| author | sultana | 
| Wed, 19 Feb 2014 15:57:02 +0000 | |
| changeset 55586 | c94f1a72d9c5 | 
| parent 55584 | a879f14b6f95 | 
| child 56154 | f0a927235162 | 
| permissions | -rw-r--r-- | 
| 11054 | 1 | (* Title: HOL/Library/Permutation.thy | 
| 15005 | 2 | Author: Lawrence C Paulson and Thomas M Rasmussen and Norbert Voelker | 
| 11054 | 3 | *) | 
| 4 | ||
| 14706 | 5 | header {* Permutations *}
 | 
| 11054 | 6 | |
| 15131 | 7 | theory Permutation | 
| 51542 | 8 | imports Multiset | 
| 15131 | 9 | begin | 
| 11054 | 10 | |
| 53238 | 11 | inductive perm :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool"  ("_ <~~> _"  [50, 50] 50)  (* FIXME proper infix, without ambiguity!? *)
 | 
| 12 | where | |
| 13 | Nil [intro!]: "[] <~~> []" | |
| 14 | | swap [intro!]: "y # x # l <~~> x # y # l" | |
| 15 | | Cons [intro!]: "xs <~~> ys \<Longrightarrow> z # xs <~~> z # ys" | |
| 16 | | trans [intro]: "xs <~~> ys \<Longrightarrow> ys <~~> zs \<Longrightarrow> xs <~~> zs" | |
| 11054 | 17 | |
| 18 | lemma perm_refl [iff]: "l <~~> l" | |
| 17200 | 19 | by (induct l) auto | 
| 11054 | 20 | |
| 21 | ||
| 22 | subsection {* Some examples of rule induction on permutations *}
 | |
| 23 | ||
| 53238 | 24 | lemma xperm_empty_imp: "[] <~~> ys \<Longrightarrow> ys = []" | 
| 25379 | 25 | by (induct xs == "[]::'a list" ys pred: perm) simp_all | 
| 11054 | 26 | |
| 27 | ||
| 28 | text {*
 | |
| 29 | \medskip This more general theorem is easier to understand! | |
| 30 | *} | |
| 31 | ||
| 53238 | 32 | lemma perm_length: "xs <~~> ys \<Longrightarrow> length xs = length ys" | 
| 25379 | 33 | by (induct pred: perm) simp_all | 
| 11054 | 34 | |
| 53238 | 35 | lemma perm_empty_imp: "[] <~~> xs \<Longrightarrow> xs = []" | 
| 17200 | 36 | by (drule perm_length) auto | 
| 11054 | 37 | |
| 53238 | 38 | lemma perm_sym: "xs <~~> ys \<Longrightarrow> ys <~~> xs" | 
| 25379 | 39 | by (induct pred: perm) auto | 
| 11054 | 40 | |
| 41 | ||
| 42 | subsection {* Ways of making new permutations *}
 | |
| 43 | ||
| 44 | text {*
 | |
| 45 | We can insert the head anywhere in the list. | |
| 46 | *} | |
| 47 | ||
| 48 | lemma perm_append_Cons: "a # xs @ ys <~~> xs @ a # ys" | |
| 17200 | 49 | by (induct xs) auto | 
| 11054 | 50 | |
| 51 | lemma perm_append_swap: "xs @ ys <~~> ys @ xs" | |
| 17200 | 52 | apply (induct xs) | 
| 53 | apply simp_all | |
| 11054 | 54 | apply (blast intro: perm_append_Cons) | 
| 55 | done | |
| 56 | ||
| 57 | lemma perm_append_single: "a # xs <~~> xs @ [a]" | |
| 17200 | 58 | by (rule perm.trans [OF _ perm_append_swap]) simp | 
| 11054 | 59 | |
| 60 | lemma perm_rev: "rev xs <~~> xs" | |
| 17200 | 61 | apply (induct xs) | 
| 62 | apply simp_all | |
| 11153 | 63 | apply (blast intro!: perm_append_single intro: perm_sym) | 
| 11054 | 64 | done | 
| 65 | ||
| 53238 | 66 | lemma perm_append1: "xs <~~> ys \<Longrightarrow> l @ xs <~~> l @ ys" | 
| 17200 | 67 | by (induct l) auto | 
| 11054 | 68 | |
