \<in> {N<..x}"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1418
      then have "u i \<in> {u i |i. i \<in> {N<..x}}" by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1419
      then show "u i \<ge> u p" using upmin by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1420
    qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1421
    moreover have "u p > u y" using \<open>y \<in> U\<close> U_def by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1422
    ultimately have "y \<notin> {N<..x}" using not_le by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1423
    moreover have "y > N" using \<open>y \<in> U\<close> U_def \<open>p \<in> {N<..x}\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1424
    ultimately have "y > x" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1425
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1426
    have "\<And>i. i \<in> {N<..y} \<Longrightarrow> u i \<ge> u y"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1427
    proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1428
      fix i assume "i \<in> {N<..y}" show "u i \<ge> u y"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1429
      proof (cases)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1430
        assume "i = y"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1431
        then show ?thesis by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1432
      next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1433
        assume "\<not>(i=y)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1434
        then have i:"i \<in> {N<..<y}" using \<open>i \<in> {N<..y}\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1435
        have "u i \<ge> u p"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1436
        proof (cases)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1437
          assume "i \<le> x"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1438
          then have "i \<in> {N<..x}" using i by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1439
          then show ?thesis using a by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1440
        next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1441
          assume "\<not>(i \<le> x)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1442
          then have "i > x" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1443
          then have *: "i > p" using \<open>p \<in> {N<..x}\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1444
          have "i < Inf U" using i y_def by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1445
          then have "i \<notin> U" using Inf_nat_def not_less_Least by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1446
          then show ?thesis using U_def * by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1447
        qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1448
        then show "u i \<ge> u y" using \<open>u p > u y\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1449
      qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1450
    qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1451
    then have "N < y \<and> x < y \<and> (\<forall>i\<in>{N<..y}. u i \<ge> u y)" using \<open>y > x\<close> \<open>y > N\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1452
    then show "\<exists>y>N. x < y \<and> (\<forall>i\<in>{N<..y}. u i \<ge> u y)" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1453
  qed (auto)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1454
  then obtain r :: "nat \<Rightarrow> nat" 
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1455
    where r: "\<forall>n. N < r n \<and> r n < r (Suc n) \<and> (\<forall>i\<in> {N<..r (Suc n)}. u i \<ge> u (r (Suc n)))" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1456
  have "strict_mono r" using r by (auto simp: strict_mono_Suc_iff)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1457
  have "decseq (u o r)" unfolding o_def using r by (simp add: decseq_SucI order.strict_implies_order)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1458
  then have "(u o r) \<longlonglongrightarrow> (INF n. (u o r) n)" using LIMSEQ_INF by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1459
  then have "liminf (u o r) = (INF n. (u o r) n)" by (simp add: lim_imp_Liminf)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1460
  moreover have "liminf (u o r) \<ge> liminf u" using \<open>strict_mono r\<close> by (simp add: liminf_subseq_mono)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1461
  ultimately have "(INF n. (u o r) n) \<ge> liminf u" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1462
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1463
  {
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1464
    fix i assume i: "i \<in> {N<..}"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1465
    obtain n where "i < r (Suc n)" using \<open>strict_mono r\<close> using Suc_le_eq seq_suble by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1466
    then have "i \<in> {N<..r(Suc n)}" using i by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1467
    then have "u i \<ge> u (r(Suc n))" using r by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1468
    then have "u i \<ge> (INF n. (u o r) n)" unfolding o_def by (meson INF_lower2 UNIV_I)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1469
  }
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1470
  then have "(INF i:{N<..}. u i) \<ge> (INF n. (u o r) n)" using INF_greatest by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1471
  then have "liminf u \<ge> (INF n. (u o r) n)" unfolding Liminf_def
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1472
    by (metis (mono_tags, lifting) SUP_upper2 atLeast_Suc_greaterThan atLeast_def eventually_ge_at_top mem_Collect_eq)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1473
