| author | desharna | 
| Fri, 21 Mar 2025 15:20:13 +0100 | |
| changeset 82314 | c95eca07f6a0 | 
| parent 80914 | d97fdabd9e2b | 
| child 82774 | 2865a6618cba | 
| permissions | -rw-r--r-- | 
| 47455 | 1 | (* Title: HOL/Library/RBT_Impl.thy | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 2 | Author: Markus Reiter, TU Muenchen | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 3 | Author: Alexander Krauss, TU Muenchen | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 4 | *) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 5 | |
| 60500 | 6 | section \<open>Implementation of Red-Black Trees\<close> | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 7 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
35618diff
changeset | 8 | theory RBT_Impl | 
| 45990 
b7b905b23b2a
incorporated More_Set and More_List into the Main body -- to be consolidated later
 haftmann parents: 
41959diff
changeset | 9 | imports Main | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 10 | begin | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 11 | |
| 60500 | 12 | text \<open> | 
| 61585 | 13 | For applications, you should use theory \<open>RBT\<close> which defines | 
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
35618diff
changeset | 14 | an abstract type of red-black tree obeying the invariant. | 
| 60500 | 15 | \<close> | 
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
35618diff
changeset | 16 | |
| 60500 | 17 | subsection \<open>Datatype of RB trees\<close> | 
| 35550 | 18 | |
| 58310 | 19 | datatype color = R | B | 
| 20 | datatype ('a, 'b) rbt = Empty | Branch color "('a, 'b) rbt" 'a 'b "('a, 'b) rbt"
 | |
| 35534 | 21 | |
| 22 | lemma rbt_cases: | |
| 23 | obtains (Empty) "t = Empty" | |
| 24 | | (Red) l k v r where "t = Branch R l k v r" | |
| 25 | | (Black) l k v r where "t = Branch B l k v r" | |
| 26 | proof (cases t) | |
| 27 | case Empty with that show thesis by blast | |
| 28 | next | |
| 29 | case (Branch c) with that show thesis by (cases c) blast+ | |
| 30 | qed | |
| 31 | ||
| 60500 | 32 | subsection \<open>Tree properties\<close> | 
| 35534 | 33 | |
| 60500 | 34 | subsubsection \<open>Content of a tree\<close> | 
| 35550 | 35 | |
| 36 | primrec entries :: "('a, 'b) rbt \<Rightarrow> ('a \<times> 'b) list"
 | |
| 35534 | 37 | where | 
| 38 | "entries Empty = []" | |
| 39 | | "entries (Branch _ l k v r) = entries l @ (k,v) # entries r" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 40 | |
| 35550 | 41 | abbreviation (input) entry_in_tree :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 42 | where | 
| 35550 | 43 | "entry_in_tree k v t \<equiv> (k, v) \<in> set (entries t)" | 
| 44 | ||
| 45 | definition keys :: "('a, 'b) rbt \<Rightarrow> 'a list" where
 | |
| 46 | "keys t = map fst (entries t)" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 47 | |
| 35550 | 48 | lemma keys_simps [simp, code]: | 
| 49 | "keys Empty = []" | |
| 50 | "keys (Branch c l k v r) = keys l @ k # keys r" | |
| 51 | by (simp_all add: keys_def) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 52 | |
| 35534 | 53 | lemma entry_in_tree_keys: | 
| 35550 | 54 | assumes "(k, v) \<in> set (entries t)" | 
| 55 | shows "k \<in> set (keys t)" | |
| 56 | proof - | |
| 57 | from assms have "fst (k, v) \<in> fst ` set (entries t)" by (rule imageI) | |
| 58 | then show ?thesis by (simp add: keys_def) | |
| 59 | qed | |
| 60 | ||
| 35602 | 61 | lemma keys_entries: | 
| 62 | "k \<in> set (keys t) \<longleftrightarrow> (\<exists>v. (k, v) \<in> set (entries t))" | |
| 63 | by (auto intro: entry_in_tree_keys) (auto simp add: keys_def) | |
| 64 | ||
| 48621 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 65 | lemma non_empty_rbt_keys: | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 66 | "t \<noteq> rbt.Empty \<Longrightarrow> keys t \<noteq> []" | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 67 | by (cases t) simp_all | 
| 35550 | 68 | |
| 60500 | 69 | subsubsection \<open>Search tree properties\<close> | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 70 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 71 | context ord begin | 
| 35534 | 72 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 73 | definition rbt_less :: "'a \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool"
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 74 | where | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 75 | rbt_less_prop: "rbt_less k t \<longleftrightarrow> (\<forall>x\<in>set (keys t). x < k)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 76 | |
| 80914 
d97fdabd9e2b
standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
 wenzelm parents: 
77061diff
changeset | 77 | abbreviation rbt_less_symbol (infix \<open>|\<guillemotleft>\<close> 50) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 78 | where "t |\<guillemotleft> x \<equiv> rbt_less x t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 79 | |
| 80914 
d97fdabd9e2b
standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
 wenzelm parents: 
77061diff
changeset | 80 | definition rbt_greater :: "'a \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool" (infix \<open>\<guillemotleft>|\<close> 50) 
 | 
| 35534 | 81 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 82 | rbt_greater_prop: "rbt_greater k t = (\<forall>x\<in>set (keys t). k < x)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 83 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 84 | lemma rbt_less_simps [simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 85 | "Empty |\<guillemotleft> k = True" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 86 | "Branch c lt kt v rt |\<guillemotleft> k \<longleftrightarrow> kt < k \<and> lt |\<guillemotleft> k \<and> rt |\<guillemotleft> k" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 87 | by (auto simp add: rbt_less_prop) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 88 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 89 | lemma rbt_greater_simps [simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 90 | "k \<guillemotleft>| Empty = True" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 91 | "k \<guillemotleft>| (Branch c lt kt v rt) \<longleftrightarrow> k < kt \<and> k \<guillemotleft>| lt \<and> k \<guillemotleft>| rt" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 92 | by (auto simp add: rbt_greater_prop) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 93 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 94 | lemmas rbt_ord_props = rbt_less_prop rbt_greater_prop | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 95 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 96 | lemmas rbt_greater_nit = rbt_greater_prop entry_in_tree_keys | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 97 | lemmas rbt_less_nit = rbt_less_prop entry_in_tree_keys | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 98 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 99 | lemma (in order) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 100 | shows rbt_less_eq_trans: "l |\<guillemotleft> u \<Longrightarrow> u \<le> v \<Longrightarrow> l |\<guillemotleft> v" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 101 | and rbt_less_trans: "t |\<guillemotleft> x \<Longrightarrow> x < y \<Longrightarrow> t |\<guillemotleft> y" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 102 | and rbt_greater_eq_trans: "u \<le> v \<Longrightarrow> v \<guillemotleft>| r \<Longrightarrow> u \<guillemotleft>| r" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 103 | and rbt_greater_trans: "x < y \<Longrightarrow> y \<guillemotleft>| t \<Longrightarrow> x \<guillemotleft>| t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 104 | by (auto simp: rbt_ord_props) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 105 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 106 | primrec rbt_sorted :: "('a, 'b) rbt \<Rightarrow> bool"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 107 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 108 | "rbt_sorted Empty = True" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 109 | | "rbt_sorted (Branch c l k v r) = (l |\<guillemotleft> k \<and> k \<guillemotleft>| r \<and> rbt_sorted l \<and> rbt_sorted r)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 110 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 111 | end | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 112 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 113 | context linorder begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 114 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 115 | lemma rbt_sorted_entries: | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 116 | "rbt_sorted t \<Longrightarrow> List.sorted (map fst (entries t))" | 
| 68109 | 117 | by (induct t) (force simp: sorted_append rbt_ord_props dest!: entry_in_tree_keys)+ | 
| 35550 | 118 | |
| 119 | lemma distinct_entries: | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 120 | "rbt_sorted t \<Longrightarrow> distinct (map fst (entries t))" | 
| 68109 | 121 | by (induct t) (force simp: sorted_append rbt_ord_props dest!: entry_in_tree_keys)+ | 
| 35550 | 122 | |
| 48621 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 123 | lemma distinct_keys: | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 124 | "rbt_sorted t \<Longrightarrow> distinct (keys t)" | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 125 | by (simp add: distinct_entries keys_def) | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 126 | |
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 127 | |
| 60500 | 128 | subsubsection \<open>Tree lookup\<close> | 
| 35550 | 129 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 130 | primrec (in ord) rbt_lookup :: "('a, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b"
 | 
| 35534 | 131 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 132 | "rbt_lookup Empty k = None" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 133 | | "rbt_lookup (Branch _ l x y r) k = | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 134 | (if k < x then rbt_lookup l k else if x < k then rbt_lookup r k else Some y)" | 
| 35534 | 135 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 136 | lemma rbt_lookup_keys: "rbt_sorted t \<Longrightarrow> dom (rbt_lookup t) = set (keys t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 137 | by (induct t) (auto simp: dom_def rbt_greater_prop rbt_less_prop) | 
| 35550 | 138 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 139 | lemma dom_rbt_lookup_Branch: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 140 | "rbt_sorted (Branch c t1 k v t2) \<Longrightarrow> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 141 | dom (rbt_lookup (Branch c t1 k v t2)) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 142 | = Set.insert k (dom (rbt_lookup t1) \<union> dom (rbt_lookup t2))" | 
| 35550 | 143 | proof - | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 144 | assume "rbt_sorted (Branch c t1 k v t2)" | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 145 | then show ?thesis by (simp add: rbt_lookup_keys) | 
| 35550 | 146 | qed | 
| 147 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 148 | lemma finite_dom_rbt_lookup [simp, intro!]: "finite (dom (rbt_lookup t))" | 
| 35550 | 149 | proof (induct t) | 
| 150 | case Empty then show ?case by simp | |
| 151 | next | |
| 152 | case (Branch color t1 a b t2) | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 153 | let ?A = "Set.insert a (dom (rbt_lookup t1) \<union> dom (rbt_lookup t2))" | 
| 62390 | 154 | have "dom (rbt_lookup (Branch color t1 a b t2)) \<subseteq> ?A" by (auto split: if_split_asm) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 155 | moreover from Branch have "finite (insert a (dom (rbt_lookup t1) \<union> dom (rbt_lookup t2)))" by simp | 
| 35550 | 156 | ultimately show ?case by (rule finite_subset) | 
| 157 | qed | |
| 158 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 159 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 160 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 161 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 162 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 163 | lemma rbt_lookup_rbt_less[simp]: "t |\<guillemotleft> k \<Longrightarrow> rbt_lookup t k = None" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 164 | by (induct t) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 165 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 166 | lemma rbt_lookup_rbt_greater[simp]: "k \<guillemotleft>| t \<Longrightarrow> rbt_lookup t k = None" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 167 | by (induct t) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 168 | |
| 68450 | 169 | lemma rbt_lookup_Empty: "rbt_lookup Empty = Map.empty" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 170 | by (rule ext) simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 171 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 172 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 173 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 174 | context linorder begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 175 | |
| 35618 | 176 | lemma map_of_entries: | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 177 | "rbt_sorted t \<Longrightarrow> map_of (entries t) = rbt_lookup t" | 
| 35550 | 178 | proof (induct t) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 179 | case Empty thus ?case by (simp add: rbt_lookup_Empty) | 
| 35550 | 180 | next | 
| 181 | case (Branch c t1 k v t2) | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 182 | have "rbt_lookup (Branch c t1 k v t2) = rbt_lookup t2 ++ [k\<mapsto>v] ++ rbt_lookup t1" | 
| 35550 | 183 | proof (rule ext) | 
| 184 | fix x | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 185 | from Branch have RBT_SORTED: "rbt_sorted (Branch c t1 k v t2)" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 186 | let ?thesis = "rbt_lookup (Branch c t1 k v t2) x = (rbt_lookup t2 ++ [k \<mapsto> v] ++ rbt_lookup t1) x" | 
| 35550 | 187 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 188 | have DOM_T1: "!!k'. k'\<in>dom (rbt_lookup t1) \<Longrightarrow> k>k'" | 
| 35550 | 189 | proof - | 
| 190 | fix k' | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 191 | from RBT_SORTED have "t1 |\<guillemotleft> k" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 192 | with rbt_less_prop have "\<forall>k'\<in>set (keys t1). k>k'" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 193 | moreover assume "k'\<in>dom (rbt_lookup t1)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 194 | ultimately show "k>k'" using rbt_lookup_keys RBT_SORTED by auto | 
| 35550 | 195 | qed | 
| 196 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 197 | have DOM_T2: "!!k'. k'\<in>dom (rbt_lookup t2) \<Longrightarrow> k<k'" | 
| 35550 | 198 | proof - | 
| 199 | fix k' | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 200 | from RBT_SORTED have "k \<guillemotleft>| t2" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 201 | with rbt_greater_prop have "\<forall>k'\<in>set (keys t2). k<k'" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 202 | moreover assume "k'\<in>dom (rbt_lookup t2)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 203 | ultimately show "k<k'" using rbt_lookup_keys RBT_SORTED by auto | 
| 35550 | 204 | qed | 
| 205 | ||
| 206 |     {
 | |
| 207 | assume C: "x<k" | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 208 | hence "rbt_lookup (Branch c t1 k v t2) x = rbt_lookup t1 x" by simp | 
| 35550 | 209 | moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 210 | moreover have "x \<notin> dom (rbt_lookup t2)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 211 | proof | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 212 | assume "x \<in> dom (rbt_lookup t2)" | 
| 35550 | 213 | with DOM_T2 have "k<x" by blast | 
| 214 | with C show False by simp | |
| 215 | qed | |
| 216 | ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps) | |
| 217 |     } moreover {
 | |
| 218 | assume [simp]: "x=k" | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 219 | hence "rbt_lookup (Branch c t1 k v t2) x = [k \<mapsto> v] x" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 220 | moreover have "x \<notin> dom (rbt_lookup t1)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 221 | proof | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 222 | assume "x \<in> dom (rbt_lookup t1)" | 
| 35550 | 223 | with DOM_T1 have "k>x" by blast | 
| 224 | thus False by simp | |
| 225 | qed | |
| 226 | ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps) | |
| 227 |     } moreover {
 | |
| 228 | assume C: "x>k" | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 229 | hence "rbt_lookup (Branch c t1 k v t2) x = rbt_lookup t2 x" by (simp add: less_not_sym[of k x]) | 
| 35550 | 230 | moreover from C have "x\<notin>dom [k\<mapsto>v]" by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 231 | moreover have "x\<notin>dom (rbt_lookup t1)" proof | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 232 | assume "x\<in>dom (rbt_lookup t1)" | 
| 35550 | 233 | with DOM_T1 have "k>x" by simp | 
| 234 | with C show False by simp | |
| 235 | qed | |
| 236 | ultimately have ?thesis by (simp add: map_add_upd_left map_add_dom_app_simps) | |
| 237 | } ultimately show ?thesis using less_linear by blast | |
| 238 | qed | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 239 | also from Branch | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 240 | have "rbt_lookup t2 ++ [k \<mapsto> v] ++ rbt_lookup t1 = map_of (entries (Branch c t1 k v t2))" by simp | 
| 35618 | 241 | finally show ?case by simp | 
| 35550 | 242 | qed | 
| 243 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 244 | lemma rbt_lookup_in_tree: "rbt_sorted t \<Longrightarrow> rbt_lookup t k = Some v \<longleftrightarrow> (k, v) \<in> set (entries t)" | 
| 35618 | 245 | by (simp add: map_of_entries [symmetric] distinct_entries) | 
| 35602 | 246 | |
| 247 | lemma set_entries_inject: | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 248 | assumes rbt_sorted: "rbt_sorted t1" "rbt_sorted t2" | 
| 35602 | 249 | shows "set (entries t1) = set (entries t2) \<longleftrightarrow> entries t1 = entries t2" | 
| 250 | proof - | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 251 | from rbt_sorted have "distinct (map fst (entries t1))" | 
| 35602 | 252 | "distinct (map fst (entries t2))" | 
| 253 | by (auto intro: distinct_entries) | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 254 | with rbt_sorted show ?thesis | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 255 | by (auto intro: map_sorted_distinct_set_unique rbt_sorted_entries simp add: distinct_map) | 
| 35602 | 256 | qed | 
| 35550 | 257 | |
| 258 | lemma entries_eqI: | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 259 | assumes rbt_sorted: "rbt_sorted t1" "rbt_sorted t2" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 260 | assumes rbt_lookup: "rbt_lookup t1 = rbt_lookup t2" | 
| 35602 | 261 | shows "entries t1 = entries t2" | 
| 35550 | 262 | proof - | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 263 | from rbt_sorted rbt_lookup have "map_of (entries t1) = map_of (entries t2)" | 
| 35618 | 264 | by (simp add: map_of_entries) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 265 | with rbt_sorted have "set (entries t1) = set (entries t2)" | 
| 35602 | 266 | by (simp add: map_of_inject_set distinct_entries) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 267 | with rbt_sorted show ?thesis by (simp add: set_entries_inject) | 
| 35602 | 268 | qed | 
| 35550 | 269 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 270 | lemma entries_rbt_lookup: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 271 | assumes "rbt_sorted t1" "rbt_sorted t2" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 272 | shows "entries t1 = entries t2 \<longleftrightarrow> rbt_lookup t1 = rbt_lookup t2" | 
| 35618 | 273 | using assms by (auto intro: entries_eqI simp add: map_of_entries [symmetric]) | 
| 35602 | 274 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 275 | lemma rbt_lookup_from_in_tree: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 276 | assumes "rbt_sorted t1" "rbt_sorted t2" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 277 | and "\<And>v. (k, v) \<in> set (entries t1) \<longleftrightarrow> (k, v) \<in> set (entries t2)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 278 | shows "rbt_lookup t1 k = rbt_lookup t2 k" | 
| 35602 | 279 | proof - | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 280 | from assms have "k \<in> dom (rbt_lookup t1) \<longleftrightarrow> k \<in> dom (rbt_lookup t2)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 281 | by (simp add: keys_entries rbt_lookup_keys) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 282 | with assms show ?thesis by (auto simp add: rbt_lookup_in_tree [symmetric]) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 283 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 284 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 285 | end | 
| 35550 | 286 | |
| 60500 | 287 | subsubsection \<open>Red-black properties\<close> | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 288 | |
| 35534 | 289 | primrec color_of :: "('a, 'b) rbt \<Rightarrow> color"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 290 | where | 
| 35534 | 291 | "color_of Empty = B" | 
| 292 | | "color_of (Branch c _ _ _ _) = c" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 293 | |
| 35534 | 294 | primrec bheight :: "('a,'b) rbt \<Rightarrow> nat"
 | 
| 295 | where | |
| 296 | "bheight Empty = 0" | |
| 297 | | "bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)" | |
| 298 | ||
| 299 | primrec inv1 :: "('a, 'b) rbt \<Rightarrow> bool"
 | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 300 | where | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 301 | "inv1 Empty = True" | 
| 35534 | 302 | | "inv1 (Branch c lt k v rt) \<longleftrightarrow> inv1 lt \<and> inv1 rt \<and> (c = B \<or> color_of lt = B \<and> color_of rt = B)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 303 | |
| 61585 | 304 | primrec inv1l :: "('a, 'b) rbt \<Rightarrow> bool" \<comment> \<open>Weaker version\<close>
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 305 | where | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 306 | "inv1l Empty = True" | 
| 35534 | 307 | | "inv1l (Branch c l k v r) = (inv1 l \<and> inv1 r)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 308 | lemma [simp]: "inv1 t \<Longrightarrow> inv1l t" by (cases t) simp+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 309 | |
| 35534 | 310 | primrec inv2 :: "('a, 'b) rbt \<Rightarrow> bool"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 311 | where | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 312 | "inv2 Empty = True" | 
| 35534 | 313 | | "inv2 (Branch c lt k v rt) = (inv2 lt \<and> inv2 rt \<and> bheight lt = bheight rt)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 314 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 315 | context ord begin | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 316 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 317 | definition is_rbt :: "('a, 'b) rbt \<Rightarrow> bool" where
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 318 | "is_rbt t \<longleftrightarrow> inv1 t \<and> inv2 t \<and> color_of t = B \<and> rbt_sorted t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 319 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 320 | lemma is_rbt_rbt_sorted [simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 321 | "is_rbt t \<Longrightarrow> rbt_sorted t" by (simp add: is_rbt_def) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 322 | |
| 35534 | 323 | theorem Empty_is_rbt [simp]: | 
| 324 | "is_rbt Empty" by (simp add: is_rbt_def) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 325 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 326 | end | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 327 | |
| 60500 | 328 | subsection \<open>Insertion\<close> | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 329 | |
| 61225 | 330 | text \<open>The function definitions are based on the book by Okasaki.\<close> | 
| 331 | ||
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 332 | fun (* slow, due to massive case splitting *) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 333 |   balance :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 334 | where | 
| 35534 | 335 | "balance (Branch R a w x b) s t (Branch R c y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | | 
| 336 | "balance (Branch R (Branch R a w x b) s t c) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" | | |
| 337 | "balance (Branch R a w x (Branch R b s t c)) y z d = Branch R (Branch B a w x b) s t (Branch B c y z d)" | | |
| 338 | "balance a w x (Branch R b s t (Branch R c y z d)) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | | |
| 339 | "balance a w x (Branch R (Branch R b s t c) y z d) = Branch R (Branch B a w x b) s t (Branch B c y z d)" | | |
| 340 | "balance a s t b = Branch B a s t b" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 341 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 342 | lemma balance_inv1: "\<lbrakk>inv1l l; inv1l r\<rbrakk> \<Longrightarrow> inv1 (balance l k v r)" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 343 | by (induct l k v r rule: balance.induct) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 344 | |