| 53238 | 69 | lemma perm_append2: "xs <~~> ys \<Longrightarrow> xs @ l <~~> ys @ l" | 
| 17200 | 70 | by (blast intro!: perm_append_swap perm_append1) | 
| 11054 | 71 | |
| 72 | ||
| 73 | subsection {* Further results *}
 | |
| 74 | ||
| 75 | lemma perm_empty [iff]: "([] <~~> xs) = (xs = [])" | |
| 17200 | 76 | by (blast intro: perm_empty_imp) | 
| 11054 | 77 | |
| 78 | lemma perm_empty2 [iff]: "(xs <~~> []) = (xs = [])" | |
| 79 | apply auto | |
| 80 | apply (erule perm_sym [THEN perm_empty_imp]) | |
| 81 | done | |
| 82 | ||
| 53238 | 83 | lemma perm_sing_imp: "ys <~~> xs \<Longrightarrow> xs = [y] \<Longrightarrow> ys = [y]" | 
| 25379 | 84 | by (induct pred: perm) auto | 
| 11054 | 85 | |
| 86 | lemma perm_sing_eq [iff]: "(ys <~~> [y]) = (ys = [y])" | |
| 17200 | 87 | by (blast intro: perm_sing_imp) | 
| 11054 | 88 | |
| 89 | lemma perm_sing_eq2 [iff]: "([y] <~~> ys) = (ys = [y])" | |
| 17200 | 90 | by (blast dest: perm_sym) | 
| 11054 | 91 | |
| 92 | ||
| 93 | subsection {* Removing elements *}
 | |
| 94 | ||
| 53238 | 95 | lemma perm_remove: "x \<in> set ys \<Longrightarrow> ys <~~> x # remove1 x ys" | 
| 17200 | 96 | by (induct ys) auto | 
| 11054 | 97 | |
| 98 | ||
| 99 | text {* \medskip Congruence rule *}
 | |
| 100 | ||
| 53238 | 101 | lemma perm_remove_perm: "xs <~~> ys \<Longrightarrow> remove1 z xs <~~> remove1 z ys" | 
| 25379 | 102 | by (induct pred: perm) auto | 
| 11054 | 103 | |
| 36903 | 104 | lemma remove_hd [simp]: "remove1 z (z # xs) = xs" | 
| 15072 | 105 | by auto | 
| 11054 | 106 | |
| 53238 | 107 | lemma cons_perm_imp_perm: "z # xs <~~> z # ys \<Longrightarrow> xs <~~> ys" | 
| 17200 | 108 | by (drule_tac z = z in perm_remove_perm) auto | 
| 11054 | 109 | |
| 110 | lemma cons_perm_eq [iff]: "(z#xs <~~> z#ys) = (xs <~~> ys)" | |
| 17200 | 111 | by (blast intro: cons_perm_imp_perm) | 
| 11054 | 112 | |
| 53238 | 113 | lemma append_perm_imp_perm: "zs @ xs <~~> zs @ ys \<Longrightarrow> xs <~~> ys" | 
| 114 | by (induct zs arbitrary: xs ys rule: rev_induct) auto | |
| 11054 | 115 | |
| 116 | lemma perm_append1_eq [iff]: "(zs @ xs <~~> zs @ ys) = (xs <~~> ys)" | |
| 17200 | 117 | by (blast intro: append_perm_imp_perm perm_append1) | 
| 11054 | 118 | |
| 119 | lemma perm_append2_eq [iff]: "(xs @ zs <~~> ys @ zs) = (xs <~~> ys)" | |
| 120 | apply (safe intro!: perm_append2) | |
| 121 | apply (rule append_perm_imp_perm) | |
| 122 | apply (rule perm_append_swap [THEN perm.trans]) | |
| 123 |     -- {* the previous step helps this @{text blast} call succeed quickly *}
 | |
| 124 | apply (blast intro: perm_append_swap) | |
| 125 | done | |
| 126 | ||
| 15072 | 127 | lemma multiset_of_eq_perm: "(multiset_of xs = multiset_of ys) = (xs <~~> ys) " | 
| 17200 | 128 | apply (rule iffI) | 
| 129 | apply (erule_tac [2] perm.induct, simp_all add: union_ac) | |
| 130 | apply (erule rev_mp, rule_tac x=ys in spec) | |
| 131 | apply (induct_tac xs, auto) | |
| 36903 | 132 | apply (erule_tac x = "remove1 a x" in allE, drule sym, simp) | 