  then have "liminf u = (INF n. (u o r) n)" using \<open>(INF n. (u o r) n) \<ge> liminf u\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1474
  then have "(u o r) \<longlonglongrightarrow> liminf u" using \<open>(u o r) \<longlonglongrightarrow> (INF n. (u o r) n)\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1475
  then show ?thesis using \<open>strict_mono r\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1476
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1477
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1478
text \<open>The following statement about limsups is reduced to a statement about limits using
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1479
subsequences thanks to \verb+limsup_subseq_lim+. The statement for limits follows for instance from
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1480
\verb+tendsto_add_ereal_general+.\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1481
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1482
lemma%important ereal_limsup_add_mono:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1483
  fixes u v::"nat \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1484
  shows "limsup (\<lambda>n. u n + v n) \<le> limsup u + limsup v"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1485
proof%unimportant (cases)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1486
  assume "(limsup u = \<infinity>) \<or> (limsup v = \<infinity>)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1487
  then have "limsup u + limsup v = \<infinity>" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1488
  then show ?thesis by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1489
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1490
  assume "\<not>((limsup u = \<infinity>) \<or> (limsup v = \<infinity>))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1491
  then have "limsup u < \<infinity>" "limsup v < \<infinity>" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1492
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1493
  define w where "w = (\<lambda>n. u n + v n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1494
  obtain r where r: "strict_mono r" "(w o r) \<longlonglongrightarrow> limsup w" using limsup_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1495
  obtain s where s: "strict_mono s" "(u o r o s) \<longlonglongrightarrow> limsup (u o r)" using limsup_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1496
  obtain t where t: "strict_mono t" "(v o r o s o t) \<longlonglongrightarrow> limsup (v o r o s)" using limsup_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1497
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1498
  define a where "a = r o s o t"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1499
  have "strict_mono a" using r s t by (simp add: a_def strict_mono_o)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1500
  have l:"(w o a) \<longlonglongrightarrow> limsup w"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1501
         "(u o a) \<longlonglongrightarrow> limsup (u o r)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1502
         "(v o a) \<longlonglongrightarrow> limsup (v o r o s)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1503
  apply (metis (no_types, lifting) r(2) s(1) t(1) LIMSEQ_subseq_LIMSEQ a_def comp_assoc)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1504
  apply (metis (no_types, lifting) s(2) t(1) LIMSEQ_subseq_LIMSEQ a_def comp_assoc)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1505
  apply (metis (no_types, lifting) t(2) a_def comp_assoc)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1506
  done
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1507
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1508
  have "limsup (u o r) \<le> limsup u" by (simp add: limsup_subseq_mono r(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1509
  then have a: "limsup (u o r) \<noteq> \<infinity>" using \<open>limsup u < \<infinity>\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1510
  have "limsup (v o r o s) \<le> limsup v" 
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1511
    by (simp add: comp_assoc limsup_subseq_mono r(1) s(1) strict_mono_o)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1512
  then have b: "limsup (v o r o s) \<noteq> \<infinity>" using \<open>limsup v < \<infinity>\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1513
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1514
  have "(\<lambda>n. (u o a) n + (v o a) n) \<longlonglongrightarrow> limsup (u o r) + limsup (v o r o s)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1515
    using l tendsto_add_ereal_general a b by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1516
  moreover have "(\<lambda>n. (u o a) n + (v o a) n) = (w o a)" unfolding w_def by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1517
  ultimately have "(w o a) \<longlonglongrightarrow> limsup (u o r) + limsup (v o r o s)" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1518
  then have "limsup w = limsup (u o r) + limsup (v o r o s)" using l(1) LIMSEQ_unique by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1519
  then have "limsup w \<le> limsup u + limsup v"
68752
f221bc388ad0 (re)moved lemmas
nipkow
parents: 68610
diff changeset
  1520
    using \<open>limsup (u o r) \<le> limsup u\<close> \<open>limsup (v o r o s) \<le> limsup v\<close> add_mono by simp
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1521
  then show ?thesis unfolding w_def by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1522
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1523
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1524
text \<open>There is an asymmetry between liminfs and limsups in ereal, as $\infty + (-\infty) = \infty$.