| 35534 | 345 | lemma balance_bheight: "bheight l = bheight r \<Longrightarrow> bheight (balance l k v r) = Suc (bheight l)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 346 | by (induct l k v r rule: balance.induct) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 347 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 348 | lemma balance_inv2: | 
| 35534 | 349 | assumes "inv2 l" "inv2 r" "bheight l = bheight r" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 350 | shows "inv2 (balance l k v r)" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 351 | using assms | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 352 | by (induct l k v r rule: balance.induct) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 353 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 354 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 355 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 356 | lemma balance_rbt_greater[simp]: "(v \<guillemotleft>| balance a k x b) = (v \<guillemotleft>| a \<and> v \<guillemotleft>| b \<and> v < k)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 357 | by (induct a k x b rule: balance.induct) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 358 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 359 | lemma balance_rbt_less[simp]: "(balance a k x b |\<guillemotleft> v) = (a |\<guillemotleft> v \<and> b |\<guillemotleft> v \<and> k < v)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 360 | by (induct a k x b rule: balance.induct) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 361 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 362 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 363 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 364 | lemma (in linorder) balance_rbt_sorted: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 365 | fixes k :: "'a" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 366 | assumes "rbt_sorted l" "rbt_sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 367 | shows "rbt_sorted (balance l k v r)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 368 | using assms proof (induct l k v r rule: balance.induct) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 369 |   case ("2_2" a x w b y t c z s va vb vd vc)
 | 
| 35534 | 370 | hence "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 371 | by (auto simp add: rbt_ord_props) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 372 | hence "y \<guillemotleft>| (Branch B va vb vd vc)" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 373 | with "2_2" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 374 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 375 |   case ("3_2" va vb vd vc x w b y s c z)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 376 | from "3_2" have "x < y \<and> Branch B va vb vd vc |\<guillemotleft> x" | 
| 35534 | 377 | by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 378 | hence "Branch B va vb vd vc |\<guillemotleft> y" by (blast dest: rbt_less_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 379 | with "3_2" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 380 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 381 |   case ("3_3" x w b y s c z t va vb vd vc)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 382 | from "3_3" have "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 383 | hence "y \<guillemotleft>| Branch B va vb vd vc" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 384 | with "3_3" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 385 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 386 |   case ("3_4" vd ve vg vf x w b y s c z t va vb vii vc)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 387 | hence "x < y \<and> Branch B vd ve vg vf |\<guillemotleft> x" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 388 | hence 1: "Branch B vd ve vg vf |\<guillemotleft> y" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 389 | from "3_4" have "y < z \<and> z \<guillemotleft>| Branch B va vb vii vc" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 390 | hence "y \<guillemotleft>| Branch B va vb vii vc" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 391 | with 1 "3_4" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 392 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 393 |   case ("4_2" va vb vd vc x w b y s c z t dd)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 394 | hence "x < y \<and> Branch B va vb vd vc |\<guillemotleft> x" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 395 | hence "Branch B va vb vd vc |\<guillemotleft> y" by (blast dest: rbt_less_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 396 | with "4_2" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 397 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 398 |   case ("5_2" x w b y s c z t va vb vd vc)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 399 | hence "y < z \<and> z \<guillemotleft>| Branch B va vb vd vc" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 400 | hence "y \<guillemotleft>| Branch B va vb vd vc" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 401 | with "5_2" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 402 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 403 |   case ("5_3" va vb vd vc x w b y s c z t)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 404 | hence "x < y \<and> Branch B va vb vd vc |\<guillemotleft> x" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 405 | hence "Branch B va vb vd vc |\<guillemotleft> y" by (blast dest: rbt_less_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 406 | with "5_3" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 407 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 408 |   case ("5_4" va vb vg vc x w b y s c z t vd ve vii vf)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 409 | hence "x < y \<and> Branch B va vb vg vc |\<guillemotleft> x" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 410 | hence 1: "Branch B va vb vg vc |\<guillemotleft> y" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 411 | from "5_4" have "y < z \<and> z \<guillemotleft>| Branch B vd ve vii vf" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 412 | hence "y \<guillemotleft>| Branch B vd ve vii vf" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 413 | with 1 "5_4" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 414 | qed simp+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 415 | |
| 35550 | 416 | lemma entries_balance [simp]: | 
| 417 | "entries (balance l k v r) = entries l @ (k, v) # entries r" | |
| 418 | by (induct l k v r rule: balance.induct) auto | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 419 | |
| 35550 | 420 | lemma keys_balance [simp]: | 
| 421 | "keys (balance l k v r) = keys l @ k # keys r" | |
| 422 | by (simp add: keys_def) | |
| 423 | ||
| 424 | lemma balance_in_tree: | |
| 425 | "entry_in_tree k x (balance l v y r) \<longleftrightarrow> entry_in_tree k x l \<or> k = v \<and> x = y \<or> entry_in_tree k x r" | |
| 426 | by (auto simp add: keys_def) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 427 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 428 | lemma (in linorder) rbt_lookup_balance[simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 429 | fixes k :: "'a" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 430 | assumes "rbt_sorted l" "rbt_sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 431 | shows "rbt_lookup (balance l k v r) x = rbt_lookup (Branch B l k v r) x" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 432 | by (rule rbt_lookup_from_in_tree) (auto simp:assms balance_in_tree balance_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 433 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 434 | primrec paint :: "color \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 435 | where | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 436 | "paint c Empty = Empty" | 
| 35534 | 437 | | "paint c (Branch _ l k v r) = Branch c l k v r" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 438 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 439 | lemma paint_inv1l[simp]: "inv1l t \<Longrightarrow> inv1l (paint c t)" by (cases t) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 440 | lemma paint_inv1[simp]: "inv1l t \<Longrightarrow> inv1 (paint B t)" by (cases t) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 441 | lemma paint_inv2[simp]: "inv2 t \<Longrightarrow> inv2 (paint c t)" by (cases t) auto | 
| 35534 | 442 | lemma paint_color_of[simp]: "color_of (paint B t) = B" by (cases t) auto | 
| 35550 | 443 | lemma paint_in_tree[simp]: "entry_in_tree k x (paint c t) = entry_in_tree k x t" by (cases t) auto | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 444 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 445 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 446 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 447 | lemma paint_rbt_sorted[simp]: "rbt_sorted t \<Longrightarrow> rbt_sorted (paint c t)" by (cases t) auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 448 | lemma paint_rbt_lookup[simp]: "rbt_lookup (paint c t) = rbt_lookup t" by (rule ext) (cases t, auto) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 449 | lemma paint_rbt_greater[simp]: "(v \<guillemotleft>| paint c t) = (v \<guillemotleft>| t)" by (cases t) auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 450 | lemma paint_rbt_less[simp]: "(paint c t |\<guillemotleft> v) = (t |\<guillemotleft> v)" by (cases t) auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 451 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 452 | fun | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 453 |   rbt_ins :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 454 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 455 | "rbt_ins f k v Empty = Branch R Empty k v Empty" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 456 | "rbt_ins f k v (Branch B l x y r) = (if k < x then balance (rbt_ins f k v l) x y r | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 457 | else if k > x then balance l x y (rbt_ins f k v r) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 458 | else Branch B l x (f k y v) r)" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 459 | "rbt_ins f k v (Branch R l x y r) = (if k < x then Branch R (rbt_ins f k v l) x y r | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 460 | else if k > x then Branch R l x y (rbt_ins f k v r) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 461 | else Branch R l x (f k y v) r)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 462 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 463 | lemma ins_inv1_inv2: | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 464 | assumes "inv1 t" "inv2 t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 465 | shows "inv2 (rbt_ins f k x t)" "bheight (rbt_ins f k x t) = bheight t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 466 | "color_of t = B \<Longrightarrow> inv1 (rbt_ins f k x t)" "inv1l (rbt_ins f k x t)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 467 | using assms | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 468 | by (induct f k x t rule: rbt_ins.induct) (auto simp: balance_inv1 balance_inv2 balance_bheight) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 469 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 470 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 471 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 472 | context linorder begin | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 473 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 474 | lemma ins_rbt_greater[simp]: "(v \<guillemotleft>| rbt_ins f (k :: 'a) x t) = (v \<guillemotleft>| t \<and> k > v)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 475 | by (induct f k x t rule: rbt_ins.induct) auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 476 | lemma ins_rbt_less[simp]: "(rbt_ins f k x t |\<guillemotleft> v) = (t |\<guillemotleft> v \<and> k < v)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 477 | by (induct f k x t rule: rbt_ins.induct) auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 478 | lemma ins_rbt_sorted[simp]: "rbt_sorted t \<Longrightarrow> rbt_sorted (rbt_ins f k x t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 479 | by (induct f k x t rule: rbt_ins.induct) (auto simp: balance_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 480 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 481 | lemma keys_ins: "set (keys (rbt_ins f k v t)) = { k } \<union> set (keys t)"
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 482 | by (induct f k v t rule: rbt_ins.induct) auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 483 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 484 | lemma rbt_lookup_ins: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 485 | fixes k :: "'a" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 486 | assumes "rbt_sorted t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 487 | shows "rbt_lookup (rbt_ins f k v t) x = ((rbt_lookup t)(k |-> case rbt_lookup t k of None \<Rightarrow> v | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 488 | | Some w \<Rightarrow> f k w v)) x" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 489 | using assms by (induct f k v t rule: rbt_ins.induct) auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 490 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 491 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 492 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 493 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 494 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 495 | definition rbt_insert_with_key :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 496 | where "rbt_insert_with_key f k v t = paint B (rbt_ins f k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 497 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 498 | definition rbt_insertw_def: "rbt_insert_with f = rbt_insert_with_key (\<lambda>_. f)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 499 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 500 | definition rbt_insert :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 501 | "rbt_insert = rbt_insert_with_key (\<lambda>_ _ nv. nv)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 502 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 503 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 504 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 505 | context linorder begin | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 506 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 507 | lemma rbt_insertwk_rbt_sorted: "rbt_sorted t \<Longrightarrow> rbt_sorted (rbt_insert_with_key f (k :: 'a) x t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 508 | by (auto simp: rbt_insert_with_key_def) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 509 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 510 | theorem rbt_insertwk_is_rbt: | 
| 35534 | 511 | assumes inv: "is_rbt t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 512 | shows "is_rbt (rbt_insert_with_key f k x t)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 513 | using assms | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 514 | unfolding rbt_insert_with_key_def is_rbt_def | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 515 | by (auto simp: ins_inv1_inv2) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 516 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 517 | lemma rbt_lookup_rbt_insertwk: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 518 | assumes "rbt_sorted t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 519 | shows "rbt_lookup (rbt_insert_with_key f k v t) x = ((rbt_lookup t)(k |-> case rbt_lookup t k of None \<Rightarrow> v | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 520 | | Some w \<Rightarrow> f k w v)) x" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 521 | unfolding rbt_insert_with_key_def using assms | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 522 | by (simp add:rbt_lookup_ins) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 523 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 524 | lemma rbt_insertw_rbt_sorted: "rbt_sorted t \<Longrightarrow> rbt_sorted (rbt_insert_with f k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 525 | by (simp add: rbt_insertwk_rbt_sorted rbt_insertw_def) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 526 | theorem rbt_insertw_is_rbt: "is_rbt t \<Longrightarrow> is_rbt (rbt_insert_with f k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 527 | by (simp add: rbt_insertwk_is_rbt rbt_insertw_def) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 528 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 529 | lemma rbt_lookup_rbt_insertw: | 
| 63649 | 530 | "is_rbt t \<Longrightarrow> | 
| 531 | rbt_lookup (rbt_insert_with f k v t) = | |
| 532 | (rbt_lookup t)(k \<mapsto> (if k \<in> dom (rbt_lookup t) then f (the (rbt_lookup t k)) v else v))" | |
| 533 | by (rule ext, cases "rbt_lookup t k") (auto simp: rbt_lookup_rbt_insertwk dom_def rbt_insertw_def) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 534 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 535 | lemma rbt_insert_rbt_sorted: "rbt_sorted t \<Longrightarrow> rbt_sorted (rbt_insert k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 536 | by (simp add: rbt_insertwk_rbt_sorted rbt_insert_def) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 537 | theorem rbt_insert_is_rbt [simp]: "is_rbt t \<Longrightarrow> is_rbt (rbt_insert k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 538 | by (simp add: rbt_insertwk_is_rbt rbt_insert_def) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 539 | |
| 63649 | 540 | lemma rbt_lookup_rbt_insert: "is_rbt t \<Longrightarrow> rbt_lookup (rbt_insert k v t) = (rbt_lookup t)(k\<mapsto>v)" | 
| 541 | by (rule ext) (simp add: rbt_insert_def rbt_lookup_rbt_insertwk split: option.split) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 542 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 543 | end | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 544 | |
| 60500 | 545 | subsection \<open>Deletion\<close> | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 546 | |
| 35534 | 547 | lemma bheight_paintR'[simp]: "color_of t = B \<Longrightarrow> bheight (paint R t) = bheight t - 1" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 548 | by (cases t rule: rbt_cases) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 549 | |
| 63680 | 550 | text \<open> | 
| 551 | The function definitions are based on the Haskell code by Stefan Kahrs | |
| 552 | at \<^url>\<open>http://www.cs.ukc.ac.uk/people/staff/smk/redblack/rb.html\<close>. | |
| 553 | \<close> | |
| 61225 | 554 | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 555 | fun | 
| 35550 | 556 |   balance_left :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 557 | where | 
| 35550 | 558 | "balance_left (Branch R a k x b) s y c = Branch R (Branch B a k x b) s y c" | | 
| 559 | "balance_left bl k x (Branch B a s y b) = balance bl k x (Branch R a s y b)" | | |
| 560 | "balance_left bl k x (Branch R (Branch B a s y b) t z c) = Branch R (Branch B bl k x a) s y (balance b t z (paint R c))" | | |
| 561 | "balance_left t k x s = Empty" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 562 | |
| 35550 | 563 | lemma balance_left_inv2_with_inv1: | 
| 35534 | 564 | assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "inv1 rt" | 
| 35550 | 565 | shows "bheight (balance_left lt k v rt) = bheight lt + 1" | 
| 566 | and "inv2 (balance_left lt k v rt)" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 567 | using assms | 
| 35550 | 568 | by (induct lt k v rt rule: balance_left.induct) (auto simp: balance_inv2 balance_bheight) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 569 | |
| 35550 | 570 | lemma balance_left_inv2_app: | 
| 35534 | 571 | assumes "inv2 lt" "inv2 rt" "bheight lt + 1 = bheight rt" "color_of rt = B" | 
| 35550 | 572 | shows "inv2 (balance_left lt k v rt)" | 
| 573 | "bheight (balance_left lt k v rt) = bheight rt" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 574 | using assms | 
| 35550 | 575 | by (induct lt k v rt rule: balance_left.induct) (auto simp add: balance_inv2 balance_bheight)+ | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 576 | |
| 35550 | 577 | lemma balance_left_inv1: "\<lbrakk>inv1l a; inv1 b; color_of b = B\<rbrakk> \<Longrightarrow> inv1 (balance_left a k x b)" | 
| 578 | by (induct a k x b rule: balance_left.induct) (simp add: balance_inv1)+ | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 579 | |
| 35550 | 580 | lemma balance_left_inv1l: "\<lbrakk> inv1l lt; inv1 rt \<rbrakk> \<Longrightarrow> inv1l (balance_left lt k x rt)" | 
| 581 | by (induct lt k x rt rule: balance_left.induct) (auto simp: balance_inv1) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 582 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 583 | lemma (in linorder) balance_left_rbt_sorted: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 584 | "\<lbrakk> rbt_sorted l; rbt_sorted r; rbt_less k l; k \<guillemotleft>| r \<rbrakk> \<Longrightarrow> rbt_sorted (balance_left l k v r)" | 
| 35550 | 585 | apply (induct l k v r rule: balance_left.induct) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 586 | apply (auto simp: balance_rbt_sorted) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 587 | apply (unfold rbt_greater_prop rbt_less_prop) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 588 | by force+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 589 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 590 | context order begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 591 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 592 | lemma balance_left_rbt_greater: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 593 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 594 | assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" | 
| 35550 | 595 | shows "k \<guillemotleft>| balance_left a x t b" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 596 | using assms | 
| 35550 | 597 | by (induct a x t b rule: balance_left.induct) auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 598 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 599 | lemma balance_left_rbt_less: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 600 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 601 | assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" | 
| 35550 | 602 | shows "balance_left a x t b |\<guillemotleft> k" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 603 | using assms | 
| 35550 | 604 | by (induct a x t b rule: balance_left.induct) auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 605 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 606 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 607 | |
| 35550 | 608 | lemma balance_left_in_tree: | 
| 35534 | 609 | assumes "inv1l l" "inv1 r" "bheight l + 1 = bheight r" | 
| 35550 | 610 | shows "entry_in_tree k v (balance_left l a b r) = (entry_in_tree k v l \<or> k = a \<and> v = b \<or> entry_in_tree k v r)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 611 | using assms | 
| 35550 | 612 | by (induct l k v r rule: balance_left.induct) (auto simp: balance_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 613 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 614 | fun | 
| 35550 | 615 |   balance_right :: "('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 616 | where | 
| 35550 | 617 | "balance_right a k x (Branch R b s y c) = Branch R a k x (Branch B b s y c)" | | 
| 618 | "balance_right (Branch B a k x b) s y bl = balance (Branch R a k x b) s y bl" | | |
| 619 | "balance_right (Branch R a k x (Branch B b s y c)) t z bl = Branch R (balance (paint R a) k x b) s y (Branch B c t z bl)" | | |
| 620 | "balance_right t k x s = Empty" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 621 | |
| 35550 | 622 | lemma balance_right_inv2_with_inv1: | 
| 35534 | 623 | assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt + 1" "inv1 lt" | 
| 35550 | 624 | shows "inv2 (balance_right lt k v rt) \<and> bheight (balance_right lt k v rt) = bheight lt" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 625 | using assms | 
| 35550 | 626 | by (induct lt k v rt rule: balance_right.induct) (auto simp: balance_inv2 balance_bheight) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 627 | |
| 35550 | 628 | lemma balance_right_inv1: "\<lbrakk>inv1 a; inv1l b; color_of a = B\<rbrakk> \<Longrightarrow> inv1 (balance_right a k x b)" | 
| 629 | by (induct a k x b rule: balance_right.induct) (simp add: balance_inv1)+ | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 630 | |
| 35550 | 631 | lemma balance_right_inv1l: "\<lbrakk> inv1 lt; inv1l rt \<rbrakk> \<Longrightarrow>inv1l (balance_right lt k x rt)" | 
| 632 | by (induct lt k x rt rule: balance_right.induct) (auto simp: balance_inv1) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 633 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 634 | lemma (in linorder) balance_right_rbt_sorted: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 635 | "\<lbrakk> rbt_sorted l; rbt_sorted r; rbt_less k l; k \<guillemotleft>| r \<rbrakk> \<Longrightarrow> rbt_sorted (balance_right l k v r)" | 