| 17200 | 133 | apply (subgoal_tac "a \<in> set x") | 
| 53238 | 134 | apply (drule_tac z = a in perm.Cons) | 
| 17200 | 135 | apply (erule perm.trans, rule perm_sym, erule perm_remove) | 
| 15005 | 136 | apply (drule_tac f=set_of in arg_cong, simp) | 
| 137 | done | |
| 138 | ||
| 53238 | 139 | lemma multiset_of_le_perm_append: "multiset_of xs \<le> multiset_of ys \<longleftrightarrow> (\<exists>zs. xs @ zs <~~> ys)" | 
| 17200 | 140 | apply (auto simp: multiset_of_eq_perm[THEN sym] mset_le_exists_conv) | 
| 15072 | 141 | apply (insert surj_multiset_of, drule surjD) | 
| 142 | apply (blast intro: sym)+ | |
| 143 | done | |
| 15005 | 144 | |
| 53238 | 145 | lemma perm_set_eq: "xs <~~> ys \<Longrightarrow> set xs = set ys" | 
| 25379 | 146 | by (metis multiset_of_eq_perm multiset_of_eq_setD) | 
| 25277 | 147 | |
| 53238 | 148 | lemma perm_distinct_iff: "xs <~~> ys \<Longrightarrow> distinct xs = distinct ys" | 
| 25379 | 149 | apply (induct pred: perm) | 
| 150 | apply simp_all | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
40122diff
changeset | 151 | apply fastforce | 
| 25379 | 152 | apply (metis perm_set_eq) | 
| 153 | done | |
| 25277 | 154 | |
| 53238 | 155 | lemma eq_set_perm_remdups: "set xs = set ys \<Longrightarrow> remdups xs <~~> remdups ys" | 
| 25379 | 156 | apply (induct xs arbitrary: ys rule: length_induct) | 
| 53238 | 157 | apply (case_tac "remdups xs") | 
| 158 | apply simp_all | |
| 159 | apply (subgoal_tac "a \<in> set (remdups ys)") | |
| 55584 | 160 | prefer 2 apply (metis set_simps(2) insert_iff set_remdups) | 
| 25379 | 161 | apply (drule split_list) apply(elim exE conjE) | 
| 162 | apply (drule_tac x=list in spec) apply(erule impE) prefer 2 | |
| 163 | apply (drule_tac x="ysa@zs" in spec) apply(erule impE) prefer 2 | |
| 164 | apply simp | |
| 53238 | 165 | apply (subgoal_tac "a # list <~~> a # ysa @ zs") | 
| 25379 | 166 | apply (metis Cons_eq_appendI perm_append_Cons trans) | 
| 40122 
1d8ad2ff3e01
dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
 haftmann parents: 
39916diff
changeset | 167 | apply (metis Cons Cons_eq_appendI distinct.simps(2) | 
| 25379 | 168 | distinct_remdups distinct_remdups_id perm_append_swap perm_distinct_iff) | 
| 169 | apply (subgoal_tac "set (a#list) = set (ysa@a#zs) & distinct (a#list) & distinct (ysa@a#zs)") | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
40122diff
changeset | 170 | apply (fastforce simp add: insert_ident) | 
| 25379 | 171 | apply (metis distinct_remdups set_remdups) | 
| 30742 | 172 | apply (subgoal_tac "length (remdups xs) < Suc (length xs)") | 
| 173 | apply simp | |
| 174 | apply (subgoal_tac "length (remdups xs) \<le> length xs") | |
| 175 | apply simp | |
| 176 | apply (rule length_remdups_leq) | |
| 25379 | 177 | done | 
| 25287 | 178 | |
| 53238 | 179 | lemma perm_remdups_iff_eq_set: "remdups x <~~> remdups y \<longleftrightarrow> (set x = set y)" | 
| 25379 | 180 | by (metis List.set_remdups perm_set_eq eq_set_perm_remdups) | 