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1525
This explains why there are more assumptions in the next lemma dealing with liminfs that in the
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1526
previous one about limsups.\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1527
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1528
lemma%important ereal_liminf_add_mono:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1529
  fixes u v::"nat \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1530
  assumes "\<not>((liminf u = \<infinity> \<and> liminf v = -\<infinity>) \<or> (liminf u = -\<infinity> \<and> liminf v = \<infinity>))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1531
  shows "liminf (\<lambda>n. u n + v n) \<ge> liminf u + liminf v"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1532
proof%unimportant (cases)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1533
  assume "(liminf u = -\<infinity>) \<or> (liminf v = -\<infinity>)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1534
  then have *: "liminf u + liminf v = -\<infinity>" using assms by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1535
  show ?thesis by (simp add: *)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1536
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1537
  assume "\<not>((liminf u = -\<infinity>) \<or> (liminf v = -\<infinity>))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1538
  then have "liminf u > -\<infinity>" "liminf v > -\<infinity>" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1539
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1540
  define w where "w = (\<lambda>n. u n + v n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1541
  obtain r where r: "strict_mono r" "(w o r) \<longlonglongrightarrow> liminf w" using liminf_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1542
  obtain s where s: "strict_mono s" "(u o r o s) \<longlonglongrightarrow> liminf (u o r)" using liminf_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1543
  obtain t where t: "strict_mono t" "(v o r o s o t) \<longlonglongrightarrow> liminf (v o r o s)" using liminf_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1544
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1545
  define a where "a = r o s o t"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1546
  have "strict_mono a" using r s t by (simp add: a_def strict_mono_o)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1547
  have l:"(w o a) \<longlonglongrightarrow> liminf w"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1548
         "(u o a) \<longlonglongrightarrow> liminf (u o r)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1549
         "(v o a) \<longlonglongrightarrow> liminf (v o r o s)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1550
  apply (metis (no_types, lifting) r(2) s(1) t(1) LIMSEQ_subseq_LIMSEQ a_def comp_assoc)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1551
  apply (metis (no_types, lifting) s(2) t(1) LIMSEQ_subseq_LIMSEQ a_def comp_assoc)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1552
  apply (metis (no_types, lifting) t(2) a_def comp_assoc)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1553
  done
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1554
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1555
  have "liminf (u o r) \<ge> liminf u" by (simp add: liminf_subseq_mono r(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1556
  then have a: "liminf (u o r) \<noteq> -\<infinity>" using \<open>liminf u > -\<infinity>\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1557
  have "liminf (v o r o s) \<ge> liminf v" 
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1558
    by (simp add: comp_assoc liminf_subseq_mono r(1) s(1) strict_mono_o)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1559
  then have b: "liminf (v o r o s) \<noteq> -\<infinity>" using \<open>liminf v > -\<infinity>\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1560
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1561
  have "(\<lambda>n. (u o a) n + (v o a) n) \<longlonglongrightarrow> liminf (u o r) + liminf (v o r o s)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1562
    using l tendsto_add_ereal_general a b by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1563
  moreover have "(\<lambda>n. (u o a) n + (v o a) n) = (w o a)" unfolding w_def by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1564
  ultimately have "(w o a) \<longlonglongrightarrow> liminf (u o r) + liminf (v o r o s)" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1565
  then have "liminf w = liminf (u o r) + liminf (v o r o s)" using l(1) LIMSEQ_unique by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1566
  then have "liminf w \<ge> liminf u + liminf v"
68752
f221bc388ad0 (re)moved lemmas
nipkow
parents: 68610
diff changeset
  1567
    using \<open>liminf (u o r) \<ge> liminf u\<close> \<open>liminf (v o r o s) \<ge> liminf v\<close> add_mono by simp
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1568
  then show ?thesis unfolding w_def by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1569
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1570
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1571
lemma%important ereal_limsup_lim_add:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1572
  fixes u v::"nat \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1573
  assumes "u \<longlonglongrightarrow> a" "abs(a) \<noteq> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1574
  shows "limsup (\<lambda>n. u n + v n) = a + limsup v"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1575
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1576
  have "limsup u = a" using assms(1) using tendsto_iff_Liminf_eq_Limsup trivial_limit_at_top_linorder by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1577
  have "(\<lambda>n. -u n) \<longlonglongrightarrow> -a" using assms(1) by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1578
  then have "limsup (\<lambda>n. -u n) = -a" using tendsto_iff_Liminf_eq_Limsup trivial_limit_at_top_linorder by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1579