| 35550 | 636 | apply (induct l k v r rule: balance_right.induct) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 637 | apply (auto simp:balance_rbt_sorted) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 638 | apply (unfold rbt_less_prop rbt_greater_prop) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 639 | by force+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 640 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 641 | context order begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 642 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 643 | lemma balance_right_rbt_greater: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 644 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 645 | assumes "k \<guillemotleft>| a" "k \<guillemotleft>| b" "k < x" | 
| 35550 | 646 | shows "k \<guillemotleft>| balance_right a x t b" | 
| 647 | using assms by (induct a x t b rule: balance_right.induct) auto | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 648 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 649 | lemma balance_right_rbt_less: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 650 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 651 | assumes "a |\<guillemotleft> k" "b |\<guillemotleft> k" "x < k" | 
| 35550 | 652 | shows "balance_right a x t b |\<guillemotleft> k" | 
| 653 | using assms by (induct a x t b rule: balance_right.induct) auto | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 654 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 655 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 656 | |
| 35550 | 657 | lemma balance_right_in_tree: | 
| 35534 | 658 | assumes "inv1 l" "inv1l r" "bheight l = bheight r + 1" "inv2 l" "inv2 r" | 
| 35550 | 659 | shows "entry_in_tree x y (balance_right l k v r) = (entry_in_tree x y l \<or> x = k \<and> y = v \<or> entry_in_tree x y r)" | 
| 660 | using assms by (induct l k v r rule: balance_right.induct) (auto simp: balance_in_tree) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 661 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 662 | fun | 
| 35550 | 663 |   combine :: "('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 664 | where | 
| 35550 | 665 | "combine Empty x = x" | 
| 666 | | "combine x Empty = x" | |
| 667 | | "combine (Branch R a k x b) (Branch R c s y d) = (case (combine b c) of | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 668 | Branch R b2 t z c2 \<Rightarrow> (Branch R (Branch R a k x b2) t z (Branch R c2 s y d)) | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 669 | bc \<Rightarrow> Branch R a k x (Branch R bc s y d))" | 
| 35550 | 670 | | "combine (Branch B a k x b) (Branch B c s y d) = (case (combine b c) of | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 671 | Branch R b2 t z c2 \<Rightarrow> Branch R (Branch B a k x b2) t z (Branch B c2 s y d) | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 672 | bc \<Rightarrow> balance_left a k x (Branch B bc s y d))" | 
| 35550 | 673 | | "combine a (Branch R b k x c) = Branch R (combine a b) k x c" | 
| 674 | | "combine (Branch R a k x b) c = Branch R a k x (combine b c)" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 675 | |
| 35550 | 676 | lemma combine_inv2: | 
| 35534 | 677 | assumes "inv2 lt" "inv2 rt" "bheight lt = bheight rt" | 
| 35550 | 678 | shows "bheight (combine lt rt) = bheight lt" "inv2 (combine lt rt)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 679 | using assms | 
| 35550 | 680 | by (induct lt rt rule: combine.induct) | 
| 681 | (auto simp: balance_left_inv2_app split: rbt.splits color.splits) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 682 | |
| 35550 | 683 | lemma combine_inv1: | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 684 | assumes "inv1 lt" "inv1 rt" | 
| 35550 | 685 | shows "color_of lt = B \<Longrightarrow> color_of rt = B \<Longrightarrow> inv1 (combine lt rt)" | 
| 686 | "inv1l (combine lt rt)" | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 687 | using assms | 
| 35550 | 688 | by (induct lt rt rule: combine.induct) | 
| 689 | (auto simp: balance_left_inv1 split: rbt.splits color.splits) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 690 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 691 | context linorder begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 692 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 693 | lemma combine_rbt_greater[simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 694 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 695 | assumes "k \<guillemotleft>| l" "k \<guillemotleft>| r" | 
| 35550 | 696 | shows "k \<guillemotleft>| combine l r" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 697 | using assms | 
| 35550 | 698 | by (induct l r rule: combine.induct) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 699 | (auto simp: balance_left_rbt_greater split:rbt.splits color.splits) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 700 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 701 | lemma combine_rbt_less[simp]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 702 | fixes k :: "'a" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 703 | assumes "l |\<guillemotleft> k" "r |\<guillemotleft> k" | 
| 35550 | 704 | shows "combine l r |\<guillemotleft> k" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 705 | using assms | 
| 35550 | 706 | by (induct l r rule: combine.induct) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 707 | (auto simp: balance_left_rbt_less split:rbt.splits color.splits) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 708 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 709 | lemma combine_rbt_sorted: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 710 | fixes k :: "'a" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 711 | assumes "rbt_sorted l" "rbt_sorted r" "l |\<guillemotleft> k" "k \<guillemotleft>| r" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 712 | shows "rbt_sorted (combine l r)" | 
| 35550 | 713 | using assms proof (induct l r rule: combine.induct) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 714 | case (3 a x v b c y w d) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 715 | hence ineqs: "a |\<guillemotleft> x" "x \<guillemotleft>| b" "b |\<guillemotleft> k" "k \<guillemotleft>| c" "c |\<guillemotleft> y" "y \<guillemotleft>| d" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 716 | by auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 717 | with 3 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 718 | show ?case | 
| 35550 | 719 | by (cases "combine b c" rule: rbt_cases) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 720 | (auto, (metis combine_rbt_greater combine_rbt_less ineqs ineqs rbt_less_simps(2) rbt_greater_simps(2) rbt_greater_trans rbt_less_trans)+) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 721 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 722 | case (4 a x v b c y w d) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 723 | hence "x < k \<and> rbt_greater k c" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 724 | hence "rbt_greater x c" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 725 | with 4 have 2: "rbt_greater x (combine b c)" by (simp add: combine_rbt_greater) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 726 | from 4 have "k < y \<and> rbt_less k b" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 727 | hence "rbt_less y b" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 728 | with 4 have 3: "rbt_less y (combine b c)" by (simp add: combine_rbt_less) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 729 | show ?case | 
| 35550 | 730 | proof (cases "combine b c" rule: rbt_cases) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 731 | case Empty | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 732 | from 4 have "x < y \<and> rbt_greater y d" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 733 | hence "rbt_greater x d" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 734 | with 4 Empty have "rbt_sorted a" and "rbt_sorted (Branch B Empty y w d)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 735 | and "rbt_less x a" and "rbt_greater x (Branch B Empty y w d)" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 736 | with Empty show ?thesis by (simp add: balance_left_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 737 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 738 | case (Red lta va ka rta) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 739 | with 2 4 have "x < va \<and> rbt_less x a" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 740 | hence 5: "rbt_less va a" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 741 | from Red 3 4 have "va < y \<and> rbt_greater y d" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 742 | hence "rbt_greater va d" by (blast dest: rbt_greater_trans) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 743 | with Red 2 3 4 5 show ?thesis by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 744 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 745 | case (Black lta va ka rta) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 746 | from 4 have "x < y \<and> rbt_greater y d" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 747 | hence "rbt_greater x d" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 748 | with Black 2 3 4 have "rbt_sorted a" and "rbt_sorted (Branch B (combine b c) y w d)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 749 | and "rbt_less x a" and "rbt_greater x (Branch B (combine b c) y w d)" by auto | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 750 | with Black show ?thesis by (simp add: balance_left_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 751 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 752 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 753 | case (5 va vb vd vc b x w c) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 754 | hence "k < x \<and> rbt_less k (Branch B va vb vd vc)" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 755 | hence "rbt_less x (Branch B va vb vd vc)" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 756 | with 5 show ?case by (simp add: combine_rbt_less) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 757 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 758 | case (6 a x v b va vb vd vc) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 759 | hence "x < k \<and> rbt_greater k (Branch B va vb vd vc)" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 760 | hence "rbt_greater x (Branch B va vb vd vc)" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 761 | with 6 show ?case by (simp add: combine_rbt_greater) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 762 | qed simp+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 763 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 764 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 765 | |
| 35550 | 766 | lemma combine_in_tree: | 
| 35534 | 767 | assumes "inv2 l" "inv2 r" "bheight l = bheight r" "inv1 l" "inv1 r" | 
| 35550 | 768 | shows "entry_in_tree k v (combine l r) = (entry_in_tree k v l \<or> entry_in_tree k v r)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 769 | using assms | 
| 35550 | 770 | proof (induct l r rule: combine.induct) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 771 | case (4 _ _ _ b c) | 
| 35550 | 772 | hence a: "bheight (combine b c) = bheight b" by (simp add: combine_inv2) | 
| 773 | from 4 have b: "inv1l (combine b c)" by (simp add: combine_inv1) | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 774 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 775 | show ?case | 
| 35550 | 776 | proof (cases "combine b c" rule: rbt_cases) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 777 | case Empty | 
| 35550 | 778 | with 4 a show ?thesis by (auto simp: balance_left_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 779 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 780 | case (Red lta ka va rta) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 781 | with 4 show ?thesis by auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 782 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 783 | case (Black lta ka va rta) | 
| 35550 | 784 | with a b 4 show ?thesis by (auto simp: balance_left_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 785 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 786 | qed (auto split: rbt.splits color.splits) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 787 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 788 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 789 | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 790 | fun | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 791 |   rbt_del_from_left :: "'a \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 792 |   rbt_del_from_right :: "'a \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt" and
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 793 |   rbt_del :: "'a\<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 794 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 795 | "rbt_del x Empty = Empty" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 796 | "rbt_del x (Branch c a y s b) = | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 797 | (if x < y then rbt_del_from_left x a y s b | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 798 | else (if x > y then rbt_del_from_right x a y s b else combine a b))" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 799 | "rbt_del_from_left x (Branch B lt z v rt) y s b = balance_left (rbt_del x (Branch B lt z v rt)) y s b" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 800 | "rbt_del_from_left x a y s b = Branch R (rbt_del x a) y s b" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 801 | "rbt_del_from_right x a y s (Branch B lt z v rt) = balance_right a y s (rbt_del x (Branch B lt z v rt))" | | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 802 | "rbt_del_from_right x a y s b = Branch R a y s (rbt_del x b)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 803 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 804 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 805 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 806 | context linorder begin | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 807 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 808 | lemma | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 809 | assumes "inv2 lt" "inv1 lt" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 810 | shows | 
| 35534 | 811 | "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow> | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 812 | inv2 (rbt_del_from_left x lt k v rt) \<and> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 813 | bheight (rbt_del_from_left x lt k v rt) = bheight lt \<and> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 814 | (color_of lt = B \<and> color_of rt = B \<and> inv1 (rbt_del_from_left x lt k v rt) \<or> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 815 | (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (rbt_del_from_left x lt k v rt))" | 
| 35534 | 816 | and "\<lbrakk>inv2 rt; bheight lt = bheight rt; inv1 rt\<rbrakk> \<Longrightarrow> | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 817 | inv2 (rbt_del_from_right x lt k v rt) \<and> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 818 | bheight (rbt_del_from_right x lt k v rt) = bheight lt \<and> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 819 | (color_of lt = B \<and> color_of rt = B \<and> inv1 (rbt_del_from_right x lt k v rt) \<or> | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 820 | (color_of lt \<noteq> B \<or> color_of rt \<noteq> B) \<and> inv1l (rbt_del_from_right x lt k v rt))" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 821 | and rbt_del_inv1_inv2: "inv2 (rbt_del x lt) \<and> (color_of lt = R \<and> bheight (rbt_del x lt) = bheight lt \<and> inv1 (rbt_del x lt) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 822 | \<or> color_of lt = B \<and> bheight (rbt_del x lt) = bheight lt - 1 \<and> inv1l (rbt_del x lt))" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 823 | using assms | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 824 | proof (induct x lt k v rt and x lt k v rt and x lt rule: rbt_del_from_left_rbt_del_from_right_rbt_del.induct) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 825 | case (2 y c _ y') | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 826 | have "y = y' \<or> y < y' \<or> y > y'" by auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 827 | thus ?case proof (elim disjE) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 828 | assume "y = y'" | 
| 35550 | 829 | with 2 show ?thesis by (cases c) (simp add: combine_inv2 combine_inv1)+ | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 830 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 831 | assume "y < y'" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 832 | with 2 show ?thesis by (cases c) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 833 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 834 | assume "y' < y" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 835 | with 2 show ?thesis by (cases c) auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 836 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 837 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 838 | case (3 y lt z v rta y' ss bb) | 
| 35550 | 839 | thus ?case by (cases "color_of (Branch B lt z v rta) = B \<and> color_of bb = B") (simp add: balance_left_inv2_with_inv1 balance_left_inv1 balance_left_inv1l)+ | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 840 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 841 | case (5 y a y' ss lt z v rta) | 
| 35550 | 842 | thus ?case by (cases "color_of a = B \<and> color_of (Branch B lt z v rta) = B") (simp add: balance_right_inv2_with_inv1 balance_right_inv1 balance_right_inv1l)+ | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 843 | next | 
| 35534 | 844 |   case ("6_1" y a y' ss) thus ?case by (cases "color_of a = B \<and> color_of Empty = B") simp+
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 845 | qed auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 846 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 847 | lemma | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 848 | rbt_del_from_left_rbt_less: "\<lbrakk> lt |\<guillemotleft> v; rt |\<guillemotleft> v; k < v\<rbrakk> \<Longrightarrow> rbt_del_from_left x lt k y rt |\<guillemotleft> v" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 849 | and rbt_del_from_right_rbt_less: "\<lbrakk>lt |\<guillemotleft> v; rt |\<guillemotleft> v; k < v\<rbrakk> \<Longrightarrow> rbt_del_from_right x lt k y rt |\<guillemotleft> v" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 850 | and rbt_del_rbt_less: "lt |\<guillemotleft> v \<Longrightarrow> rbt_del x lt |\<guillemotleft> v" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 851 | by (induct x lt k y rt and x lt k y rt and x lt rule: rbt_del_from_left_rbt_del_from_right_rbt_del.induct) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 852 | (auto simp: balance_left_rbt_less balance_right_rbt_less) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 853 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 854 | lemma rbt_del_from_left_rbt_greater: "\<lbrakk>v \<guillemotleft>| lt; v \<guillemotleft>| rt; k > v\<rbrakk> \<Longrightarrow> v \<guillemotleft>| rbt_del_from_left x lt k y rt" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 855 | and rbt_del_from_right_rbt_greater: "\<lbrakk>v \<guillemotleft>| lt; v \<guillemotleft>| rt; k > v\<rbrakk> \<Longrightarrow> v \<guillemotleft>| rbt_del_from_right x lt k y rt" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 856 | and rbt_del_rbt_greater: "v \<guillemotleft>| lt \<Longrightarrow> v \<guillemotleft>| rbt_del x lt" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 857 | by (induct x lt k y rt and x lt k y rt and x lt rule: rbt_del_from_left_rbt_del_from_right_rbt_del.induct) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 858 | (auto simp: balance_left_rbt_greater balance_right_rbt_greater) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 859 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 860 | lemma "\<lbrakk>rbt_sorted lt; rbt_sorted rt; lt |\<guillemotleft> k; k \<guillemotleft>| rt\<rbrakk> \<Longrightarrow> rbt_sorted (rbt_del_from_left x lt k y rt)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 861 | and "\<lbrakk>rbt_sorted lt; rbt_sorted rt; lt |\<guillemotleft> k; k \<guillemotleft>| rt\<rbrakk> \<Longrightarrow> rbt_sorted (rbt_del_from_right x lt k y rt)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 862 | and rbt_del_rbt_sorted: "rbt_sorted lt \<Longrightarrow> rbt_sorted (rbt_del x lt)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 863 | proof (induct x lt k y rt and x lt k y rt and x lt rule: rbt_del_from_left_rbt_del_from_right_rbt_del.induct) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 864 | case (3 x lta zz v rta yy ss bb) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 865 | from 3 have "Branch B lta zz v rta |\<guillemotleft> yy" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 866 | hence "rbt_del x (Branch B lta zz v rta) |\<guillemotleft> yy" by (rule rbt_del_rbt_less) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 867 | with 3 show ?case by (simp add: balance_left_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 868 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 869 |   case ("4_2" x vaa vbb vdd vc yy ss bb)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 870 | hence "Branch R vaa vbb vdd vc |\<guillemotleft> yy" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 871 | hence "rbt_del x (Branch R vaa vbb vdd vc) |\<guillemotleft> yy" by (rule rbt_del_rbt_less) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 872 | with "4_2" show ?case by simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 873 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 874 | case (5 x aa yy ss lta zz v rta) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 875 | hence "yy \<guillemotleft>| Branch B lta zz v rta" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 876 | hence "yy \<guillemotleft>| rbt_del x (Branch B lta zz v rta)" by (rule rbt_del_rbt_greater) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 877 | with 5 show ?case by (simp add: balance_right_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 878 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 879 |   case ("6_2" x aa yy ss vaa vbb vdd vc)
 | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 880 | hence "yy \<guillemotleft>| Branch R vaa vbb vdd vc" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 881 | hence "yy \<guillemotleft>| rbt_del x (Branch R vaa vbb vdd vc)" by (rule rbt_del_rbt_greater) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 882 | with "6_2" show ?case by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 883 | qed (auto simp: combine_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 884 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 885 | lemma "\<lbrakk>rbt_sorted lt; rbt_sorted rt; lt |\<guillemotleft> kt; kt \<guillemotleft>| rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x < kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (rbt_del_from_left x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 886 | and "\<lbrakk>rbt_sorted lt; rbt_sorted rt; lt |\<guillemotleft> kt; kt \<guillemotleft>| rt; inv1 lt; inv1 rt; inv2 lt; inv2 rt; bheight lt = bheight rt; x > kt\<rbrakk> \<Longrightarrow> entry_in_tree k v (rbt_del_from_right x lt kt y rt) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v (Branch c lt kt y rt)))" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 887 | and rbt_del_in_tree: "\<lbrakk>rbt_sorted t; inv1 t; inv2 t\<rbrakk> \<Longrightarrow> entry_in_tree k v (rbt_del x t) = (False \<or> (x \<noteq> k \<and> entry_in_tree k v t))" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 888 | proof (induct x lt kt y rt and x lt kt y rt and x t rule: rbt_del_from_left_rbt_del_from_right_rbt_del.induct) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 889 | case (2 xx c aa yy ss bb) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 890 | have "xx = yy \<or> xx < yy \<or> xx > yy" by auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 891 | from this 2 show ?case proof (elim disjE) | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 892 | assume "xx = yy" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 893 | with 2 show ?thesis proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 894 | case True | 
| 60500 | 895 | from 2 \<open>xx = yy\<close> \<open>xx = k\<close> have "rbt_sorted (Branch c aa yy ss bb) \<and> k = yy" by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 896 | hence "\<not> entry_in_tree k v aa" "\<not> entry_in_tree k v bb" by (auto simp: rbt_less_nit rbt_greater_prop) | 
| 60500 | 897 | with \<open>xx = yy\<close> 2 \<open>xx = k\<close> show ?thesis by (simp add: combine_in_tree) | 