| 25287 | 181 | |
| 39075 | 182 | lemma permutation_Ex_bij: | 
| 183 | assumes "xs <~~> ys" | |
| 184 |   shows "\<exists>f. bij_betw f {..<length xs} {..<length ys} \<and> (\<forall>i<length xs. xs ! i = ys ! (f i))"
 | |
| 185 | using assms proof induct | |
| 53238 | 186 | case Nil | 
| 187 | then show ?case unfolding bij_betw_def by simp | |
| 39075 | 188 | next | 
| 189 | case (swap y x l) | |
| 190 | show ?case | |
| 191 | proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI) | |
| 192 |     show "bij_betw (Fun.swap 0 1 id) {..<length (y # x # l)} {..<length (x # y # l)}"
 | |
| 50037 | 193 | by (auto simp: bij_betw_def) | 
| 53238 | 194 | fix i | 
| 195 | assume "i < length(y#x#l)" | |
| 39075 | 196 | show "(y # x # l) ! i = (x # y # l) ! (Fun.swap 0 1 id) i" | 
| 197 | by (cases i) (auto simp: Fun.swap_def gr0_conv_Suc) | |
| 198 | qed | |
| 199 | next | |
| 200 | case (Cons xs ys z) | |
| 201 |   then obtain f where bij: "bij_betw f {..<length xs} {..<length ys}" and
 | |
| 202 | perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" by blast | |
| 53238 | 203 | let ?f = "\<lambda>i. case i of Suc n \<Rightarrow> Suc (f n) | 0 \<Rightarrow> 0" | 
| 39075 | 204 | show ?case | 
| 205 | proof (intro exI[of _ ?f] allI conjI impI) | |
| 206 |     have *: "{..<length (z#xs)} = {0} \<union> Suc ` {..<length xs}"
 | |
| 207 |             "{..<length (z#ys)} = {0} \<union> Suc ` {..<length ys}"
 | |
| 39078 | 208 | by (simp_all add: lessThan_Suc_eq_insert_0) | 
| 53238 | 209 |     show "bij_betw ?f {..<length (z#xs)} {..<length (z#ys)}"
 | 
| 210 | unfolding * | |
| 39075 | 211 | proof (rule bij_betw_combine) | 
| 212 |       show "bij_betw ?f (Suc ` {..<length xs}) (Suc ` {..<length ys})"
 | |
| 213 | using bij unfolding bij_betw_def | |
| 214 | by (auto intro!: inj_onI imageI dest: inj_onD simp: image_compose[symmetric] comp_def) | |
| 215 | qed (auto simp: bij_betw_def) | |
| 53238 | 216 | fix i | 
| 217 | assume "i < length (z#xs)" | |
| 39075 | 218 | then show "(z # xs) ! i = (z # ys) ! (?f i)" | 
| 219 | using perm by (cases i) auto | |
| 220 | qed | |
| 221 | next | |
| 222 | case (trans xs ys zs) | |
| 223 | then obtain f g where | |
| 224 |     bij: "bij_betw f {..<length xs} {..<length ys}" "bij_betw g {..<length ys} {..<length zs}" and
 | |
| 225 | perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" "\<forall>i<length ys. ys ! i = zs ! (g i)" by blast | |
| 226 | show ?case | |
| 53238 | 227 | proof (intro exI[of _ "g \<circ> f"] conjI allI impI) | 
| 39075 | 228 |     show "bij_betw (g \<circ> f) {..<length xs} {..<length zs}"
 | 
| 229 | using bij by (rule bij_betw_trans) | |
| 230 | fix i assume "i < length xs" | |
| 231 | with bij have "f i < length ys" unfolding bij_betw_def by force | |
| 232 | with `i < length xs` show "xs ! i = zs ! (g \<circ> f) i" | |
| 53238 | 233 | using trans(1,3)[THEN perm_length] perm by auto | 
| 39075 | 234 | qed | 
| 235 | qed | |
| 236 | ||
| 11054 | 237 | end |