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1580
  have "limsup (\<lambda>n. u n + v n) \<le> limsup u + limsup v"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1581
    by (rule ereal_limsup_add_mono)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1582
  then have up: "limsup (\<lambda>n. u n + v n) \<le> a + limsup v" using \<open>limsup u = a\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1583
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1584
  have a: "limsup (\<lambda>n. (u n + v n) + (-u n)) \<le> limsup (\<lambda>n. u n + v n) + limsup (\<lambda>n. -u n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1585
    by (rule ereal_limsup_add_mono)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1586
  have "eventually (\<lambda>n. u n = ereal(real_of_ereal(u n))) sequentially" using assms
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1587
    real_lim_then_eventually_real by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1588
  moreover have "\<And>x. x = ereal(real_of_ereal(x)) \<Longrightarrow> x + (-x) = 0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1589
    by (metis plus_ereal.simps(1) right_minus uminus_ereal.simps(1) zero_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1590
  ultimately have "eventually (\<lambda>n. u n + (-u n) = 0) sequentially"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1591
    by (metis (mono_tags, lifting) eventually_mono)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1592
  moreover have "\<And>n. u n + (-u n) = 0 \<Longrightarrow> u n + v n + (-u n) = v n"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1593
    by (metis add.commute add.left_commute add.left_neutral)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1594
  ultimately have "eventually (\<lambda>n. u n + v n + (-u n) = v n) sequentially"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1595
    using eventually_mono by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1596
  then have "limsup v = limsup (\<lambda>n. u n + v n + (-u n))" using Limsup_eq by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1597
  then have "limsup v \<le> limsup (\<lambda>n. u n + v n) -a" using a \<open>limsup (\<lambda>n. -u n) = -a\<close> by (simp add: minus_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1598
  then have "limsup (\<lambda>n. u n + v n) \<ge> a + limsup v" using assms(2) by (metis add.commute ereal_le_minus)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1599
  then show ?thesis using up by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1600
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1601
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1602
lemma%important ereal_limsup_lim_mult:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1603
  fixes u v::"nat \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1604
  assumes "u \<longlonglongrightarrow> a" "a>0" "a \<noteq> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1605
  shows "limsup (\<lambda>n. u n * v n) = a * limsup v"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1606
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1607
  define w where "w = (\<lambda>n. u n * v n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1608
  obtain r where r: "strict_mono r" "(v o r) \<longlonglongrightarrow> limsup v" using limsup_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1609
  have "(u o r) \<longlonglongrightarrow> a" using assms(1) LIMSEQ_subseq_LIMSEQ r by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1610
  with tendsto_mult_ereal[OF this r(2)] have "(\<lambda>n. (u o r) n * (v o r) n) \<longlonglongrightarrow> a * limsup v" using assms(2) assms(3) by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1611
  moreover have "\<And>n. (w o r) n = (u o r) n * (v o r) n" unfolding w_def by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1612
  ultimately have "(w o r) \<longlonglongrightarrow> a * limsup v" unfolding w_def by presburger
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1613
  then have "limsup (w o r) = a * limsup v" by (simp add: tendsto_iff_Liminf_eq_Limsup)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1614
  then have I: "limsup w \<ge> a * limsup v" by (metis limsup_subseq_mono r(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1615
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1616
  obtain s where s: "strict_mono s" "(w o s) \<longlonglongrightarrow> limsup w" using limsup_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1617
  have *: "(u o s) \<longlonglongrightarrow> a" using assms(1) LIMSEQ_subseq_LIMSEQ s by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1618
  have "eventually (\<lambda>n. (u o s) n > 0) sequentially" using assms(2) * order_tendsto_iff by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1619
  moreover have "eventually (\<lambda>n. (u o s) n < \<infinity>) sequentially" using assms(3) * order_tendsto_iff by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1620
  moreover have "(w o s) n / (u o s) n = (v o s) n" if "(u o s) n > 0" "(u o s) n < \<infinity>" for n
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1621
    unfolding w_def using that by (auto simp add: ereal_divide_eq)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1622
  ultimately have "eventually (\<lambda>n. (w o s) n / (u o s) n = (v o s) n) sequentially" using eventually_elim2 by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1623
  moreover have "(\<lambda>n. (w o s) n / (u o s) n) \<longlonglongrightarrow> (limsup w) / a"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1624
    apply (rule tendsto_divide_ereal[OF s(2) *]) using assms(2) assms(3) by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1625
  ultimately have "(v o s) \<longlonglongrightarrow> (limsup w) / a" using Lim_transform_eventually by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1626
  then have "limsup (v o s) = (limsup w) / a" by (simp add: tendsto_iff_Liminf_eq_Limsup)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1627