| 35550 | 898 | qed (simp add: combine_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 899 | qed simp+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 900 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 901 | case (3 xx lta zz vv rta yy ss bb) | 
| 63040 | 902 | define mt where [simp]: "mt = Branch B lta zz vv rta" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 903 | from 3 have "inv2 mt \<and> inv1 mt" by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 904 | hence "inv2 (rbt_del xx mt) \<and> (color_of mt = R \<and> bheight (rbt_del xx mt) = bheight mt \<and> inv1 (rbt_del xx mt) \<or> color_of mt = B \<and> bheight (rbt_del xx mt) = bheight mt - 1 \<and> inv1l (rbt_del xx mt))" by (blast dest: rbt_del_inv1_inv2) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 905 | with 3 have 4: "entry_in_tree k v (rbt_del_from_left xx mt yy ss bb) = (False \<or> xx \<noteq> k \<and> entry_in_tree k v mt \<or> (k = yy \<and> v = ss) \<or> entry_in_tree k v bb)" by (simp add: balance_left_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 906 | thus ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 907 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 908 | from 3 True have "yy \<guillemotleft>| bb \<and> yy > k" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 909 | hence "k \<guillemotleft>| bb" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 910 | with 3 4 True show ?thesis by (auto simp: rbt_greater_nit) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 911 | qed auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 912 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 913 |   case ("4_1" xx yy ss bb)
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 914 | show ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 915 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 916 | with "4_1" have "yy \<guillemotleft>| bb \<and> k < yy" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 917 | hence "k \<guillemotleft>| bb" by (blast dest: rbt_greater_trans) | 
| 60500 | 918 | with "4_1" \<open>xx = k\<close> | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 919 | have "entry_in_tree k v (Branch R Empty yy ss bb) = entry_in_tree k v Empty" by (auto simp: rbt_greater_nit) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 920 | thus ?thesis by auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 921 | qed simp+ | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 922 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 923 |   case ("4_2" xx vaa vbb vdd vc yy ss bb)
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 924 | thus ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 925 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 926 | with "4_2" have "k < yy \<and> yy \<guillemotleft>| bb" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 927 | hence "k \<guillemotleft>| bb" by (blast dest: rbt_greater_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 928 | with True "4_2" show ?thesis by (auto simp: rbt_greater_nit) | 
| 35550 | 929 | qed auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 930 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 931 | case (5 xx aa yy ss lta zz vv rta) | 
| 63040 | 932 | define mt where [simp]: "mt = Branch B lta zz vv rta" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 933 | from 5 have "inv2 mt \<and> inv1 mt" by simp | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 934 | hence "inv2 (rbt_del xx mt) \<and> (color_of mt = R \<and> bheight (rbt_del xx mt) = bheight mt \<and> inv1 (rbt_del xx mt) \<or> color_of mt = B \<and> bheight (rbt_del xx mt) = bheight mt - 1 \<and> inv1l (rbt_del xx mt))" by (blast dest: rbt_del_inv1_inv2) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 935 | with 5 have 3: "entry_in_tree k v (rbt_del_from_right xx aa yy ss mt) = (entry_in_tree k v aa \<or> (k = yy \<and> v = ss) \<or> False \<or> xx \<noteq> k \<and> entry_in_tree k v mt)" by (simp add: balance_right_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 936 | thus ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 937 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 938 | from 5 True have "aa |\<guillemotleft> yy \<and> yy < k" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 939 | hence "aa |\<guillemotleft> k" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 940 | with 3 5 True show ?thesis by (auto simp: rbt_less_nit) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 941 | qed auto | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 942 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 943 |   case ("6_1" xx aa yy ss)
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 944 | show ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 945 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 946 | with "6_1" have "aa |\<guillemotleft> yy \<and> k > yy" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 947 | hence "aa |\<guillemotleft> k" by (blast dest: rbt_less_trans) | 
| 60500 | 948 | with "6_1" \<open>xx = k\<close> show ?thesis by (auto simp: rbt_less_nit) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 949 | qed simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 950 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 951 |   case ("6_2" xx aa yy ss vaa vbb vdd vc)
 | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 952 | thus ?case proof (cases "xx = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 953 | case True | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 954 | with "6_2" have "k > yy \<and> aa |\<guillemotleft> yy" by simp | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 955 | hence "aa |\<guillemotleft> k" by (blast dest: rbt_less_trans) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 956 | with True "6_2" show ?thesis by (auto simp: rbt_less_nit) | 
| 35550 | 957 | qed auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 958 | qed simp | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 959 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 960 | definition (in ord) rbt_delete where | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 961 | "rbt_delete k t = paint B (rbt_del k t)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 962 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 963 | theorem rbt_delete_is_rbt [simp]: assumes "is_rbt t" shows "is_rbt (rbt_delete k t)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 964 | proof - | 
| 35534 | 965 | from assms have "inv2 t" and "inv1 t" unfolding is_rbt_def by auto | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 966 | hence "inv2 (rbt_del k t) \<and> (color_of t = R \<and> bheight (rbt_del k t) = bheight t \<and> inv1 (rbt_del k t) \<or> color_of t = B \<and> bheight (rbt_del k t) = bheight t - 1 \<and> inv1l (rbt_del k t))" by (rule rbt_del_inv1_inv2) | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 967 | hence "inv2 (rbt_del k t) \<and> inv1l (rbt_del k t)" by (cases "color_of t") auto | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 968 | with assms show ?thesis | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 969 | unfolding is_rbt_def rbt_delete_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 970 | by (auto intro: paint_rbt_sorted rbt_del_rbt_sorted) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 971 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 972 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 973 | lemma rbt_delete_in_tree: | 
| 35534 | 974 | assumes "is_rbt t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 975 | shows "entry_in_tree k v (rbt_delete x t) = (x \<noteq> k \<and> entry_in_tree k v t)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 976 | using assms unfolding is_rbt_def rbt_delete_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 977 | by (auto simp: rbt_del_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 978 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 979 | lemma rbt_lookup_rbt_delete: | 
| 35534 | 980 | assumes is_rbt: "is_rbt t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 981 |   shows "rbt_lookup (rbt_delete k t) = (rbt_lookup t)|`(-{k})"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 982 | proof | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 983 | fix x | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 984 |   show "rbt_lookup (rbt_delete k t) x = (rbt_lookup t |` (-{k})) x" 
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 985 | proof (cases "x = k") | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 986 | assume "x = k" | 
| 35534 | 987 | with is_rbt show ?thesis | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 988 | by (cases "rbt_lookup (rbt_delete k t) k") (auto simp: rbt_lookup_in_tree rbt_delete_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 989 | next | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 990 | assume "x \<noteq> k" | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 991 | thus ?thesis | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 992 | by auto (metis is_rbt rbt_delete_is_rbt rbt_delete_in_tree is_rbt_rbt_sorted rbt_lookup_from_in_tree) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 993 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 994 | qed | 
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 995 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 996 | end | 
| 35550 | 997 | |
| 60500 | 998 | subsection \<open>Modifying existing entries\<close> | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 999 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1000 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1001 | |
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1002 | primrec | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1003 |   rbt_map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1004 | where | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1005 | "rbt_map_entry k f Empty = Empty" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1006 | | "rbt_map_entry k f (Branch c lt x v rt) = | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1007 | (if k < x then Branch c (rbt_map_entry k f lt) x v rt | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1008 | else if k > x then (Branch c lt x v (rbt_map_entry k f rt)) | 
| 35602 | 1009 | else Branch c lt x (f v) rt)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1010 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1011 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1012 | lemma rbt_map_entry_color_of: "color_of (rbt_map_entry k f t) = color_of t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1013 | lemma rbt_map_entry_inv1: "inv1 (rbt_map_entry k f t) = inv1 t" by (induct t) (simp add: rbt_map_entry_color_of)+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1014 | lemma rbt_map_entry_inv2: "inv2 (rbt_map_entry k f t) = inv2 t" "bheight (rbt_map_entry k f t) = bheight t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1015 | lemma rbt_map_entry_rbt_greater: "rbt_greater a (rbt_map_entry k f t) = rbt_greater a t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1016 | lemma rbt_map_entry_rbt_less: "rbt_less a (rbt_map_entry k f t) = rbt_less a t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1017 | lemma rbt_map_entry_rbt_sorted: "rbt_sorted (rbt_map_entry k f t) = rbt_sorted t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1018 | by (induct t) (simp_all add: rbt_map_entry_rbt_less rbt_map_entry_rbt_greater) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1019 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1020 | theorem rbt_map_entry_is_rbt [simp]: "is_rbt (rbt_map_entry k f t) = is_rbt t" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1021 | unfolding is_rbt_def by (simp add: rbt_map_entry_inv2 rbt_map_entry_color_of rbt_map_entry_rbt_sorted rbt_map_entry_inv1 ) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1022 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1023 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1024 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1025 | theorem (in linorder) rbt_lookup_rbt_map_entry: | 
| 55466 | 1026 | "rbt_lookup (rbt_map_entry k f t) = (rbt_lookup t)(k := map_option f (rbt_lookup t k))" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1027 | by (induct t) (auto split: option.splits simp add: fun_eq_iff) | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1028 | |
| 60500 | 1029 | subsection \<open>Mapping all entries\<close> | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1030 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1031 | primrec | 
| 35602 | 1032 |   map :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'c) rbt"
 | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1033 | where | 
| 35550 | 1034 | "map f Empty = Empty" | 
| 1035 | | "map f (Branch c lt k v rt) = Branch c (map f lt) k (f k v) (map f rt)" | |
| 32237 
cdc76a42fed4
added missing proof of RBT.map_of_alist_of (contributed by Peter Lammich)
 krauss parents: 
30738diff
changeset | 1036 | |
| 35550 | 1037 | lemma map_entries [simp]: "entries (map f t) = List.map (\<lambda>(k, v). (k, f k v)) (entries t)" | 
| 1038 | by (induct t) auto | |
| 1039 | lemma map_keys [simp]: "keys (map f t) = keys t" by (simp add: keys_def split_def) | |
| 1040 | lemma map_color_of: "color_of (map f t) = color_of t" by (induct t) simp+ | |
| 1041 | lemma map_inv1: "inv1 (map f t) = inv1 t" by (induct t) (simp add: map_color_of)+ | |
| 1042 | lemma map_inv2: "inv2 (map f t) = inv2 t" "bheight (map f t) = bheight t" by (induct t) simp+ | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1043 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1044 | context ord begin | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1045 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1046 | lemma map_rbt_greater: "rbt_greater k (map f t) = rbt_greater k t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1047 | lemma map_rbt_less: "rbt_less k (map f t) = rbt_less k t" by (induct t) simp+ | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1048 | lemma map_rbt_sorted: "rbt_sorted (map f t) = rbt_sorted t" by (induct t) (simp add: map_rbt_less map_rbt_greater)+ | 
| 35550 | 1049 | theorem map_is_rbt [simp]: "is_rbt (map f t) = is_rbt t" | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1050 | unfolding is_rbt_def by (simp add: map_inv1 map_inv2 map_rbt_sorted map_color_of) | 
| 32237 
cdc76a42fed4
added missing proof of RBT.map_of_alist_of (contributed by Peter Lammich)
 krauss parents: 
30738diff
changeset | 1051 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1052 | end | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1053 | |
| 55466 | 1054 | theorem (in linorder) rbt_lookup_map: "rbt_lookup (map f t) x = map_option (f x) (rbt_lookup t x)" | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73212diff
changeset | 1055 | by (induct t) (auto simp: antisym_conv3) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1056 | (* FIXME: simproc "antisym less" does not work for linorder context, only for linorder type class | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1057 | by (induct t) auto *) | 
| 35550 | 1058 | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1059 | hide_const (open) map | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1060 | |
| 60500 | 1061 | subsection \<open>Folding over entries\<close> | 
| 35550 | 1062 | |
| 1063 | definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c" where
 | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
55412diff
changeset | 1064 | "fold f t = List.fold (case_prod f) (entries t)" | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 1065 | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1066 | lemma fold_simps [simp]: | 
| 35550 | 1067 | "fold f Empty = id" | 
| 1068 | "fold f (Branch c lt k v rt) = fold f rt \<circ> f k v \<circ> fold f lt" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1069 | by (simp_all add: fold_def fun_eq_iff) | 
| 35534 | 1070 | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1071 | lemma fold_code [code]: | 
| 49810 | 1072 | "fold f Empty x = x" | 
| 1073 | "fold f (Branch c lt k v rt) x = fold f rt (f k v (fold f lt x))" | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1074 | by(simp_all) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1075 | |
| 67408 | 1076 | \<comment> \<open>fold with continuation predicate\<close> | 
| 48621 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1077 | fun foldi :: "('c \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a :: linorder, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c" 
 | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1078 | where | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1079 | "foldi c f Empty s = s" | | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1080 | "foldi c f (Branch col l k v r) s = ( | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1081 | if (c s) then | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1082 | let s' = foldi c f l s in | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1083 | if (c s') then | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1084 | foldi c f r (f k v s') | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1085 | else s' | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1086 | else | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1087 | s | 
| 
877df57629e3
a couple of additions to RBT formalization to allow us to implement RBT_Set
 kuncar parents: 
47455diff
changeset | 1088 | )" | 
| 35606 | 1089 | |
| 60500 | 1090 | subsection \<open>Bulkloading a tree\<close> | 
| 35606 | 1091 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1092 | definition (in ord) rbt_bulkload :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) rbt" where
 | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1093 | "rbt_bulkload xs = foldr (\<lambda>(k, v). rbt_insert k v) xs Empty" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1094 | |
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1095 | context linorder begin | 
| 35606 | 1096 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1097 | lemma rbt_bulkload_is_rbt [simp, intro]: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1098 | "is_rbt (rbt_bulkload xs)" | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1099 | unfolding rbt_bulkload_def by (induct xs) auto | 
| 35606 | 1100 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1101 | lemma rbt_lookup_rbt_bulkload: | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1102 | "rbt_lookup (rbt_bulkload xs) = map_of xs" | 
| 35606 | 1103 | proof - | 
| 1104 | obtain ys where "ys = rev xs" by simp | |
| 1105 | have "\<And>t. is_rbt t \<Longrightarrow> | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
55412diff
changeset | 1106 | rbt_lookup (List.fold (case_prod rbt_insert) ys t) = rbt_lookup t ++ map_of (rev ys)" | 
| 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
55412diff
changeset | 1107 | by (induct ys) (simp_all add: rbt_bulkload_def rbt_lookup_rbt_insert case_prod_beta) | 
| 35606 | 1108 | from this Empty_is_rbt have | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
55412diff
changeset | 1109 | "rbt_lookup (List.fold (case_prod rbt_insert) (rev xs) Empty) = rbt_lookup Empty ++ map_of xs" | 
| 60500 | 1110 | by (simp add: \<open>ys = rev xs\<close>) | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1111 | then show ?thesis by (simp add: rbt_bulkload_def rbt_lookup_Empty foldr_conv_fold) | 
| 35606 | 1112 | qed | 
| 1113 | ||
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1114 | end | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 1115 | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1116 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1117 | |
| 60500 | 1118 | subsection \<open>Building a RBT from a sorted list\<close> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1119 | |
| 60500 | 1120 | text \<open> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1121 | These functions have been adapted from | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1122 | Andrew W. Appel, Efficient Verified Red-Black Trees (September 2011) | 
| 60500 | 1123 | \<close> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1124 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1125 | fun rbtreeify_f :: "nat \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a, 'b) rbt \<times> ('a \<times> 'b) list"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1126 |   and rbtreeify_g :: "nat \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a, 'b) rbt \<times> ('a \<times> 'b) list"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1127 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1128 | "rbtreeify_f n kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1129 | (if n = 0 then (Empty, kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1130 | else if n = 1 then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1131 | case kvs of (k, v) # kvs' \<Rightarrow> (Branch R Empty k v Empty, kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1132 | else if (n mod 2 = 0) then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1133 | case rbtreeify_f (n div 2) kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1134 | apfst (Branch B t1 k v) (rbtreeify_g (n div 2) kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1135 | else case rbtreeify_f (n div 2) kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1136 | apfst (Branch B t1 k v) (rbtreeify_f (n div 2) kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1137 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1138 | | "rbtreeify_g n kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1139 | (if n = 0 \<or> n = 1 then (Empty, kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1140 | else if n mod 2 = 0 then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1141 | case rbtreeify_g (n div 2) kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1142 | apfst (Branch B t1 k v) (rbtreeify_g (n div 2) kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1143 | else case rbtreeify_f (n div 2) kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1144 | apfst (Branch B t1 k v) (rbtreeify_g (n div 2) kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1145 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1146 | definition rbtreeify :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) rbt"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1147 | where "rbtreeify kvs = fst (rbtreeify_g (Suc (length kvs)) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1148 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1149 | declare rbtreeify_f.simps [simp del] rbtreeify_g.simps [simp del] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1150 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1151 | lemma rbtreeify_f_code [code]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1152 | "rbtreeify_f n kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1153 | (if n = 0 then (Empty, kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1154 | else if n = 1 then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1155 | case kvs of (k, v) # kvs' \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1156 | (Branch R Empty k v Empty, kvs') | 
| 77061 
5de3772609ea
generalized theory name: euclidean division denotes one particular division definition on integers
 haftmann parents: 
75937diff
changeset | 1157 | else let (n', r) = Euclidean_Rings.divmod_nat n 2 in | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1158 | if r = 0 then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1159 | case rbtreeify_f n' kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1160 | apfst (Branch B t1 k v) (rbtreeify_g n' kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1161 | else case rbtreeify_f n' kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1162 | apfst (Branch B t1 k v) (rbtreeify_f n' kvs'))" | 
| 77061 
5de3772609ea
generalized theory name: euclidean division denotes one particular division definition on integers
 haftmann parents: 
75937diff
changeset | 1163 | by (subst rbtreeify_f.simps) (simp only: Let_def Euclidean_Rings.divmod_nat_def prod.case) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1164 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1165 | lemma rbtreeify_g_code [code]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1166 | "rbtreeify_g n kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1167 | (if n = 0 \<or> n = 1 then (Empty, kvs) | 
| 77061 
5de3772609ea
generalized theory name: euclidean division denotes one particular division definition on integers
 haftmann parents: 
75937diff
changeset | 1168 | else let (n', r) = Euclidean_Rings.divmod_nat n 2 in | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1169 | if r = 0 then | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1170 | case rbtreeify_g n' kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1171 | apfst (Branch B t1 k v) (rbtreeify_g n' kvs') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1172 | else case rbtreeify_f n' kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1173 | apfst (Branch B t1 k v) (rbtreeify_g n' kvs'))" | 
| 77061 
5de3772609ea
generalized theory name: euclidean division denotes one particular division definition on integers
 haftmann parents: 
75937diff