  then have "limsup v \<ge> (limsup w) / a" by (metis limsup_subseq_mono s(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1628
  then have "a * limsup v \<ge> limsup w" using assms(2) assms(3) by (simp add: ereal_divide_le_pos)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1629
  then show ?thesis using I unfolding w_def by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1630
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1631
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1632
lemma%important ereal_liminf_lim_mult:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1633
  fixes u v::"nat \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1634
  assumes "u \<longlonglongrightarrow> a" "a>0" "a \<noteq> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1635
  shows "liminf (\<lambda>n. u n * v n) = a * liminf v"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1636
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1637
  define w where "w = (\<lambda>n. u n * v n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1638
  obtain r where r: "strict_mono r" "(v o r) \<longlonglongrightarrow> liminf v" using liminf_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1639
  have "(u o r) \<longlonglongrightarrow> a" using assms(1) LIMSEQ_subseq_LIMSEQ r by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1640
  with tendsto_mult_ereal[OF this r(2)] have "(\<lambda>n. (u o r) n * (v o r) n) \<longlonglongrightarrow> a * liminf v" using assms(2) assms(3) by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1641
  moreover have "\<And>n. (w o r) n = (u o r) n * (v o r) n" unfolding w_def by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1642
  ultimately have "(w o r) \<longlonglongrightarrow> a * liminf v" unfolding w_def by presburger
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1643
  then have "liminf (w o r) = a * liminf v" by (simp add: tendsto_iff_Liminf_eq_Limsup)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1644
  then have I: "liminf w \<le> a * liminf v" by (metis liminf_subseq_mono r(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1645
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1646
  obtain s where s: "strict_mono s" "(w o s) \<longlonglongrightarrow> liminf w" using liminf_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1647
  have *: "(u o s) \<longlonglongrightarrow> a" using assms(1) LIMSEQ_subseq_LIMSEQ s by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1648
  have "eventually (\<lambda>n. (u o s) n > 0) sequentially" using assms(2) * order_tendsto_iff by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1649
  moreover have "eventually (\<lambda>n. (u o s) n < \<infinity>) sequentially" using assms(3) * order_tendsto_iff by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1650
  moreover have "(w o s) n / (u o s) n = (v o s) n" if "(u o s) n > 0" "(u o s) n < \<infinity>" for n
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1651
    unfolding w_def using that by (auto simp add: ereal_divide_eq)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1652
  ultimately have "eventually (\<lambda>n. (w o s) n / (u o s) n = (v o s) n) sequentially" using eventually_elim2 by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1653
  moreover have "(\<lambda>n. (w o s) n / (u o s) n) \<longlonglongrightarrow> (liminf w) / a"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1654
    apply (rule tendsto_divide_ereal[OF s(2) *]) using assms(2) assms(3) by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1655
  ultimately have "(v o s) \<longlonglongrightarrow> (liminf w) / a" using Lim_transform_eventually by fastforce
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1656
  then have "liminf (v o s) = (liminf w) / a" by (simp add: tendsto_iff_Liminf_eq_Limsup)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1657
  then have "liminf v \<le> (liminf w) / a" by (metis liminf_subseq_mono s(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1658
  then have "a * liminf v \<le> liminf w" using assms(2) assms(3) by (simp add: ereal_le_divide_pos)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1659
  then show ?thesis using I unfolding w_def by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1660
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1661
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1662
lemma%important ereal_liminf_lim_add:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1663
  fixes u v::"nat \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1664
  assumes "u \<longlonglongrightarrow> a" "abs(a) \<noteq> \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1665
  shows "liminf (\<lambda>n. u n + v n) = a + liminf v"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1666
proof%unimportant -
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1667
  have "liminf u = a" using assms(1) tendsto_iff_Liminf_eq_Limsup trivial_limit_at_top_linorder by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1668
  then have *: "abs(liminf u) \<noteq> \<infinity>" using assms(2) by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1669
  have "(\<lambda>n. -u n) \<longlonglongrightarrow> -a" using assms(1) by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1670
  then have "liminf (\<lambda>n. -u n) = -a" using tendsto_iff_Liminf_eq_Limsup trivial_limit_at_top_linorder by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1671
  then have **: "abs(liminf (\<lambda>n. -u n)) \<noteq> \<infinity>" using assms(2) by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1672
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1673
  have "liminf (\<lambda>n. u n + v n) \<ge> liminf u + liminf v"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1674
    apply (rule ereal_liminf_add_mono) using * by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1675
  then have up: "liminf (\<lambda>n. u n + v n) \<ge> a + liminf v" using \<open>liminf u = a\<close> by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1676
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1677