changeset | 1174 | by(subst rbtreeify_g.simps)(simp only: Let_def Euclidean_Rings.divmod_nat_def prod.case) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1175 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1176 | lemma Suc_double_half: "Suc (2 * n) div 2 = n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1177 | by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1178 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1179 | lemma div2_plus_div2: "n div 2 + n div 2 = (n :: nat) - n mod 2" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1180 | by arith | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1181 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1182 | lemma rbtreeify_f_rec_aux_lemma: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1183 | "\<lbrakk>k - n div 2 = Suc k'; n \<le> k; n mod 2 = Suc 0\<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1184 | \<Longrightarrow> k' - n div 2 = k - n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1185 | apply(rule add_right_imp_eq[where a = "n - n div 2"]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1186 | apply(subst add_diff_assoc2, arith) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1187 | apply(simp add: div2_plus_div2) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1188 | done | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1189 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1190 | lemma rbtreeify_f_simps: | 
| 59575 
55f5e1cbf2a7
removed needless (and inconsistent) qualifier that messes up with Mirabelle
 blanchet parents: 
59554diff
changeset | 1191 | "rbtreeify_f 0 kvs = (Empty, kvs)" | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1192 | "rbtreeify_f (Suc 0) ((k, v) # kvs) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1193 | (Branch R Empty k v Empty, kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1194 | "0 < n \<Longrightarrow> rbtreeify_f (2 * n) kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1195 | (case rbtreeify_f n kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1196 | apfst (Branch B t1 k v) (rbtreeify_g n kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1197 | "0 < n \<Longrightarrow> rbtreeify_f (Suc (2 * n)) kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1198 | (case rbtreeify_f n kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1199 | apfst (Branch B t1 k v) (rbtreeify_f n kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1200 | by(subst (1) rbtreeify_f.simps, simp add: Suc_double_half)+ | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1201 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1202 | lemma rbtreeify_g_simps: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1203 | "rbtreeify_g 0 kvs = (Empty, kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1204 | "rbtreeify_g (Suc 0) kvs = (Empty, kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1205 | "0 < n \<Longrightarrow> rbtreeify_g (2 * n) kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1206 | (case rbtreeify_g n kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1207 | apfst (Branch B t1 k v) (rbtreeify_g n kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1208 | "0 < n \<Longrightarrow> rbtreeify_g (Suc (2 * n)) kvs = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1209 | (case rbtreeify_f n kvs of (t1, (k, v) # kvs') \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1210 | apfst (Branch B t1 k v) (rbtreeify_g n kvs'))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1211 | by(subst (1) rbtreeify_g.simps, simp add: Suc_double_half)+ | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1212 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1213 | declare rbtreeify_f_simps[simp] rbtreeify_g_simps[simp] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1214 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1215 | lemma length_rbtreeify_f: "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1216 | \<Longrightarrow> length (snd (rbtreeify_f n kvs)) = length kvs - n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1217 | and length_rbtreeify_g:"\<lbrakk> 0 < n; n \<le> Suc (length kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1218 | \<Longrightarrow> length (snd (rbtreeify_g n kvs)) = Suc (length kvs) - n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1219 | proof(induction n kvs and n kvs rule: rbtreeify_f_rbtreeify_g.induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1220 | case (1 n kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1221 | show ?case | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1222 | proof(cases "n \<le> 1") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1223 | case True thus ?thesis using "1.prems" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1224 | by(cases n kvs rule: nat.exhaust[case_product list.exhaust]) auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1225 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1226 | case False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1227 | hence "n \<noteq> 0" "n \<noteq> 1" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1228 | note IH = "1.IH"[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1229 | show ?thesis | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1230 | proof(cases "n mod 2 = 0") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1231 | case True | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1232 | hence "length (snd (rbtreeify_f n kvs)) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1233 | length (snd (rbtreeify_f (2 * (n div 2)) kvs))" | 
| 64246 | 1234 | by(metis minus_nat.diff_0 minus_mod_eq_mult_div [symmetric]) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1235 | also from "1.prems" False obtain k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1236 | where kvs: "kvs = (k, v) # kvs'" by(cases kvs) auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1237 | also have "0 < n div 2" using False by(simp) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1238 | note rbtreeify_f_simps(3)[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1239 | also note kvs[symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1240 | also let ?rest1 = "snd (rbtreeify_f (n div 2) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1241 | from "1.prems" have "n div 2 \<le> length kvs" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1242 | with True have len: "length ?rest1 = length kvs - n div 2" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1243 | with "1.prems" False obtain t1 k' v' kvs'' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1244 | where kvs'': "rbtreeify_f (n div 2) kvs = (t1, (k', v') # kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1245 | by(cases ?rest1)(auto simp add: snd_def split: prod.split_asm) | 
| 55412 
eb2caacf3ba4
avoid old 'prod.simps' -- better be more specific
 blanchet parents: 
53374diff
changeset | 1246 | note this also note prod.case also note list.simps(5) | 
| 
eb2caacf3ba4
avoid old 'prod.simps' -- better be more specific
 blanchet parents: 
53374diff
changeset | 1247 | also note prod.case also note snd_apfst | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1248 | also have "0 < n div 2" "n div 2 \<le> Suc (length kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1249 | using len "1.prems" False unfolding kvs'' by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1250 | with True kvs''[symmetric] refl refl | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1251 | have "length (snd (rbtreeify_g (n div 2) kvs'')) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1252 | Suc (length kvs'') - n div 2" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1253 | finally show ?thesis using len[unfolded kvs''] "1.prems" True | 
| 64246 | 1254 | by(simp add: Suc_diff_le[symmetric] mult_2[symmetric] minus_mod_eq_mult_div [symmetric]) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1255 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1256 | case False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1257 | hence "length (snd (rbtreeify_f n kvs)) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1258 | length (snd (rbtreeify_f (Suc (2 * (n div 2))) kvs))" | 
| 59554 
4044f53326c9
inlined rules to free user-space from technical names
 haftmann parents: 
58881diff
changeset | 1259 | by (simp add: mod_eq_0_iff_dvd) | 
| 60500 | 1260 | also from "1.prems" \<open>\<not> n \<le> 1\<close> obtain k v kvs' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1261 | where kvs: "kvs = (k, v) # kvs'" by(cases kvs) auto | 
| 60500 | 1262 | also have "0 < n div 2" using \<open>\<not> n \<le> 1\<close> by(simp) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1263 | note rbtreeify_f_simps(4)[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1264 | also note kvs[symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1265 | also let ?rest1 = "snd (rbtreeify_f (n div 2) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1266 | from "1.prems" have "n div 2 \<le> length kvs" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1267 | with False have len: "length ?rest1 = length kvs - n div 2" by(rule IH) | 
| 60500 | 1268 | with "1.prems" \<open>\<not> n \<le> 1\<close> obtain t1 k' v' kvs'' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1269 | where kvs'': "rbtreeify_f (n div 2) kvs = (t1, (k', v') # kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1270 | by(cases ?rest1)(auto simp add: snd_def split: prod.split_asm) | 
| 55412 
eb2caacf3ba4
avoid old 'prod.simps' -- better be more specific
 blanchet parents: 
53374diff
changeset | 1271 | note this also note prod.case also note list.simps(5) | 
| 
eb2caacf3ba4
avoid old 'prod.simps' -- better be more specific
 blanchet parents: 
53374diff
changeset | 1272 | also note prod.case also note snd_apfst | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1273 | also have "n div 2 \<le> length kvs''" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1274 | using len "1.prems" False unfolding kvs'' by simp arith | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1275 | with False kvs''[symmetric] refl refl | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1276 | have "length (snd (rbtreeify_f (n div 2) kvs'')) = length kvs'' - n div 2" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1277 | by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1278 | finally show ?thesis using len[unfolded kvs''] "1.prems" False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1279 | by simp(rule rbtreeify_f_rec_aux_lemma[OF sym]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1280 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1281 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1282 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1283 | case (2 n kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1284 | show ?case | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1285 | proof(cases "n > 1") | 
| 60500 | 1286 | case False with \<open>0 < n\<close> show ?thesis | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1287 | by(cases n kvs rule: nat.exhaust[case_product list.exhaust]) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1288 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1289 | case True | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1290 | hence "\<not> (n = 0 \<or> n = 1)" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1291 | note IH = "2.IH"[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1292 | show ?thesis | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1293 | proof(cases "n mod 2 = 0") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1294 | case True | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1295 | hence "length (snd (rbtreeify_g n kvs)) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1296 | length (snd (rbtreeify_g (2 * (n div 2)) kvs))" | 
| 64246 | 1297 | by(metis minus_nat.diff_0 minus_mod_eq_mult_div [symmetric]) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1298 | also from "2.prems" True obtain k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1299 | where kvs: "kvs = (k, v) # kvs'" by(cases kvs) auto | 
| 60500 | 1300 | also have "0 < n div 2" using \<open>1 < n\<close> by(simp) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1301 | note rbtreeify_g_simps(3)[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1302 | also note kvs[symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1303 | also let ?rest1 = "snd (rbtreeify_g (n div 2) kvs)" | 
| 60500 | 1304 | from "2.prems" \<open>1 < n\<close> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1305 | have "0 < n div 2" "n div 2 \<le> Suc (length kvs)" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1306 | with True have len: "length ?rest1 = Suc (length kvs) - n div 2" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1307 | with "2.prems" obtain t1 k' v' kvs'' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1308 | where kvs'': "rbtreeify_g (n div 2) kvs = (t1, (k', v') # kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1309 | by(cases ?rest1)(auto simp add: snd_def split: prod.split_asm) | 
| 55412 
eb2caacf3ba4
avoid old 'prod.simps' -- better be more specific
 blanchet parents: 
53374diff
changeset | 1310 | note this also note prod.case also note list.simps(5) | 
| 
eb2caacf3ba4
avoid old 'prod.simps' -- better be more specific
 blanchet parents: 
53374diff
changeset | 1311 | also note prod.case also note snd_apfst | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1312 | also have "n div 2 \<le> Suc (length kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1313 | using len "2.prems" unfolding kvs'' by simp | 
| 60500 | 1314 | with True kvs''[symmetric] refl refl \<open>0 < n div 2\<close> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1315 | have "length (snd (rbtreeify_g (n div 2) kvs'')) = Suc (length kvs'') - n div 2" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1316 | by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1317 | finally show ?thesis using len[unfolded kvs''] "2.prems" True | 
| 64246 | 1318 | by(simp add: Suc_diff_le[symmetric] mult_2[symmetric] minus_mod_eq_mult_div [symmetric]) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1319 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1320 | case False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1321 | hence "length (snd (rbtreeify_g n kvs)) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1322 | length (snd (rbtreeify_g (Suc (2 * (n div 2))) kvs))" | 
| 59554 
4044f53326c9
inlined rules to free user-space from technical names
 haftmann parents: 
58881diff
changeset | 1323 | by (simp add: mod_eq_0_iff_dvd) | 
| 60500 | 1324 | also from "2.prems" \<open>1 < n\<close> obtain k v kvs' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1325 | where kvs: "kvs = (k, v) # kvs'" by(cases kvs) auto | 
| 60500 | 1326 | also have "0 < n div 2" using \<open>1 < n\<close> by(simp) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1327 | note rbtreeify_g_simps(4)[OF this] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1328 | also note kvs[symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1329 | also let ?rest1 = "snd (rbtreeify_f (n div 2) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1330 | from "2.prems" have "n div 2 \<le> length kvs" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1331 | with False have len: "length ?rest1 = length kvs - n div 2" by(rule IH) | 
| 60500 | 1332 | with "2.prems" \<open>1 < n\<close> False obtain t1 k' v' kvs'' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1333 | where kvs'': "rbtreeify_f (n div 2) kvs = (t1, (k', v') # kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1334 | by(cases ?rest1)(auto simp add: snd_def split: prod.split_asm, arith) | 
| 55412 
eb2caacf3ba4
avoid old 'prod.simps' -- better be more specific
 blanchet parents: 
53374diff
changeset | 1335 | note this also note prod.case also note list.simps(5) | 
| 
eb2caacf3ba4
avoid old 'prod.simps' -- better be more specific
 blanchet parents: 
53374diff
changeset | 1336 | also note prod.case also note snd_apfst | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1337 | also have "n div 2 \<le> Suc (length kvs'')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1338 | using len "2.prems" False unfolding kvs'' by simp arith | 
| 60500 | 1339 | with False kvs''[symmetric] refl refl \<open>0 < n div 2\<close> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1340 | have "length (snd (rbtreeify_g (n div 2) kvs'')) = Suc (length kvs'') - n div 2" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1341 | by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1342 | finally show ?thesis using len[unfolded kvs''] "2.prems" False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1343 | by(simp add: div2_plus_div2) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1344 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1345 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1346 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1347 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1348 | lemma rbtreeify_induct [consumes 1, case_names f_0 f_1 f_even f_odd g_0 g_1 g_even g_odd]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1349 | fixes P Q | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1350 | defines "f0 == (\<And>kvs. P 0 kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1351 | and "f1 == (\<And>k v kvs. P (Suc 0) ((k, v) # kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1352 | and "feven == | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1353 | (\<And>n kvs t k v kvs'. \<lbrakk> n > 0; n \<le> length kvs; P n kvs; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1354 | rbtreeify_f n kvs = (t, (k, v) # kvs'); n \<le> Suc (length kvs'); Q n kvs' \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1355 | \<Longrightarrow> P (2 * n) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1356 | and "fodd == | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1357 | (\<And>n kvs t k v kvs'. \<lbrakk> n > 0; n \<le> length kvs; P n kvs; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1358 | rbtreeify_f n kvs = (t, (k, v) # kvs'); n \<le> length kvs'; P n kvs' \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1359 | \<Longrightarrow> P (Suc (2 * n)) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1360 | and "g0 == (\<And>kvs. Q 0 kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1361 | and "g1 == (\<And>kvs. Q (Suc 0) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1362 | and "geven == | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1363 | (\<And>n kvs t k v kvs'. \<lbrakk> n > 0; n \<le> Suc (length kvs); Q n kvs; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1364 | rbtreeify_g n kvs = (t, (k, v) # kvs'); n \<le> Suc (length kvs'); Q n kvs' \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1365 | \<Longrightarrow> Q (2 * n) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1366 | and "godd == | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1367 | (\<And>n kvs t k v kvs'. \<lbrakk> n > 0; n \<le> length kvs; P n kvs; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1368 | rbtreeify_f n kvs = (t, (k, v) # kvs'); n \<le> Suc (length kvs'); Q n kvs' \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1369 | \<Longrightarrow> Q (Suc (2 * n)) kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1370 | shows "\<lbrakk> n \<le> length kvs; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1371 | PROP f0; PROP f1; PROP feven; PROP fodd; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1372 | PROP g0; PROP g1; PROP geven; PROP godd \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1373 | \<Longrightarrow> P n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1374 | and "\<lbrakk> n \<le> Suc (length kvs); | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1375 | PROP f0; PROP f1; PROP feven; PROP fodd; | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1376 | PROP g0; PROP g1; PROP geven; PROP godd \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1377 | \<Longrightarrow> Q n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1378 | proof - | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1379 | assume f0: "PROP f0" and f1: "PROP f1" and feven: "PROP feven" and fodd: "PROP fodd" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1380 | and g0: "PROP g0" and g1: "PROP g1" and geven: "PROP geven" and godd: "PROP godd" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1381 | show "n \<le> length kvs \<Longrightarrow> P n kvs" and "n \<le> Suc (length kvs) \<Longrightarrow> Q n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1382 | proof(induction rule: rbtreeify_f_rbtreeify_g.induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1383 | case (1 n kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1384 | show ?case | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1385 | proof(cases "n \<le> 1") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1386 | case True thus ?thesis using "1.prems" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1387 | by(cases n kvs rule: nat.exhaust[case_product list.exhaust]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1388 | (auto simp add: f0[unfolded f0_def] f1[unfolded f1_def]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1389 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1390 | case False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1391 | hence ns: "n \<noteq> 0" "n \<noteq> 1" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1392 | hence ge0: "n div 2 > 0" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1393 | note IH = "1.IH"[OF ns] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1394 | show ?thesis | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1395 | proof(cases "n mod 2 = 0") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1396 | case True note ge0 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1397 | moreover from "1.prems" have n2: "n div 2 \<le> length kvs" by simp | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1398 | moreover from True n2 have "P (n div 2) kvs" by(rule IH) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1399 | moreover from length_rbtreeify_f[OF n2] ge0 "1.prems" obtain t k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1400 | where kvs': "rbtreeify_f (n div 2) kvs = (t, (k, v) # kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1401 | by(cases "snd (rbtreeify_f (n div 2) kvs)") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1402 | (auto simp add: snd_def split: prod.split_asm) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1403 | moreover from "1.prems" length_rbtreeify_f[OF n2] ge0 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1404 | have n2': "n div 2 \<le> Suc (length kvs')" by(simp add: kvs') | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1405 | moreover from True kvs'[symmetric] refl refl n2' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1406 | have "Q (n div 2) kvs'" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1407 | moreover note feven[unfolded feven_def] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1408 | (* FIXME: why does by(rule feven[unfolded feven_def]) not work? *) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1409 | ultimately have "P (2 * (n div 2)) kvs" by - | 
| 64243 | 1410 | thus ?thesis using True by (metis minus_mod_eq_div_mult [symmetric] minus_nat.diff_0 mult.commute) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1411 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1412 | case False note ge0 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1413 | moreover from "1.prems" have n2: "n div 2 \<le> length kvs" by simp | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1414 | moreover from False n2 have "P (n div 2) kvs" by(rule IH) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1415 | moreover from length_rbtreeify_f[OF n2] ge0 "1.prems" obtain t k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1416 | where kvs': "rbtreeify_f (n div 2) kvs = (t, (k, v) # kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1417 | by(cases "snd (rbtreeify_f (n div 2) kvs)") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1418 | (auto simp add: snd_def split: prod.split_asm) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1419 | moreover from "1.prems" length_rbtreeify_f[OF n2] ge0 False | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1420 | have n2': "n div 2 \<le> length kvs'" by(simp add: kvs') arith | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1421 | moreover from False kvs'[symmetric] refl refl n2' have "P (n div 2) kvs'" by(rule IH) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1422 | moreover note fodd[unfolded fodd_def] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1423 | ultimately have "P (Suc (2 * (n div 2))) kvs" by - | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1424 | thus ?thesis using False | 