  have a: "liminf (\<lambda>n. (u n + v n) + (-u n)) \<ge> liminf (\<lambda>n. u n + v n) + liminf (\<lambda>n. -u n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1678
    apply (rule ereal_liminf_add_mono) using ** by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1679
  have "eventually (\<lambda>n. u n = ereal(real_of_ereal(u n))) sequentially" using assms
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1680
    real_lim_then_eventually_real by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1681
  moreover have "\<And>x. x = ereal(real_of_ereal(x)) \<Longrightarrow> x + (-x) = 0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1682
    by (metis plus_ereal.simps(1) right_minus uminus_ereal.simps(1) zero_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1683
  ultimately have "eventually (\<lambda>n. u n + (-u n) = 0) sequentially"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1684
    by (metis (mono_tags, lifting) eventually_mono)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1685
  moreover have "\<And>n. u n + (-u n) = 0 \<Longrightarrow> u n + v n + (-u n) = v n"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1686
    by (metis add.commute add.left_commute add.left_neutral)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1687
  ultimately have "eventually (\<lambda>n. u n + v n + (-u n) = v n) sequentially"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1688
    using eventually_mono by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1689
  then have "liminf v = liminf (\<lambda>n. u n + v n + (-u n))" using Liminf_eq by force
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1690
  then have "liminf v \<ge> liminf (\<lambda>n. u n + v n) -a" using a \<open>liminf (\<lambda>n. -u n) = -a\<close> by (simp add: minus_ereal_def)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1691
  then have "liminf (\<lambda>n. u n + v n) \<le> a + liminf v" using assms(2) by (metis add.commute ereal_minus_le)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1692
  then show ?thesis using up by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1693
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1694
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1695
lemma%important ereal_liminf_limsup_add:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1696
  fixes u v::"nat \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1697
  shows "liminf (\<lambda>n. u n + v n) \<le> liminf u + limsup v"
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1698
proof%unimportant (cases)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1699
  assume "limsup v = \<infinity> \<or> liminf u = \<infinity>"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1700
  then show ?thesis by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1701
next
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1702
  assume "\<not>(limsup v = \<infinity> \<or> liminf u = \<infinity>)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1703
  then have "limsup v < \<infinity>" "liminf u < \<infinity>" by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1704
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1705
  define w where "w = (\<lambda>n. u n + v n)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1706
  obtain r where r: "strict_mono r" "(u o r) \<longlonglongrightarrow> liminf u" using liminf_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1707
  obtain s where s: "strict_mono s" "(w o r o s) \<longlonglongrightarrow> liminf (w o r)" using liminf_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1708
  obtain t where t: "strict_mono t" "(v o r o s o t) \<longlonglongrightarrow> limsup (v o r o s)" using limsup_subseq_lim by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1709
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1710
  define a where "a = r o s o t"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1711
  have "strict_mono a" using r s t by (simp add: a_def strict_mono_o)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1712
  have l:"(u o a) \<longlonglongrightarrow> liminf u"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1713
         "(w o a) \<longlonglongrightarrow> liminf (w o r)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1714
         "(v o a) \<longlonglongrightarrow> limsup (v o r o s)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1715
  apply (metis (no_types, lifting) r(2) s(1) t(1) LIMSEQ_subseq_LIMSEQ a_def comp_assoc)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1716
  apply (metis (no_types, lifting) s(2) t(1) LIMSEQ_subseq_LIMSEQ a_def comp_assoc)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1717
  apply (metis (no_types, lifting) t(2) a_def comp_assoc)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1718
  done
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1719
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1720
  have "liminf (w o r) \<ge> liminf w" by (simp add: liminf_subseq_mono r(1))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1721
  have "limsup (v o r o s) \<le> limsup v" 
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1722
    by (simp add: comp_assoc limsup_subseq_mono r(1) s(1) strict_mono_o)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1723
  then have b: "limsup (v o r o s) < \<infinity>" using \<open>limsup v < \<infinity>\<close> by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1724
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1725
  have "(\<lambda>n. (u o a) n + (v o a) n) \<longlonglongrightarrow> liminf u + limsup (v o r o s)"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1726
    apply (rule tendsto_add_ereal_general) using b \<open>liminf u < \<infinity>\<close> l(1) l(3) by force+
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1727
  moreover have "(\<lambda>n. (u o a) n + (v o a) n) = (w o a)" unfolding w_def by auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1728
  ultimately have "(w o a) \<longlonglongrightarrow> liminf u + limsup (v o r o s)" by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1729