| 64246 | 1425 | by simp (metis One_nat_def Suc_eq_plus1_left le_add_diff_inverse mod_less_eq_dividend minus_mod_eq_mult_div [symmetric]) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1426 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1427 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1428 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1429 | case (2 n kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1430 | show ?case | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1431 | proof(cases "n \<le> 1") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1432 | case True thus ?thesis using "2.prems" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1433 | by(cases n kvs rule: nat.exhaust[case_product list.exhaust]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1434 | (auto simp add: g0[unfolded g0_def] g1[unfolded g1_def]) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1435 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1436 | case False | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1437 | hence ns: "\<not> (n = 0 \<or> n = 1)" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1438 | hence ge0: "n div 2 > 0" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1439 | note IH = "2.IH"[OF ns] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1440 | show ?thesis | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1441 | proof(cases "n mod 2 = 0") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1442 | case True note ge0 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1443 | moreover from "2.prems" have n2: "n div 2 \<le> Suc (length kvs)" by simp | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1444 | moreover from True n2 have "Q (n div 2) kvs" by(rule IH) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1445 | moreover from length_rbtreeify_g[OF ge0 n2] ge0 "2.prems" obtain t k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1446 | where kvs': "rbtreeify_g (n div 2) kvs = (t, (k, v) # kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1447 | by(cases "snd (rbtreeify_g (n div 2) kvs)") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1448 | (auto simp add: snd_def split: prod.split_asm) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1449 | moreover from "2.prems" length_rbtreeify_g[OF ge0 n2] ge0 | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1450 | have n2': "n div 2 \<le> Suc (length kvs')" by(simp add: kvs') | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1451 | moreover from True kvs'[symmetric] refl refl n2' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1452 | have "Q (n div 2) kvs'" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1453 | moreover note geven[unfolded geven_def] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1454 | ultimately have "Q (2 * (n div 2)) kvs" by - | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1455 | thus ?thesis using True | 
| 64243 | 1456 | by(metis minus_mod_eq_div_mult [symmetric] minus_nat.diff_0 mult.commute) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1457 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1458 | case False note ge0 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1459 | moreover from "2.prems" have n2: "n div 2 \<le> length kvs" by simp | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1460 | moreover from False n2 have "P (n div 2) kvs" by(rule IH) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1461 | moreover from length_rbtreeify_f[OF n2] ge0 "2.prems" False obtain t k v kvs' | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1462 | where kvs': "rbtreeify_f (n div 2) kvs = (t, (k, v) # kvs')" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1463 | by(cases "snd (rbtreeify_f (n div 2) kvs)") | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1464 | (auto simp add: snd_def split: prod.split_asm, arith) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1465 | moreover from "2.prems" length_rbtreeify_f[OF n2] ge0 False | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1466 | have n2': "n div 2 \<le> Suc (length kvs')" by(simp add: kvs') arith | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
49810diff
changeset | 1467 | moreover from False kvs'[symmetric] refl refl n2' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1468 | have "Q (n div 2) kvs'" by(rule IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1469 | moreover note godd[unfolded godd_def] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1470 | ultimately have "Q (Suc (2 * (n div 2))) kvs" by - | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1471 | thus ?thesis using False | 
| 64246 | 1472 | by simp (metis One_nat_def Suc_eq_plus1_left le_add_diff_inverse mod_less_eq_dividend minus_mod_eq_mult_div [symmetric]) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1473 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1474 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1475 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1476 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1477 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1478 | lemma inv1_rbtreeify_f: "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1479 | \<Longrightarrow> inv1 (fst (rbtreeify_f n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1480 | and inv1_rbtreeify_g: "n \<le> Suc (length kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1481 | \<Longrightarrow> inv1 (fst (rbtreeify_g n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1482 | by(induct n kvs and n kvs rule: rbtreeify_induct) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1483 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1484 | fun plog2 :: "nat \<Rightarrow> nat" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1485 | where "plog2 n = (if n \<le> 1 then 0 else plog2 (n div 2) + 1)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1486 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1487 | declare plog2.simps [simp del] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1488 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1489 | lemma plog2_simps [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1490 | "plog2 0 = 0" "plog2 (Suc 0) = 0" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1491 | "0 < n \<Longrightarrow> plog2 (2 * n) = 1 + plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1492 | "0 < n \<Longrightarrow> plog2 (Suc (2 * n)) = 1 + plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1493 | by(subst plog2.simps, simp add: Suc_double_half)+ | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1494 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1495 | lemma bheight_rbtreeify_f: "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1496 | \<Longrightarrow> bheight (fst (rbtreeify_f n kvs)) = plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1497 | and bheight_rbtreeify_g: "n \<le> Suc (length kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1498 | \<Longrightarrow> bheight (fst (rbtreeify_g n kvs)) = plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1499 | by(induct n kvs and n kvs rule: rbtreeify_induct) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1500 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1501 | lemma bheight_rbtreeify_f_eq_plog2I: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1502 | "\<lbrakk> rbtreeify_f n kvs = (t, kvs'); n \<le> length kvs \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1503 | \<Longrightarrow> bheight t = plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1504 | using bheight_rbtreeify_f[of n kvs] by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1505 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1506 | lemma bheight_rbtreeify_g_eq_plog2I: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1507 | "\<lbrakk> rbtreeify_g n kvs = (t, kvs'); n \<le> Suc (length kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1508 | \<Longrightarrow> bheight t = plog2 n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1509 | using bheight_rbtreeify_g[of n kvs] by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1510 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1511 | hide_const (open) plog2 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1512 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1513 | lemma inv2_rbtreeify_f: "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1514 | \<Longrightarrow> inv2 (fst (rbtreeify_f n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1515 | and inv2_rbtreeify_g: "n \<le> Suc (length kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1516 | \<Longrightarrow> inv2 (fst (rbtreeify_g n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1517 | by(induct n kvs and n kvs rule: rbtreeify_induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1518 | (auto simp add: bheight_rbtreeify_f bheight_rbtreeify_g | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1519 | intro: bheight_rbtreeify_f_eq_plog2I bheight_rbtreeify_g_eq_plog2I) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1520 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1521 | lemma "n \<le> length kvs \<Longrightarrow> True" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1522 | and color_of_rbtreeify_g: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1523 | "\<lbrakk> n \<le> Suc (length kvs); 0 < n \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1524 | \<Longrightarrow> color_of (fst (rbtreeify_g n kvs)) = B" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1525 | by(induct n kvs and n kvs rule: rbtreeify_induct) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1526 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1527 | lemma entries_rbtreeify_f_append: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1528 | "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1529 | \<Longrightarrow> entries (fst (rbtreeify_f n kvs)) @ snd (rbtreeify_f n kvs) = kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1530 | and entries_rbtreeify_g_append: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1531 | "n \<le> Suc (length kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1532 | \<Longrightarrow> entries (fst (rbtreeify_g n kvs)) @ snd (rbtreeify_g n kvs) = kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1533 | by(induction rule: rbtreeify_induct) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1534 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1535 | lemma length_entries_rbtreeify_f: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1536 | "n \<le> length kvs \<Longrightarrow> length (entries (fst (rbtreeify_f n kvs))) = n" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1537 | and length_entries_rbtreeify_g: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1538 | "n \<le> Suc (length kvs) \<Longrightarrow> length (entries (fst (rbtreeify_g n kvs))) = n - 1" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1539 | by(induct rule: rbtreeify_induct) simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1540 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1541 | lemma rbtreeify_f_conv_drop: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1542 | "n \<le> length kvs \<Longrightarrow> snd (rbtreeify_f n kvs) = drop n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1543 | using entries_rbtreeify_f_append[of n kvs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1544 | by(simp add: append_eq_conv_conj length_entries_rbtreeify_f) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1545 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1546 | lemma rbtreeify_g_conv_drop: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1547 | "n \<le> Suc (length kvs) \<Longrightarrow> snd (rbtreeify_g n kvs) = drop (n - 1) kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1548 | using entries_rbtreeify_g_append[of n kvs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1549 | by(simp add: append_eq_conv_conj length_entries_rbtreeify_g) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1550 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1551 | lemma entries_rbtreeify_f [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1552 | "n \<le> length kvs \<Longrightarrow> entries (fst (rbtreeify_f n kvs)) = take n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1553 | using entries_rbtreeify_f_append[of n kvs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1554 | by(simp add: append_eq_conv_conj length_entries_rbtreeify_f) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1555 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1556 | lemma entries_rbtreeify_g [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1557 | "n \<le> Suc (length kvs) \<Longrightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1558 | entries (fst (rbtreeify_g n kvs)) = take (n - 1) kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1559 | using entries_rbtreeify_g_append[of n kvs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1560 | by(simp add: append_eq_conv_conj length_entries_rbtreeify_g) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1561 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1562 | lemma keys_rbtreeify_f [simp]: "n \<le> length kvs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1563 | \<Longrightarrow> keys (fst (rbtreeify_f n kvs)) = take n (map fst kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1564 | by(simp add: keys_def take_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1565 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1566 | lemma keys_rbtreeify_g [simp]: "n \<le> Suc (length kvs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1567 | \<Longrightarrow> keys (fst (rbtreeify_g n kvs)) = take (n - 1) (map fst kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1568 | by(simp add: keys_def take_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1569 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1570 | lemma rbtreeify_fD: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1571 | "\<lbrakk> rbtreeify_f n kvs = (t, kvs'); n \<le> length kvs \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1572 | \<Longrightarrow> entries t = take n kvs \<and> kvs' = drop n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1573 | using rbtreeify_f_conv_drop[of n kvs] entries_rbtreeify_f[of n kvs] by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1574 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1575 | lemma rbtreeify_gD: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1576 | "\<lbrakk> rbtreeify_g n kvs = (t, kvs'); n \<le> Suc (length kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1577 | \<Longrightarrow> entries t = take (n - 1) kvs \<and> kvs' = drop (n - 1) kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1578 | using rbtreeify_g_conv_drop[of n kvs] entries_rbtreeify_g[of n kvs] by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1579 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1580 | lemma entries_rbtreeify [simp]: "entries (rbtreeify kvs) = kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1581 | by(simp add: rbtreeify_def entries_rbtreeify_g) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1582 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1583 | context linorder begin | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1584 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1585 | lemma rbt_sorted_rbtreeify_f: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1586 | "\<lbrakk> n \<le> length kvs; sorted (map fst kvs); distinct (map fst kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1587 | \<Longrightarrow> rbt_sorted (fst (rbtreeify_f n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1588 | and rbt_sorted_rbtreeify_g: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1589 | "\<lbrakk> n \<le> Suc (length kvs); sorted (map fst kvs); distinct (map fst kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1590 | \<Longrightarrow> rbt_sorted (fst (rbtreeify_g n kvs))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1591 | proof(induction n kvs and n kvs rule: rbtreeify_induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1592 | case (f_even n kvs t k v kvs') | 
| 60500 | 1593 | from rbtreeify_fD[OF \<open>rbtreeify_f n kvs = (t, (k, v) # kvs')\<close> \<open>n \<le> length kvs\<close>] | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1594 | have "entries t = take n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1595 | and kvs': "drop n kvs = (k, v) # kvs'" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1596 | hence unfold: "kvs = take n kvs @ (k, v) # kvs'" by(metis append_take_drop_id) | 
| 60500 | 1597 | from \<open>sorted (map fst kvs)\<close> kvs' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1598 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<le> k) \<and> (\<forall>(x, y) \<in> set kvs'. k \<le> x)" | 
| 68109 | 1599 | by(subst (asm) unfold)(auto simp add: sorted_append) | 
| 60500 | 1600 | moreover from \<open>distinct (map fst kvs)\<close> kvs' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1601 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<noteq> k) \<and> (\<forall>(x, y) \<in> set kvs'. x \<noteq> k)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1602 | by(subst (asm) unfold)(auto intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1603 | ultimately have "(\<forall>(x, y) \<in> set (take n kvs). x < k) \<and> (\<forall>(x, y) \<in> set kvs'. k < x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1604 | by fastforce | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1605 | hence "fst (rbtreeify_f n kvs) |\<guillemotleft> k" "k \<guillemotleft>| fst (rbtreeify_g n kvs')" | 
| 60500 | 1606 | using \<open>n \<le> Suc (length kvs')\<close> \<open>n \<le> length kvs\<close> set_take_subset[of "n - 1" kvs'] | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1607 | by(auto simp add: ord.rbt_greater_prop ord.rbt_less_prop take_map split_def) | 
| 60500 | 1608 | moreover from \<open>sorted (map fst kvs)\<close> \<open>distinct (map fst kvs)\<close> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1609 | have "rbt_sorted (fst (rbtreeify_f n kvs))" by(rule f_even.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1610 | moreover have "sorted (map fst kvs')" "distinct (map fst kvs')" | 
| 60500 | 1611 | using \<open>sorted (map fst kvs)\<close> \<open>distinct (map fst kvs)\<close> | 
| 68109 | 1612 | by(subst (asm) (1 2) unfold, simp add: sorted_append)+ | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1613 | hence "rbt_sorted (fst (rbtreeify_g n kvs'))" by(rule f_even.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1614 | ultimately show ?case | 
| 60500 | 1615 | using \<open>0 < n\<close> \<open>rbtreeify_f n kvs = (t, (k, v) # kvs')\<close> by simp | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1616 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1617 | case (f_odd n kvs t k v kvs') | 
| 60500 | 1618 | from rbtreeify_fD[OF \<open>rbtreeify_f n kvs = (t, (k, v) # kvs')\<close> \<open>n \<le> length kvs\<close>] | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1619 | have "entries t = take n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1620 | and kvs': "drop n kvs = (k, v) # kvs'" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1621 | hence unfold: "kvs = take n kvs @ (k, v) # kvs'" by(metis append_take_drop_id) | 
| 60500 | 1622 | from \<open>sorted (map fst kvs)\<close> kvs' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1623 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<le> k) \<and> (\<forall>(x, y) \<in> set kvs'. k \<le> x)" | 
| 68109 | 1624 | by(subst (asm) unfold)(auto simp add: sorted_append) | 
| 60500 | 1625 | moreover from \<open>distinct (map fst kvs)\<close> kvs' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1626 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<noteq> k) \<and> (\<forall>(x, y) \<in> set kvs'. x \<noteq> k)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1627 | by(subst (asm) unfold)(auto intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1628 | ultimately have "(\<forall>(x, y) \<in> set (take n kvs). x < k) \<and> (\<forall>(x, y) \<in> set kvs'. k < x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1629 | by fastforce | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1630 | hence "fst (rbtreeify_f n kvs) |\<guillemotleft> k" "k \<guillemotleft>| fst (rbtreeify_f n kvs')" | 
| 60500 | 1631 | using \<open>n \<le> length kvs'\<close> \<open>n \<le> length kvs\<close> set_take_subset[of n kvs'] | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1632 | by(auto simp add: rbt_greater_prop rbt_less_prop take_map split_def) | 
| 60500 | 1633 | moreover from \<open>sorted (map fst kvs)\<close> \<open>distinct (map fst kvs)\<close> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1634 | have "rbt_sorted (fst (rbtreeify_f n kvs))" by(rule f_odd.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1635 | moreover have "sorted (map fst kvs')" "distinct (map fst kvs')" | 
| 60500 | 1636 | using \<open>sorted (map fst kvs)\<close> \<open>distinct (map fst kvs)\<close> | 
| 68109 | 1637 | by(subst (asm) (1 2) unfold, simp add: sorted_append)+ | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1638 | hence "rbt_sorted (fst (rbtreeify_f n kvs'))" by(rule f_odd.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1639 | ultimately show ?case | 
| 60500 | 1640 | using \<open>0 < n\<close> \<open>rbtreeify_f n kvs = (t, (k, v) # kvs')\<close> by simp | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1641 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1642 | case (g_even n kvs t k v kvs') | 
| 60500 | 1643 | from rbtreeify_gD[OF \<open>rbtreeify_g n kvs = (t, (k, v) # kvs')\<close> \<open>n \<le> Suc (length kvs)\<close>] | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1644 | have t: "entries t = take (n - 1) kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1645 | and kvs': "drop (n - 1) kvs = (k, v) # kvs'" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1646 | hence unfold: "kvs = take (n - 1) kvs @ (k, v) # kvs'" by(metis append_take_drop_id) | 
| 60500 | 1647 | from \<open>sorted (map fst kvs)\<close> kvs' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1648 | have "(\<forall>(x, y) \<in> set (take (n - 1) kvs). x \<le> k) \<and> (\<forall>(x, y) \<in> set kvs'. k \<le> x)" | 
| 68109 | 1649 | by(subst (asm) unfold)(auto simp add: sorted_append) | 
| 60500 | 1650 | moreover from \<open>distinct (map fst kvs)\<close> kvs' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1651 | have "(\<forall>(x, y) \<in> set (take (n - 1) kvs). x \<noteq> k) \<and> (\<forall>(x, y) \<in> set kvs'. x \<noteq> k)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1652 | by(subst (asm) unfold)(auto intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1653 | ultimately have "(\<forall>(x, y) \<in> set (take (n - 1) kvs). x < k) \<and> (\<forall>(x, y) \<in> set kvs'. k < x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1654 | by fastforce | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1655 | hence "fst (rbtreeify_g n kvs) |\<guillemotleft> k" "k \<guillemotleft>| fst (rbtreeify_g n kvs')" | 
| 60500 | 1656 | using \<open>n \<le> Suc (length kvs')\<close> \<open>n \<le> Suc (length kvs)\<close> set_take_subset[of "n - 1" kvs'] | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1657 | by(auto simp add: rbt_greater_prop rbt_less_prop take_map split_def) | 
| 60500 | 1658 | moreover from \<open>sorted (map fst kvs)\<close> \<open>distinct (map fst kvs)\<close> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1659 | have "rbt_sorted (fst (rbtreeify_g n kvs))" by(rule g_even.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1660 | moreover have "sorted (map fst kvs')" "distinct (map fst kvs')" | 
| 60500 | 1661 | using \<open>sorted (map fst kvs)\<close> \<open>distinct (map fst kvs)\<close> | 
| 68109 | 1662 | by(subst (asm) (1 2) unfold, simp add: sorted_append)+ | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1663 | hence "rbt_sorted (fst (rbtreeify_g n kvs'))" by(rule g_even.IH) | 
| 60500 | 1664 | ultimately show ?case using \<open>0 < n\<close> \<open>rbtreeify_g n kvs = (t, (k, v) # kvs')\<close> by simp | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1665 | next | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1666 | case (g_odd n kvs t k v kvs') | 
| 60500 | 1667 | from rbtreeify_fD[OF \<open>rbtreeify_f n kvs = (t, (k, v) # kvs')\<close> \<open>n \<le> length kvs\<close>] | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1668 | have "entries t = take n kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1669 | and kvs': "drop n kvs = (k, v) # kvs'" by simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1670 | hence unfold: "kvs = take n kvs @ (k, v) # kvs'" by(metis append_take_drop_id) | 
| 60500 | 1671 | from \<open>sorted (map fst kvs)\<close> kvs' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1672 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<le> k) \<and> (\<forall>(x, y) \<in> set kvs'. k \<le> x)" | 
| 68109 | 1673 | by(subst (asm) unfold)(auto simp add: sorted_append) | 
| 60500 | 1674 | moreover from \<open>distinct (map fst kvs)\<close> kvs' | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1675 | have "(\<forall>(x, y) \<in> set (take n kvs). x \<noteq> k) \<and> (\<forall>(x, y) \<in> set kvs'. x \<noteq> k)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1676 | by(subst (asm) unfold)(auto intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1677 | ultimately have "(\<forall>(x, y) \<in> set (take n kvs). x < k) \<and> (\<forall>(x, y) \<in> set kvs'. k < x)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1678 | by fastforce | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1679 | hence "fst (rbtreeify_f n kvs) |\<guillemotleft> k" "k \<guillemotleft>| fst (rbtreeify_g n kvs')" | 
| 60500 | 1680 | using \<open>n \<le> Suc (length kvs')\<close> \<open>n \<le> length kvs\<close> set_take_subset[of "n - 1" kvs'] | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1681 | by(auto simp add: rbt_greater_prop rbt_less_prop take_map split_def) | 
| 60500 | 1682 | moreover from \<open>sorted (map fst kvs)\<close> \<open>distinct (map fst kvs)\<close> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1683 | have "rbt_sorted (fst (rbtreeify_f n kvs))" by(rule g_odd.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1684 | moreover have "sorted (map fst kvs')" "distinct (map fst kvs')" | 
| 60500 | 1685 | using \<open>sorted (map fst kvs)\<close> \<open>distinct (map fst kvs)\<close> | 
| 68109 | 1686 | by(subst (asm) (1 2) unfold, simp add: sorted_append)+ | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1687 | hence "rbt_sorted (fst (rbtreeify_g n kvs'))" by(rule g_odd.IH) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1688 | ultimately show ?case | 
| 60500 | 1689 | using \<open>0 < n\<close> \<open>rbtreeify_f n kvs = (t, (k, v) # kvs')\<close> by simp | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1690 | qed simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1691 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1692 | lemma rbt_sorted_rbtreeify: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1693 | "\<lbrakk> sorted (map fst kvs); distinct (map fst kvs) \<rbrakk> \<Longrightarrow> rbt_sorted (rbtreeify kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1694 | by(simp add: rbtreeify_def rbt_sorted_rbtreeify_g) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1695 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1696 | lemma is_rbt_rbtreeify: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1697 | "\<lbrakk> sorted (map fst kvs); distinct (map fst kvs) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1698 | \<Longrightarrow> is_rbt (rbtreeify kvs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1699 | by(simp add: is_rbt_def rbtreeify_def inv1_rbtreeify_g inv2_rbtreeify_g rbt_sorted_rbtreeify_g color_of_rbtreeify_g) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1700 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1701 | lemma rbt_lookup_rbtreeify: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1702 | "\<lbrakk> sorted (map fst kvs); distinct (map fst kvs) \<rbrakk> \<Longrightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1703 | rbt_lookup (rbtreeify kvs) = map_of kvs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1704 | by(simp add: map_of_entries[symmetric] rbt_sorted_rbtreeify) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1705 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1706 | end | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1707 | |
| 60500 | 1708 | text \<open> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1709 | Functions to compare the height of two rbt trees, taken from | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1710 | Andrew W. Appel, Efficient Verified Red-Black Trees (September 2011) | 
| 60500 | 1711 | \<close> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1712 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1713 | fun skip_red :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1714 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1715 | "skip_red (Branch color.R l k v r) = l" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1716 | | "skip_red t = t" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1717 | |
| 49807 | 1718 | definition skip_black :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1719 | where | 
| 49807 | 1720 | "skip_black t = (let t' = skip_red t in case t' of Branch color.B l k v r \<Rightarrow> l | _ \<Rightarrow> t')" | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1721 | |
| 58310 | 1722 | datatype compare = LT | GT | EQ | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1723 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1724 | partial_function (tailrec) compare_height :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> compare"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1725 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1726 | "compare_height sx s t tx = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1727 | (case (skip_red sx, skip_red s, skip_red t, skip_red tx) of | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1728 | (Branch _ sx' _ _ _, Branch _ s' _ _ _, Branch _ t' _ _ _, Branch _ tx' _ _ _) \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1729 | compare_height (skip_black sx') s' t' (skip_black tx') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1730 | | (_, rbt.Empty, _, Branch _ _ _ _ _) \<Rightarrow> LT | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1731 | | (Branch _ _ _ _ _, _, rbt.Empty, _) \<Rightarrow> GT | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1732 | | (Branch _ sx' _ _ _, Branch _ s' _ _ _, Branch _ t' _ _ _, rbt.Empty) \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1733 | compare_height (skip_black sx') s' t' rbt.Empty | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1734 | | (rbt.Empty, Branch _ s' _ _ _, Branch _ t' _ _ _, Branch _ tx' _ _ _) \<Rightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1735 | compare_height rbt.Empty s' t' (skip_black tx') | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1736 | | _ \<Rightarrow> EQ)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1737 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1738 | declare compare_height.simps [code] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1739 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1740 | hide_type (open) compare | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1741 | hide_const (open) | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55414diff
changeset | 1742 | compare_height skip_black skip_red LT GT EQ case_compare rec_compare | 
| 58257 | 1743 | Abs_compare Rep_compare | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1744 | hide_fact (open) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1745 | Abs_compare_cases Abs_compare_induct Abs_compare_inject Abs_compare_inverse | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1746 | Rep_compare Rep_compare_cases Rep_compare_induct Rep_compare_inject Rep_compare_inverse | 
| 55642 
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
 blanchet parents: 
55466diff
changeset | 1747 | compare.simps compare.exhaust compare.induct compare.rec compare.simps | 
| 57983 
6edc3529bb4e
reordered some (co)datatype property names for more consistency
 blanchet parents: 
57512diff
changeset | 1748 | compare.size compare.case_cong compare.case_cong_weak compare.case | 
| 62093 | 1749 | compare.nchotomy compare.split compare.split_asm compare.eq.refl compare.eq.simps | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1750 | equal_compare_def | 
| 61121 
efe8b18306b7
do not expose low-level "_def" facts of 'function' definitions, to avoid potential confusion with the situation of plain 'definition';
 wenzelm parents: 
61076diff
changeset | 1751 | skip_red.simps skip_red.cases skip_red.induct | 
| 49807 | 1752 | skip_black_def | 
| 61121 
efe8b18306b7
do not expose low-level "_def" facts of 'function' definitions, to avoid potential confusion with the situation of plain 'definition';
 wenzelm parents: 
61076diff
changeset | 1753 | compare_height.simps | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1754 | |
| 60500 | 1755 | subsection \<open>union and intersection of sorted associative lists\<close> | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1756 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1757 | context ord begin | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1758 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1759 | function sunion_with :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'b) list" 
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1760 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1761 | "sunion_with f ((k, v) # as) ((k', v') # bs) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1762 | (if k > k' then (k', v') # sunion_with f ((k, v) # as) bs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1763 | else if k < k' then (k, v) # sunion_with f as ((k', v') # bs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1764 | else (k, f k v v') # sunion_with f as bs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1765 | | "sunion_with f [] bs = bs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1766 | | "sunion_with f as [] = as" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1767 | by pat_completeness auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1768 | termination by lexicographic_order | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1769 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1770 | function sinter_with :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'b) list"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1771 | where | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1772 | "sinter_with f ((k, v) # as) ((k', v') # bs) = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1773 | (if k > k' then sinter_with f ((k, v) # as) bs | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1774 | else if k < k' then sinter_with f as ((k', v') # bs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1775 | else (k, f k v v') # sinter_with f as bs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1776 | | "sinter_with f [] _ = []" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1777 | | "sinter_with f _ [] = []" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1778 | by pat_completeness auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1779 | termination by lexicographic_order | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1780 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1781 | end | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1782 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1783 | declare ord.sunion_with.simps [code] ord.sinter_with.simps[code] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1784 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1785 | context linorder begin | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1786 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1787 | lemma set_fst_sunion_with: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1788 | "set (map fst (sunion_with f xs ys)) = set (map fst xs) \<union> set (map fst ys)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1789 | by(induct f xs ys rule: sunion_with.induct) auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1790 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1791 | lemma sorted_sunion_with [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1792 | "\<lbrakk> sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1793 | \<Longrightarrow> sorted (map fst (sunion_with f xs ys))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1794 | by(induct f xs ys rule: sunion_with.induct) | 
| 68109 | 1795 | (auto simp add: set_fst_sunion_with simp del: set_map) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1796 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1797 | lemma distinct_sunion_with [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1798 | "\<lbrakk> distinct (map fst xs); distinct (map fst ys); sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1799 | \<Longrightarrow> distinct (map fst (sunion_with f xs ys))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1800 | proof(induct f xs ys rule: sunion_with.induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1801 | case (1 f k v xs k' v' ys) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1802 | have "\<lbrakk> \<not> k < k'; \<not> k' < k \<rbrakk> \<Longrightarrow> k = k'" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1803 | thus ?case using "1" | 
| 68109 | 1804 | by(auto simp add: set_fst_sunion_with simp del: set_map) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1805 | qed simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1806 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1807 | lemma map_of_sunion_with: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1808 | "\<lbrakk> sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1809 | \<Longrightarrow> map_of (sunion_with f xs ys) k = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1810 | (case map_of xs k of None \<Rightarrow> map_of ys k | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1811 | | Some v \<Rightarrow> case map_of ys k of None \<Rightarrow> Some v | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1812 | | Some w \<Rightarrow> Some (f k v w))" | 
| 68109 | 1813 | by(induct f xs ys rule: sunion_with.induct)(auto split: option.split dest: map_of_SomeD bspec) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1814 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1815 | lemma set_fst_sinter_with [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1816 | "\<lbrakk> sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1817 | \<Longrightarrow> set (map fst (sinter_with f xs ys)) = set (map fst xs) \<inter> set (map fst ys)" | 
| 68109 | 1818 | by(induct f xs ys rule: sinter_with.induct)(auto simp del: set_map) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1819 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1820 | lemma set_fst_sinter_with_subset1: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1821 | "set (map fst (sinter_with f xs ys)) \<subseteq> set (map fst xs)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1822 | by(induct f xs ys rule: sinter_with.induct) auto | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1823 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1824 | lemma set_fst_sinter_with_subset2: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1825 | "set (map fst (sinter_with f xs ys)) \<subseteq> set (map fst ys)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1826 | by(induct f xs ys rule: sinter_with.induct)(auto simp del: set_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1827 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1828 | lemma sorted_sinter_with [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1829 | "\<lbrakk> sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1830 | \<Longrightarrow> sorted (map fst (sinter_with f xs ys))" | 
| 68109 | 1831 | by(induct f xs ys rule: sinter_with.induct)(auto simp del: set_map) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1832 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1833 | lemma distinct_sinter_with [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1834 | "\<lbrakk> distinct (map fst xs); distinct (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1835 | \<Longrightarrow> distinct (map fst (sinter_with f xs ys))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1836 | proof(induct f xs ys rule: sinter_with.induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1837 | case (1 f k v as k' v' bs) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1838 | have "\<lbrakk> \<not> k < k'; \<not> k' < k \<rbrakk> \<Longrightarrow> k = k'" by simp | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1839 | thus ?case using "1" set_fst_sinter_with_subset1[of f as bs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1840 | set_fst_sinter_with_subset2[of f as bs] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1841 | by(auto simp del: set_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1842 | qed simp_all | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1843 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1844 | lemma map_of_sinter_with: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1845 | "\<lbrakk> sorted (map fst xs); sorted (map fst ys) \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1846 | \<Longrightarrow> map_of (sinter_with f xs ys) k = | 
| 55466 | 1847 | (case map_of xs k of None \<Rightarrow> None | Some v \<Rightarrow> map_option (f k v) (map_of ys k))" | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1848 | apply(induct f xs ys rule: sinter_with.induct) | 
| 68109 | 1849 | apply(auto simp add: map_option_case split: option.splits dest: map_of_SomeD bspec) | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1850 | done | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1851 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1852 | end | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1853 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1854 | lemma distinct_map_of_rev: "distinct (map fst xs) \<Longrightarrow> map_of (rev xs) = map_of xs" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1855 | by(induct xs)(auto 4 3 simp add: map_add_def intro!: ext split: option.split intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1856 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1857 | lemma map_map_filter: | 
| 55466 | 1858 | "map f (List.map_filter g xs) = List.map_filter (map_option f \<circ> g) xs" | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1859 | by(auto simp add: List.map_filter_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1860 | |
| 55466 | 1861 | lemma map_filter_map_option_const: | 
| 1862 | "List.map_filter (\<lambda>x. map_option (\<lambda>y. f x) (g (f x))) xs = filter (\<lambda>x. g x \<noteq> None) (map f xs)" | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1863 | by(auto simp add: map_filter_def filter_map o_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1864 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1865 | lemma set_map_filter: "set (List.map_filter P xs) = the ` (P ` set xs - {None})"
 | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1866 | by(auto simp add: List.map_filter_def intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 1867 | |
| 73211 | 1868 | (* Split and Join *) | 
| 1869 | ||
| 1870 | definition is_rbt_empty :: "('a, 'b) rbt \<Rightarrow> bool" where
 | |
| 1871 | "is_rbt_empty t \<longleftrightarrow> (case t of RBT_Impl.Empty \<Rightarrow> True | _ \<Rightarrow> False)" | |
| 1872 | ||
| 1873 | lemma is_rbt_empty_prop[simp]: "is_rbt_empty t \<longleftrightarrow> t = RBT_Impl.Empty" | |
| 1874 | by (auto simp: is_rbt_empty_def split: RBT_Impl.rbt.splits) | |
| 1875 | ||
| 1876 | definition small_rbt :: "('a, 'b) rbt \<Rightarrow> bool" where
 | |
| 1877 | "small_rbt t \<longleftrightarrow> bheight t < 4" | |
| 1878 | ||
| 1879 | definition flip_rbt :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool" where
 | |
| 1880 | "flip_rbt t1 t2 \<longleftrightarrow> bheight t2 < bheight t1" | |
| 1881 | ||
| 73212 
87e3c180044a
hide the internal abbreviations MR and MB
 Andreas Lochbihler <mail@andreas-lochbihler.de> parents: 
73211diff
changeset | 1882 | abbreviation (input) MR where "MR l a b r \<equiv> Branch RBT_Impl.R l a b r" | 
| 
87e3c180044a
hide the internal abbreviations MR and MB
 Andreas Lochbihler <mail@andreas-lochbihler.de> parents: 
73211diff
changeset | 1883 | abbreviation (input) MB where "MB l a b r \<equiv> Branch RBT_Impl.B l a b r" | 
| 73211 | 1884 | |
| 1885 | fun rbt_baliL :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 1886 | "rbt_baliL (MR (MR t1 a b t2) a' b' t3) a'' b'' t4 = MR (MB t1 a b t2) a' b' (MB t3 a'' b'' t4)" | |
| 1887 | | "rbt_baliL (MR t1 a b (MR t2 a' b' t3)) a'' b'' t4 = MR (MB t1 a b t2) a' b' (MB t3 a'' b'' t4)" | |
| 1888 | | "rbt_baliL t1 a b t2 = MB t1 a b t2" | |
| 1889 | ||
| 1890 | fun rbt_baliR :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 1891 | "rbt_baliR t1 a b (MR t2 a' b' (MR t3 a'' b'' t4)) = MR (MB t1 a b t2) a' b' (MB t3 a'' b'' t4)" | |
| 1892 | | "rbt_baliR t1 a b (MR (MR t2 a' b' t3) a'' b'' t4) = MR (MB t1 a b t2) a' b' (MB t3 a'' b'' t4)" | |
| 1893 | | "rbt_baliR t1 a b t2 = MB t1 a b t2" | |
| 1894 | ||
| 1895 | fun rbt_baldL :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 1896 | "rbt_baldL (MR t1 a b t2) a' b' t3 = MR (MB t1 a b t2) a' b' t3" | |
| 1897 | | "rbt_baldL t1 a b (MB t2 a' b' t3) = rbt_baliR t1 a b (MR t2 a' b' t3)" | |
| 1898 | | "rbt_baldL t1 a b (MR (MB t2 a' b' t3) a'' b'' t4) = | |
| 1899 | MR (MB t1 a b t2) a' b' (rbt_baliR t3 a'' b'' (paint RBT_Impl.R t4))" | |
| 1900 | | "rbt_baldL t1 a b t2 = MR t1 a b t2" | |
| 1901 | ||
| 1902 | fun rbt_baldR :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 1903 | "rbt_baldR t1 a b (MR t2 a' b' t3) = MR t1 a b (MB t2 a' b' t3)" | |
| 1904 | | "rbt_baldR (MB t1 a b t2) a' b' t3 = rbt_baliL (MR t1 a b t2) a' b' t3" | |
| 1905 | | "rbt_baldR (MR t1 a b (MB t2 a' b' t3)) a'' b'' t4 = | |
| 1906 | MR (rbt_baliL (paint RBT_Impl.R t1) a b t2) a' b' (MB t3 a'' b'' t4)" | |
| 1907 | | "rbt_baldR t1 a b t2 = MR t1 a b t2" | |
| 1908 | ||
| 1909 | fun rbt_app :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 1910 | "rbt_app RBT_Impl.Empty t = t" | |
| 1911 | | "rbt_app t RBT_Impl.Empty = t" | |
| 1912 | | "rbt_app (MR t1 a b t2) (MR t3 a'' b'' t4) = (case rbt_app t2 t3 of | |
| 1913 | MR u2 a' b' u3 \<Rightarrow> (MR (MR t1 a b u2) a' b' (MR u3 a'' b'' t4)) | |
| 1914 | | t23 \<Rightarrow> MR t1 a b (MR t23 a'' b'' t4))" | |
| 1915 | | "rbt_app (MB t1 a b t2) (MB t3 a'' b'' t4) = (case rbt_app t2 t3 of | |
| 1916 | MR u2 a' b' u3 \<Rightarrow> MR (MB t1 a b u2) a' b' (MB u3 a'' b'' t4) | |
| 1917 | | t23 \<Rightarrow> rbt_baldL t1 a b (MB t23 a'' b'' t4))" | |
| 1918 | | "rbt_app t1 (MR t2 a b t3) = MR (rbt_app t1 t2) a b t3" | |
| 1919 | | "rbt_app (MR t1 a b t2) t3 = MR t1 a b (rbt_app t2 t3)" | |
| 1920 | ||
| 1921 | fun rbt_joinL :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 1922 | "rbt_joinL l a b r = (if bheight l \<ge> bheight r then MR l a b r | |
| 1923 | else case r of MB l' a' b' r' \<Rightarrow> rbt_baliL (rbt_joinL l a b l') a' b' r' | |
| 1924 | | MR l' a' b' r' \<Rightarrow> MR (rbt_joinL l a b l') a' b' r')" | |
| 1925 | ||
| 1926 | declare rbt_joinL.simps[simp del] | |
| 1927 | ||
| 1928 | fun rbt_joinR :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 1929 | "rbt_joinR l a b r = (if bheight l \<le> bheight r then MR l a b r | |
| 1930 | else case l of MB l' a' b' r' \<Rightarrow> rbt_baliR l' a' b' (rbt_joinR r' a b r) | |
| 1931 | | MR l' a' b' r' \<Rightarrow> MR l' a' b' (rbt_joinR r' a b r))" | |
| 1932 | ||
| 1933 | declare rbt_joinR.simps[simp del] | |
| 1934 | ||
| 1935 | definition rbt_join :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 1936 | "rbt_join l a b r = | |
| 1937 | (let bhl = bheight l; bhr = bheight r | |
| 1938 | in if bhl > bhr | |
| 1939 | then paint RBT_Impl.B (rbt_joinR l a b r) | |
| 1940 | else if bhl < bhr | |
| 1941 | then paint RBT_Impl.B (rbt_joinL l a b r) | |
| 1942 | else MB l a b r)" | |
| 1943 | ||
| 1944 | lemma size_paint[simp]: "size (paint c t) = size t" | |
| 1945 | by (cases t) auto | |
| 1946 | ||
| 1947 | lemma size_baliL[simp]: "size (rbt_baliL t1 a b t2) = Suc (size t1 + size t2)" | |
| 1948 | by (induction t1 a b t2 rule: rbt_baliL.induct) auto | |
| 1949 | ||
| 1950 | lemma size_baliR[simp]: "size (rbt_baliR t1 a b t2) = Suc (size t1 + size t2)" | |
| 1951 | by (induction t1 a b t2 rule: rbt_baliR.induct) auto | |
| 1952 | ||
| 1953 | lemma size_baldL[simp]: "size (rbt_baldL t1 a b t2) = Suc (size t1 + size t2)" | |
| 1954 | by (induction t1 a b t2 rule: rbt_baldL.induct) auto | |
| 1955 | ||
| 1956 | lemma size_baldR[simp]: "size (rbt_baldR t1 a b t2) = Suc (size t1 + size t2)" | |
| 1957 | by (induction t1 a b t2 rule: rbt_baldR.induct) auto | |
| 1958 | ||
| 1959 | lemma size_rbt_app[simp]: "size (rbt_app t1 t2) = size t1 + size t2" | |
| 1960 | by (induction t1 t2 rule: rbt_app.induct) | |
| 1961 | (auto split: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 1962 | ||
| 1963 | lemma size_rbt_joinL[simp]: "size (rbt_joinL t1 a b t2) = Suc (size t1 + size t2)" | |
| 1964 | by (induction t1 a b t2 rule: rbt_joinL.induct) | |
| 1965 | (auto simp: rbt_joinL.simps split: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 1966 | ||
| 1967 | lemma size_rbt_joinR[simp]: "size (rbt_joinR t1 a b t2) = Suc (size t1 + size t2)" | |
| 1968 | by (induction t1 a b t2 rule: rbt_joinR.induct) | |
| 1969 | (auto simp: rbt_joinR.simps split: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 1970 | ||
| 1971 | lemma size_rbt_join[simp]: "size (rbt_join t1 a b t2) = Suc (size t1 + size t2)" | |
| 1972 | by (auto simp: rbt_join_def Let_def) | |
| 1973 | ||
| 1974 | definition "inv_12 t \<longleftrightarrow> inv1 t \<and> inv2 t" | |
| 1975 | ||
| 1976 | lemma rbt_Node: "inv_12 (RBT_Impl.Branch c l a b r) \<Longrightarrow> inv_12 l \<and> inv_12 r" | |
| 1977 | by (auto simp: inv_12_def) | |
| 1978 | ||
| 1979 | lemma paint2: "paint c2 (paint c1 t) = paint c2 t" | |
| 1980 | by (cases t) auto | |
| 1981 | ||
| 1982 | lemma inv1_rbt_baliL: "inv1l l \<Longrightarrow> inv1 r \<Longrightarrow> inv1 (rbt_baliL l a b r)" | |
| 1983 | by (induct l a b r rule: rbt_baliL.induct) auto | |
| 1984 | ||
| 1985 | lemma inv1_rbt_baliR: "inv1 l \<Longrightarrow> inv1l r \<Longrightarrow> inv1 (rbt_baliR l a b r)" | |
| 1986 | by (induct l a b r rule: rbt_baliR.induct) auto | |
| 1987 | ||
| 1988 | lemma rbt_bheight_rbt_baliL: "bheight l = bheight r \<Longrightarrow> bheight (rbt_baliL l a b r) = Suc (bheight l)" | |