  then have "liminf (w o r) = liminf u + limsup (v o r o s)" using l(2) using LIMSEQ_unique by blast
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1730
  then have "liminf w \<le> liminf u + limsup v"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1731
    using \<open>liminf (w o r) \<ge> liminf w\<close> \<open>limsup (v o r o s) \<le> limsup v\<close>
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1732
    by (metis add_mono_thms_linordered_semiring(2) le_less_trans not_less)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1733
  then show ?thesis unfolding w_def by simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1734
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1735
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1736
lemma ereal_liminf_limsup_minus:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1737
  fixes u v::"nat \<Rightarrow> ereal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1738
  shows "liminf (\<lambda>n. u n - v n) \<le> limsup u - limsup v"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1739
  unfolding minus_ereal_def
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1740
  apply (subst add.commute)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1741
  apply (rule order_trans[OF ereal_liminf_limsup_add])
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1742
  using ereal_Limsup_uminus[of sequentially "\<lambda>n. - v n"]
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1743
  apply (simp add: add.commute)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1744
  done
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1745
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1746
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1747
lemma%important liminf_minus_ennreal:
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1748
  fixes u v::"nat \<Rightarrow> ennreal"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1749
  shows "(\<And>n. v n \<le> u n) \<Longrightarrow> liminf (\<lambda>n. u n - v n) \<le> limsup u - limsup v"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1750
  unfolding liminf_SUP_INF limsup_INF_SUP
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1751
  including ennreal.lifting
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1752
proof%unimportant (transfer, clarsimp)
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1753
  fix v u :: "nat \<Rightarrow> ereal" assume *: "\<forall>x. 0 \<le> v x" "\<forall>x. 0 \<le> u x" "\<And>n. v n \<le> u n"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1754
  moreover have "0 \<le> limsup u - limsup v"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1755
    using * by (intro ereal_diff_positive Limsup_mono always_eventually) simp
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1756
  moreover have "0 \<le> (SUPREMUM {x..} v)" for x
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1757
    using * by (intro SUP_upper2[of x]) auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1758
  moreover have "0 \<le> (SUPREMUM {x..} u)" for x
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1759
    using * by (intro SUP_upper2[of x]) auto
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1760
  ultimately show "(SUP n. INF n:{n..}. max 0 (u n - v n))
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1761
            \<le> max 0 ((INF x. max 0 (SUPREMUM {x..} u)) - (INF x. max 0 (SUPREMUM {x..} v)))"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1762
    by (auto simp: * ereal_diff_positive max.absorb2 liminf_SUP_INF[symmetric] limsup_INF_SUP[symmetric] ereal_liminf_limsup_minus)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1763
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
  1764
69221
21ee588bac7d tagged a theory for the Analysis manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68752
diff changeset
  1765
subsection%unimportant "Relate extended reals and the indicator function"
57446
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1766
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58877
diff changeset
  1767
lemma ereal_indicator_le_0: "(indicator S x::ereal) \<le> 0 \<longleftrightarrow> x \<notin> S"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58877
diff changeset
  1768
  by (auto split: split_indicator simp: one_ereal_def)
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58877
diff changeset
  1769
57446
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1770
lemma ereal_indicator: "ereal (indicator A x) = indicator A x"
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1771
  by (auto simp: indicator_def one_ereal_def)
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1772
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1773
lemma ereal_mult_indicator: "ereal (x * indicator A y) = ereal x * indicator A y"
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1774
  by (simp split: split_indicator)
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1775
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1776
lemma ereal_indicator_mult: "ereal (indicator A y * x) = indicator A y * ereal x"
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1777
  by (simp split: split_indicator)
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1778
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1779
lemma ereal_indicator_nonneg[simp, intro]: "0 \<le> (indicator A x ::ereal)"
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1780
  unfolding indicator_def by auto
06e195515deb some lemmas about the indicator function; removed lemma sums_def2
hoelzl
parents: 57418
diff changeset
  1781
59425
c5e79df8cc21 import general thms from Density_Compiler
hoelzl
parents: 59000
diff changeset
  1782
lemma indicator_inter_arith_ereal: "indicator A x * indicator B x = (indicator (A \<inter> B) x :: ereal)"
c5e79df8cc21 import general thms from Density_Compiler
hoelzl
parents: 59000
diff changeset
  1783
  by (simp split: split_indicator)
c5e79df8cc21 import general thms from Density_Compiler
hoelzl
parents: 59000
diff changeset
  1784
44125
230a8665c919 mark some redundant theorems as legacy
huffman
parents: 43923
diff changeset
  1785
end