| 1989 | by (induct l a b r rule: rbt_baliL.induct) auto | |
| 1990 | ||
| 1991 | lemma rbt_bheight_rbt_baliR: "bheight l = bheight r \<Longrightarrow> bheight (rbt_baliR l a b r) = Suc (bheight l)" | |
| 1992 | by (induct l a b r rule: rbt_baliR.induct) auto | |
| 1993 | ||
| 1994 | lemma inv2_rbt_baliL: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l = bheight r \<Longrightarrow> inv2 (rbt_baliL l a b r)" | |
| 1995 | by (induct l a b r rule: rbt_baliL.induct) auto | |
| 1996 | ||
| 1997 | lemma inv2_rbt_baliR: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l = bheight r \<Longrightarrow> inv2 (rbt_baliR l a b r)" | |
| 1998 | by (induct l a b r rule: rbt_baliR.induct) auto | |
| 1999 | ||
| 2000 | lemma inv_rbt_baliR: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> inv1 l \<Longrightarrow> inv1l r \<Longrightarrow> bheight l = bheight r \<Longrightarrow> | |
| 2001 | inv1 (rbt_baliR l a b r) \<and> inv2 (rbt_baliR l a b r) \<and> bheight (rbt_baliR l a b r) = Suc (bheight l)" | |
| 2002 | by (induct l a b r rule: rbt_baliR.induct) auto | |
| 2003 | ||
| 2004 | lemma inv_rbt_baliL: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> inv1l l \<Longrightarrow> inv1 r \<Longrightarrow> bheight l = bheight r \<Longrightarrow> | |
| 2005 | inv1 (rbt_baliL l a b r) \<and> inv2 (rbt_baliL l a b r) \<and> bheight (rbt_baliL l a b r) = Suc (bheight l)" | |
| 2006 | by (induct l a b r rule: rbt_baliL.induct) auto | |
| 2007 | ||
| 2008 | lemma inv2_rbt_baldL_inv1: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l + 1 = bheight r \<Longrightarrow> inv1 r \<Longrightarrow> | |
| 2009 | inv2 (rbt_baldL l a b r) \<and> bheight (rbt_baldL l a b r) = bheight r" | |
| 2010 | by (induct l a b r rule: rbt_baldL.induct) (auto simp: inv2_rbt_baliR rbt_bheight_rbt_baliR) | |
| 2011 | ||
| 2012 | lemma inv2_rbt_baldL_B: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l + 1 = bheight r \<Longrightarrow> color_of r = RBT_Impl.B \<Longrightarrow> | |
| 2013 | inv2 (rbt_baldL l a b r) \<and> bheight (rbt_baldL l a b r) = bheight r" | |
| 2014 | by (induct l a b r rule: rbt_baldL.induct) (auto simp add: inv2_rbt_baliR rbt_bheight_rbt_baliR) | |
| 2015 | ||
| 2016 | lemma inv1_rbt_baldL: "inv1l l \<Longrightarrow> inv1 r \<Longrightarrow> color_of r = RBT_Impl.B \<Longrightarrow> inv1 (rbt_baldL l a b r)" | |
| 2017 | by (induct l a b r rule: rbt_baldL.induct) (simp_all add: inv1_rbt_baliR) | |
| 2018 | ||
| 2019 | lemma inv1lI: "inv1 t \<Longrightarrow> inv1l t" | |
| 2020 | by (cases t) auto | |
| 2021 | ||
| 2022 | lemma neq_Black[simp]: "(c \<noteq> RBT_Impl.B) = (c = RBT_Impl.R)" | |
| 2023 | by (cases c) auto | |
| 2024 | ||
| 2025 | lemma inv1l_rbt_baldL: "inv1l l \<Longrightarrow> inv1 r \<Longrightarrow> inv1l (rbt_baldL l a b r)" | |
| 2026 | by (induct l a b r rule: rbt_baldL.induct) (auto simp: inv1_rbt_baliR paint2) | |
| 2027 | ||
| 2028 | lemma inv2_rbt_baldR_inv1: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l = bheight r + 1 \<Longrightarrow> inv1 l \<Longrightarrow> | |
| 2029 | inv2 (rbt_baldR l a b r) \<and> bheight (rbt_baldR l a b r) = bheight l" | |
| 2030 | by (induct l a b r rule: rbt_baldR.induct) (auto simp: inv2_rbt_baliL rbt_bheight_rbt_baliL) | |
| 2031 | ||
| 2032 | lemma inv1_rbt_baldR: "inv1 l \<Longrightarrow> inv1l r \<Longrightarrow> color_of l = RBT_Impl.B \<Longrightarrow> inv1 (rbt_baldR l a b r)" | |
| 2033 | by (induct l a b r rule: rbt_baldR.induct) (simp_all add: inv1_rbt_baliL) | |
| 2034 | ||
| 2035 | lemma inv1l_rbt_baldR: "inv1 l \<Longrightarrow> inv1l r \<Longrightarrow>inv1l (rbt_baldR l a b r)" | |
| 2036 | by (induct l a b r rule: rbt_baldR.induct) (auto simp: inv1_rbt_baliL paint2) | |
| 2037 | ||
| 2038 | lemma inv2_rbt_app: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l = bheight r \<Longrightarrow> | |
| 2039 | inv2 (rbt_app l r) \<and> bheight (rbt_app l r) = bheight l" | |
| 2040 | by (induct l r rule: rbt_app.induct) | |
| 2041 | (auto simp: inv2_rbt_baldL_B split: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2042 | ||
| 2043 | lemma inv1_rbt_app: "inv1 l \<Longrightarrow> inv1 r \<Longrightarrow> (color_of l = RBT_Impl.B \<and> | |
| 2044 | color_of r = RBT_Impl.B \<longrightarrow> inv1 (rbt_app l r)) \<and> inv1l (rbt_app l r)" | |
| 2045 | by (induct l r rule: rbt_app.induct) | |
| 2046 | (auto simp: inv1_rbt_baldL split: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2047 | ||
| 2048 | lemma inv_rbt_baldL: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l + 1 = bheight r \<Longrightarrow> inv1l l \<Longrightarrow> inv1 r \<Longrightarrow> | |
| 2049 | inv2 (rbt_baldL l a b r) \<and> bheight (rbt_baldL l a b r) = bheight r \<and> | |
| 2050 | inv1l (rbt_baldL l a b r) \<and> (color_of r = RBT_Impl.B \<longrightarrow> inv1 (rbt_baldL l a b r))" | |
| 2051 | by (induct l a b r rule: rbt_baldL.induct) (auto simp: inv_rbt_baliR rbt_bheight_rbt_baliR paint2) | |
| 2052 | ||
| 2053 | lemma inv_rbt_baldR: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l = bheight r + 1 \<Longrightarrow> inv1 l \<Longrightarrow> inv1l r \<Longrightarrow> | |
| 2054 | inv2 (rbt_baldR l a b r) \<and> bheight (rbt_baldR l a b r) = bheight l \<and> | |
| 2055 | inv1l (rbt_baldR l a b r) \<and> (color_of l = RBT_Impl.B \<longrightarrow> inv1 (rbt_baldR l a b r))" | |
| 2056 | by (induct l a b r rule: rbt_baldR.induct) (auto simp: inv_rbt_baliL rbt_bheight_rbt_baliL paint2) | |
| 2057 | ||
| 2058 | lemma inv_rbt_app: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l = bheight r \<Longrightarrow> inv1 l \<Longrightarrow> inv1 r \<Longrightarrow> | |
| 2059 | inv2 (rbt_app l r) \<and> bheight (rbt_app l r) = bheight l \<and> | |
| 2060 | inv1l (rbt_app l r) \<and> (color_of l = RBT_Impl.B \<and> color_of r = RBT_Impl.B \<longrightarrow> inv1 (rbt_app l r))" | |
| 2061 | by (induct l r rule: rbt_app.induct) | |
| 2062 | (auto simp: inv2_rbt_baldL_B inv_rbt_baldL split: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2063 | ||
| 2064 | lemma inv1l_rbt_joinL: "inv1 l \<Longrightarrow> inv1 r \<Longrightarrow> bheight l \<le> bheight r \<Longrightarrow> | |
| 2065 | inv1l (rbt_joinL l a b r) \<and> | |
| 2066 | (bheight l \<noteq> bheight r \<and> color_of r = RBT_Impl.B \<longrightarrow> inv1 (rbt_joinL l a b r))" | |
| 2067 | proof (induct l a b r rule: rbt_joinL.induct) | |
| 2068 | case (1 l a b r) | |
| 2069 | then show ?case | |
| 2070 | by (auto simp: inv1_rbt_baliL rbt_joinL.simps[of l a b r] | |
| 2071 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2072 | qed | |
| 2073 | ||
| 2074 | lemma inv1l_rbt_joinR: "inv1 l \<Longrightarrow> inv2 l \<Longrightarrow> inv1 r \<Longrightarrow> inv2 r \<Longrightarrow> bheight l \<ge> bheight r \<Longrightarrow> | |
| 2075 | inv1l (rbt_joinR l a b r) \<and> | |
| 2076 | (bheight l \<noteq> bheight r \<and> color_of l = RBT_Impl.B \<longrightarrow> inv1 (rbt_joinR l a b r))" | |
| 2077 | proof (induct l a b r rule: rbt_joinR.induct) | |
| 2078 | case (1 l a b r) | |
| 2079 | then show ?case | |
| 2080 | by (fastforce simp: inv1_rbt_baliR rbt_joinR.simps[of l a b r] | |
| 2081 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2082 | qed | |
| 2083 | ||
| 2084 | lemma bheight_rbt_joinL: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l \<le> bheight r \<Longrightarrow> | |
| 2085 | bheight (rbt_joinL l a b r) = bheight r" | |
| 2086 | proof (induct l a b r rule: rbt_joinL.induct) | |
| 2087 | case (1 l a b r) | |
| 2088 | then show ?case | |
| 2089 | by (auto simp: rbt_bheight_rbt_baliL rbt_joinL.simps[of l a b r] | |
| 2090 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2091 | qed | |
| 2092 | ||
| 2093 | lemma inv2_rbt_joinL: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l \<le> bheight r \<Longrightarrow> inv2 (rbt_joinL l a b r)" | |
| 2094 | proof (induct l a b r rule: rbt_joinL.induct) | |
| 2095 | case (1 l a b r) | |
| 2096 | then show ?case | |
| 2097 | by (auto simp: inv2_rbt_baliL bheight_rbt_joinL rbt_joinL.simps[of l a b r] | |
| 2098 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2099 | qed | |
| 2100 | ||
| 2101 | lemma bheight_rbt_joinR: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l \<ge> bheight r \<Longrightarrow> | |
| 2102 | bheight (rbt_joinR l a b r) = bheight l" | |
| 2103 | proof (induct l a b r rule: rbt_joinR.induct) | |
| 2104 | case (1 l a b r) | |
| 2105 | then show ?case | |
| 2106 | by (fastforce simp: rbt_bheight_rbt_baliR rbt_joinR.simps[of l a b r] | |
| 2107 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2108 | qed | |
| 2109 | ||
| 2110 | lemma inv2_rbt_joinR: "inv2 l \<Longrightarrow> inv2 r \<Longrightarrow> bheight l \<ge> bheight r \<Longrightarrow> inv2 (rbt_joinR l a b r)" | |
| 2111 | proof (induct l a b r rule: rbt_joinR.induct) | |
| 2112 | case (1 l a b r) | |
| 2113 | then show ?case | |
| 2114 | by (fastforce simp: inv2_rbt_baliR bheight_rbt_joinR rbt_joinR.simps[of l a b r] | |
| 2115 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2116 | qed | |
| 2117 | ||
| 2118 | lemma keys_paint[simp]: "RBT_Impl.keys (paint c t) = RBT_Impl.keys t" | |
| 2119 | by (cases t) auto | |
| 2120 | ||
| 2121 | lemma keys_rbt_baliL: "RBT_Impl.keys (rbt_baliL l a b r) = RBT_Impl.keys l @ a # RBT_Impl.keys r" | |
| 2122 | by (cases "(l,a,b,r)" rule: rbt_baliL.cases) auto | |
| 2123 | ||
| 2124 | lemma keys_rbt_baliR: "RBT_Impl.keys (rbt_baliR l a b r) = RBT_Impl.keys l @ a # RBT_Impl.keys r" | |
| 2125 | by (cases "(l,a,b,r)" rule: rbt_baliR.cases) auto | |
| 2126 | ||
| 2127 | lemma keys_rbt_baldL: "RBT_Impl.keys (rbt_baldL l a b r) = RBT_Impl.keys l @ a # RBT_Impl.keys r" | |
| 2128 | by (cases "(l,a,b,r)" rule: rbt_baldL.cases) (auto simp: keys_rbt_baliL keys_rbt_baliR) | |
| 2129 | ||
| 2130 | lemma keys_rbt_baldR: "RBT_Impl.keys (rbt_baldR l a b r) = RBT_Impl.keys l @ a # RBT_Impl.keys r" | |
| 2131 | by (cases "(l,a,b,r)" rule: rbt_baldR.cases) (auto simp: keys_rbt_baliL keys_rbt_baliR) | |
| 2132 | ||
| 2133 | lemma keys_rbt_app: "RBT_Impl.keys (rbt_app l r) = RBT_Impl.keys l @ RBT_Impl.keys r" | |
| 2134 | by (induction l r rule: rbt_app.induct) | |
| 2135 | (auto simp: keys_rbt_baldL keys_rbt_baldR split: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2136 | ||
| 2137 | lemma keys_rbt_joinL: "bheight l \<le> bheight r \<Longrightarrow> | |
| 2138 | RBT_Impl.keys (rbt_joinL l a b r) = RBT_Impl.keys l @ a # RBT_Impl.keys r" | |
| 2139 | proof (induction l a b r rule: rbt_joinL.induct) | |
| 2140 | case (1 l a b r) | |
| 2141 | thus ?case | |
| 2142 | by (auto simp: keys_rbt_baliL rbt_joinL.simps[of l a b r] | |
| 2143 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2144 | qed | |
| 2145 | ||
| 2146 | lemma keys_rbt_joinR: "RBT_Impl.keys (rbt_joinR l a b r) = RBT_Impl.keys l @ a # RBT_Impl.keys r" | |
| 2147 | proof (induction l a b r rule: rbt_joinR.induct) | |
| 2148 | case (1 l a b r) | |
| 2149 | thus ?case | |
| 2150 | by (force simp: keys_rbt_baliR rbt_joinR.simps[of l a b r] | |
| 2151 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2152 | qed | |
| 2153 | ||
| 2154 | lemma rbt_set_rbt_baliL: "set (RBT_Impl.keys (rbt_baliL l a b r)) = | |
| 2155 |   set (RBT_Impl.keys l) \<union> {a} \<union> set (RBT_Impl.keys r)"
 | |
| 2156 | by (cases "(l,a,b,r)" rule: rbt_baliL.cases) auto | |
| 2157 | ||
| 2158 | lemma set_rbt_joinL: "set (RBT_Impl.keys (rbt_joinL l a b r)) = | |
| 2159 |   set (RBT_Impl.keys l) \<union> {a} \<union> set (RBT_Impl.keys r)"
 | |
| 2160 | proof (induction l a b r rule: rbt_joinL.induct) | |
| 2161 | case (1 l a b r) | |
| 2162 | thus ?case | |
| 2163 | by (auto simp: rbt_set_rbt_baliL rbt_joinL.simps[of l a b r] | |
| 2164 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2165 | qed | |
| 2166 | ||
| 2167 | lemma rbt_set_rbt_baliR: "set (RBT_Impl.keys (rbt_baliR l a b r)) = | |
| 2168 |   set (RBT_Impl.keys l) \<union> {a} \<union> set (RBT_Impl.keys r)"
 | |
| 2169 | by (cases "(l,a,b,r)" rule: rbt_baliR.cases) auto | |
| 2170 | ||
| 2171 | lemma set_rbt_joinR: "set (RBT_Impl.keys (rbt_joinR l a b r)) = | |
| 2172 |   set (RBT_Impl.keys l) \<union> {a} \<union> set (RBT_Impl.keys r)"
 | |
| 2173 | proof (induction l a b r rule: rbt_joinR.induct) | |
| 2174 | case (1 l a b r) | |
| 2175 | thus ?case | |
| 2176 | by (force simp: rbt_set_rbt_baliR rbt_joinR.simps[of l a b r] | |
| 2177 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2178 | qed | |
| 2179 | ||
| 2180 | lemma set_keys_paint: "set (RBT_Impl.keys (paint c t)) = set (RBT_Impl.keys t)" | |
| 2181 | by (cases t) auto | |
| 2182 | ||
| 2183 | lemma set_rbt_join: "set (RBT_Impl.keys (rbt_join l a b r)) = | |
| 2184 |   set (RBT_Impl.keys l) \<union> {a} \<union> set (RBT_Impl.keys r)"
 | |
| 2185 | by (simp add: set_rbt_joinL set_rbt_joinR set_keys_paint rbt_join_def Let_def) | |
| 2186 | ||
| 2187 | lemma inv_rbt_join: "inv_12 l \<Longrightarrow> inv_12 r \<Longrightarrow> inv_12 (rbt_join l a b r)" | |
| 2188 | by (auto simp: rbt_join_def Let_def inv1l_rbt_joinL inv1l_rbt_joinR | |
| 2189 | inv2_rbt_joinL inv2_rbt_joinR inv_12_def) | |
| 2190 | ||
| 2191 | fun rbt_recolor :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 2192 | "rbt_recolor (Branch RBT_Impl.R t1 k v t2) = | |
| 2193 | (if color_of t1 = RBT_Impl.B \<and> color_of t2 = RBT_Impl.B then Branch RBT_Impl.B t1 k v t2 | |
| 2194 | else Branch RBT_Impl.R t1 k v t2)" | |
| 2195 | | "rbt_recolor t = t" | |
| 2196 | ||
| 2197 | lemma rbt_recolor: "inv_12 t \<Longrightarrow> inv_12 (rbt_recolor t)" | |
| 2198 | by (induction t rule: rbt_recolor.induct) (auto simp: inv_12_def) | |
| 2199 | ||
| 2200 | fun rbt_split_min :: "('a, 'b) rbt \<Rightarrow> 'a \<times> 'b \<times> ('a, 'b) rbt" where
 | |
| 2201 | "rbt_split_min RBT_Impl.Empty = undefined" | |
| 2202 | | "rbt_split_min (RBT_Impl.Branch _ l a b r) = | |
| 2203 | (if is_rbt_empty l then (a,b,r) else let (a',b',l') = rbt_split_min l in (a',b',rbt_join l' a b r))" | |
| 2204 | ||
| 2205 | lemma rbt_split_min_set: | |
| 2206 | "rbt_split_min t = (a,b,t') \<Longrightarrow> t \<noteq> RBT_Impl.Empty \<Longrightarrow> | |
| 2207 |   a \<in> set (RBT_Impl.keys t) \<and> set (RBT_Impl.keys t) = {a} \<union> set (RBT_Impl.keys t')"
 | |
| 2208 | by (induction t arbitrary: t') (auto simp: set_rbt_join split: prod.splits if_splits) | |
| 2209 | ||
| 2210 | lemma rbt_split_min_inv: "rbt_split_min t = (a,b,t') \<Longrightarrow> inv_12 t \<Longrightarrow> t \<noteq> RBT_Impl.Empty \<Longrightarrow> inv_12 t'" | |
| 2211 | by (induction t arbitrary: t') | |
| 2212 | (auto simp: inv_rbt_join split: if_splits prod.splits dest: rbt_Node) | |
| 2213 | ||
| 2214 | definition rbt_join2 :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 2215 | "rbt_join2 l r = (if is_rbt_empty r then l else let (a,b,r') = rbt_split_min r in rbt_join l a b r')" | |
| 2216 | ||
| 2217 | lemma set_rbt_join2[simp]: "set (RBT_Impl.keys (rbt_join2 l r)) = | |
| 2218 | set (RBT_Impl.keys l) \<union> set (RBT_Impl.keys r)" | |
| 2219 | by (simp add: rbt_join2_def rbt_split_min_set set_rbt_join split: prod.split) | |
| 2220 | ||
| 2221 | lemma inv_rbt_join2: "inv_12 l \<Longrightarrow> inv_12 r \<Longrightarrow> inv_12 (rbt_join2 l r)" | |
| 2222 | by (simp add: rbt_join2_def inv_rbt_join rbt_split_min_set rbt_split_min_inv split: prod.split) | |
| 2223 | ||
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2224 | context ord begin | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2225 | |
| 73211 | 2226 | fun rbt_split :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> ('a, 'b) rbt \<times> 'b option \<times> ('a, 'b) rbt" where
 | 
| 2227 | "rbt_split RBT_Impl.Empty k = (RBT_Impl.Empty, None, RBT_Impl.Empty)" | |
| 2228 | | "rbt_split (RBT_Impl.Branch _ l a b r) x = | |
| 2229 | (if x < a then (case rbt_split l x of (l1, \<beta>, l2) \<Rightarrow> (l1, \<beta>, rbt_join l2 a b r)) | |
| 2230 | else if a < x then (case rbt_split r x of (r1, \<beta>, r2) \<Rightarrow> (rbt_join l a b r1, \<beta>, r2)) | |
| 2231 | else (l, Some b, r))" | |
| 2232 | ||
| 2233 | lemma rbt_split: "rbt_split t x = (l,\<beta>,r) \<Longrightarrow> inv_12 t \<Longrightarrow> inv_12 l \<and> inv_12 r" | |
| 2234 | by (induction t arbitrary: l r) | |
| 2235 | (auto simp: set_rbt_join inv_rbt_join rbt_greater_prop rbt_less_prop | |
| 2236 | split: if_splits prod.splits dest!: rbt_Node) | |
| 2237 | ||
| 2238 | lemma rbt_split_size: "(l2,\<beta>,r2) = rbt_split t2 a \<Longrightarrow> size l2 + size r2 \<le> size t2" | |
| 2239 | by (induction t2 a arbitrary: l2 r2 rule: rbt_split.induct) (auto split: if_splits prod.splits) | |
| 2240 | ||
| 2241 | function rbt_union_rec :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 2242 | "rbt_union_rec f t1 t2 = (let (f, t2, t1) = | |
| 2243 | if flip_rbt t2 t1 then (\<lambda>k v v'. f k v' v, t1, t2) else (f, t2, t1) in | |
| 2244 | if small_rbt t2 then RBT_Impl.fold (rbt_insert_with_key f) t2 t1 | |
| 2245 | else (case t1 of RBT_Impl.Empty \<Rightarrow> t2 | |
| 2246 | | RBT_Impl.Branch _ l1 a b r1 \<Rightarrow> | |
| 2247 | case rbt_split t2 a of (l2, \<beta>, r2) \<Rightarrow> | |
| 2248 | rbt_join (rbt_union_rec f l1 l2) a (case \<beta> of None \<Rightarrow> b | Some b' \<Rightarrow> f a b b') (rbt_union_rec f r1 r2)))" | |
| 2249 | by pat_completeness auto | |
| 2250 | termination | |
| 2251 | using rbt_split_size | |
| 2252 | by (relation "measure (\<lambda>(f,t1,t2). size t1 + size t2)") (fastforce split: if_splits)+ | |
| 2253 | ||
| 2254 | declare rbt_union_rec.simps[simp del] | |
| 2255 | ||
| 2256 | function rbt_union_swap_rec :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 2257 | "rbt_union_swap_rec f \<gamma> t1 t2 = (let (\<gamma>, t2, t1) = | |
| 2258 | if flip_rbt t2 t1 then (\<not>\<gamma>, t1, t2) else (\<gamma>, t2, t1); | |
| 2259 | f' = (if \<gamma> then (\<lambda>k v v'. f k v' v) else f) in | |
| 2260 | if small_rbt t2 then RBT_Impl.fold (rbt_insert_with_key f') t2 t1 | |
| 2261 | else (case t1 of RBT_Impl.Empty \<Rightarrow> t2 | |
| 2262 | | RBT_Impl.Branch _ l1 a b r1 \<Rightarrow> | |
| 2263 | case rbt_split t2 a of (l2, \<beta>, r2) \<Rightarrow> | |
| 2264 | rbt_join (rbt_union_swap_rec f \<gamma> l1 l2) a (case \<beta> of None \<Rightarrow> b | Some b' \<Rightarrow> f' a b b') (rbt_union_swap_rec f \<gamma> r1 r2)))" | |
| 2265 | by pat_completeness auto | |
| 2266 | termination | |
| 2267 | using rbt_split_size | |
| 2268 | by (relation "measure (\<lambda>(f,\<gamma>,t1,t2). size t1 + size t2)") (fastforce split: if_splits)+ | |
| 2269 | ||
| 2270 | declare rbt_union_swap_rec.simps[simp del] | |
| 2271 | ||
| 2272 | lemma rbt_union_swap_rec: "rbt_union_swap_rec f \<gamma> t1 t2 = | |
| 2273 | rbt_union_rec (if \<gamma> then (\<lambda>k v v'. f k v' v) else f) t1 t2" | |
| 2274 | proof (induction f \<gamma> t1 t2 rule: rbt_union_swap_rec.induct) | |
| 2275 | case (1 f \<gamma> t1 t2) | |
| 2276 | show ?case | |
| 2277 | using 1[OF refl _ refl refl _ refl _ refl] | |
| 2278 | unfolding rbt_union_swap_rec.simps[of _ _ t1] rbt_union_rec.simps[of _ t1] | |
| 2279 | by (auto simp: Let_def split: rbt.splits prod.splits option.splits) (* slow *) | |
| 2280 | qed | |
| 2281 | ||
| 2282 | lemma rbt_fold_rbt_insert: | |
| 2283 | assumes "inv_12 t2" | |
| 2284 | shows "inv_12 (RBT_Impl.fold (rbt_insert_with_key f) t1 t2)" | |
| 2285 | proof - | |
| 2286 | define xs where "xs = RBT_Impl.entries t1" | |
| 2287 | from assms show ?thesis | |
| 2288 | unfolding RBT_Impl.fold_def xs_def[symmetric] | |
| 2289 | by (induct xs rule: rev_induct) | |
| 2290 | (auto simp: inv_12_def rbt_insert_with_key_def ins_inv1_inv2) | |
| 2291 | qed | |
| 2292 | ||
| 2293 | lemma rbt_union_rec: "inv_12 t1 \<Longrightarrow> inv_12 t2 \<Longrightarrow> inv_12 (rbt_union_rec f t1 t2)" | |
| 2294 | proof (induction f t1 t2 rule: rbt_union_rec.induct) | |
| 2295 | case (1 t1 t2) | |
| 2296 | thus ?case | |
| 2297 | by (auto simp: rbt_union_rec.simps[of t1 t2] inv_rbt_join rbt_split rbt_fold_rbt_insert | |
| 2298 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits prod.split if_splits dest: rbt_Node) | |
| 2299 | qed | |
| 2300 | ||
| 2301 | definition "map_filter_inter f t1 t2 = List.map_filter (\<lambda>(k, v). | |
| 2302 | case rbt_lookup t1 k of None \<Rightarrow> None | |
| 2303 | | Some v' \<Rightarrow> Some (k, f k v' v)) (RBT_Impl.entries t2)" | |
| 2304 | ||
| 2305 | function rbt_inter_rec :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 2306 | "rbt_inter_rec f t1 t2 = (let (f, t2, t1) = | |
| 2307 | if flip_rbt t2 t1 then (\<lambda>k v v'. f k v' v, t1, t2) else (f, t2, t1) in | |
| 2308 | if small_rbt t2 then rbtreeify (map_filter_inter f t1 t2) | |
| 2309 | else case t1 of RBT_Impl.Empty \<Rightarrow> RBT_Impl.Empty | |
| 2310 | | RBT_Impl.Branch _ l1 a b r1 \<Rightarrow> | |
| 2311 | case rbt_split t2 a of (l2, \<beta>, r2) \<Rightarrow> let l' = rbt_inter_rec f l1 l2; r' = rbt_inter_rec f r1 r2 in | |
| 2312 | (case \<beta> of None \<Rightarrow> rbt_join2 l' r' | Some b' \<Rightarrow> rbt_join l' a (f a b b') r'))" | |
| 2313 | by pat_completeness auto | |
| 2314 | termination | |
| 2315 | using rbt_split_size | |
| 2316 | by (relation "measure (\<lambda>(f,t1,t2). size t1 + size t2)") (fastforce split: if_splits)+ | |
| 2317 | ||
| 2318 | declare rbt_inter_rec.simps[simp del] | |
| 2319 | ||
| 2320 | function rbt_inter_swap_rec :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> bool \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 2321 | "rbt_inter_swap_rec f \<gamma> t1 t2 = (let (\<gamma>, t2, t1) = | |
| 2322 | if flip_rbt t2 t1 then (\<not>\<gamma>, t1, t2) else (\<gamma>, t2, t1); | |
| 2323 | f' = (if \<gamma> then (\<lambda>k v v'. f k v' v) else f) in | |
| 2324 | if small_rbt t2 then rbtreeify (map_filter_inter f' t1 t2) | |
| 2325 | else case t1 of RBT_Impl.Empty \<Rightarrow> RBT_Impl.Empty | |
| 2326 | | RBT_Impl.Branch _ l1 a b r1 \<Rightarrow> | |
| 2327 | case rbt_split t2 a of (l2, \<beta>, r2) \<Rightarrow> let l' = rbt_inter_swap_rec f \<gamma> l1 l2; r' = rbt_inter_swap_rec f \<gamma> r1 r2 in | |
| 2328 | (case \<beta> of None \<Rightarrow> rbt_join2 l' r' | Some b' \<Rightarrow> rbt_join l' a (f' a b b') r'))" | |
| 2329 | by pat_completeness auto | |
| 2330 | termination | |
| 2331 | using rbt_split_size | |
| 2332 | by (relation "measure (\<lambda>(f,\<gamma>,t1,t2). size t1 + size t2)") (fastforce split: if_splits)+ | |
| 2333 | ||
| 2334 | declare rbt_inter_swap_rec.simps[simp del] | |
| 2335 | ||
| 2336 | lemma rbt_inter_swap_rec: "rbt_inter_swap_rec f \<gamma> t1 t2 = | |
| 2337 | rbt_inter_rec (if \<gamma> then (\<lambda>k v v'. f k v' v) else f) t1 t2" | |
| 2338 | proof (induction f \<gamma> t1 t2 rule: rbt_inter_swap_rec.induct) | |
| 2339 | case (1 f \<gamma> t1 t2) | |
| 2340 | show ?case | |
| 2341 | using 1[OF refl _ refl refl _ refl _ refl] | |
| 2342 | unfolding rbt_inter_swap_rec.simps[of _ _ t1] rbt_inter_rec.simps[of _ t1] | |
| 2343 | by (auto simp add: Let_def split: rbt.splits prod.splits option.splits) | |
| 2344 | qed | |
| 2345 | ||
| 2346 | lemma rbt_rbtreeify[simp]: "inv_12 (rbtreeify kvs)" | |
| 2347 | by (simp add: inv_12_def rbtreeify_def inv1_rbtreeify_g inv2_rbtreeify_g) | |
| 2348 | ||
| 2349 | lemma rbt_inter_rec: "inv_12 t1 \<Longrightarrow> inv_12 t2 \<Longrightarrow> inv_12 (rbt_inter_rec f t1 t2)" | |
| 2350 | proof(induction f t1 t2 rule: rbt_inter_rec.induct) | |
| 2351 | case (1 t1 t2) | |
| 2352 | thus ?case | |
| 2353 | by (auto simp: rbt_inter_rec.simps[of t1 t2] inv_rbt_join inv_rbt_join2 rbt_split Let_def | |
| 2354 | split!: RBT_Impl.rbt.splits RBT_Impl.color.splits prod.split if_splits | |
| 2355 | option.splits dest!: rbt_Node) | |
| 2356 | qed | |
| 2357 | ||
| 2358 | definition "filter_minus t1 t2 = filter (\<lambda>(k, _). rbt_lookup t2 k = None) (RBT_Impl.entries t1)" | |
| 2359 | ||
| 2360 | fun rbt_minus_rec :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | |
| 2361 | "rbt_minus_rec t1 t2 = (if small_rbt t2 then RBT_Impl.fold (\<lambda>k _ t. rbt_delete k t) t2 t1 | |
| 2362 | else if small_rbt t1 then rbtreeify (filter_minus t1 t2) | |
| 2363 | else case t2 of RBT_Impl.Empty \<Rightarrow> t1 | |
| 2364 | | RBT_Impl.Branch _ l2 a b r2 \<Rightarrow> | |
| 2365 | case rbt_split t1 a of (l1, _, r1) \<Rightarrow> rbt_join2 (rbt_minus_rec l1 l2) (rbt_minus_rec r1 r2))" | |
| 2366 | ||
| 2367 | declare rbt_minus_rec.simps[simp del] | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2368 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2369 | end | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2370 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2371 | context linorder begin | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2372 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2373 | lemma rbt_sorted_entries_right_unique: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2374 | "\<lbrakk> (k, v) \<in> set (entries t); (k, v') \<in> set (entries t); | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2375 | rbt_sorted t \<rbrakk> \<Longrightarrow> v = v'" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2376 | by(auto dest!: distinct_entries inj_onD[where x="(k, v)" and y="(k, v')"] simp add: distinct_map) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2377 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2378 | lemma rbt_sorted_fold_rbt_insertwk: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2379 | "rbt_sorted t \<Longrightarrow> rbt_sorted (List.fold (\<lambda>(k, v). rbt_insert_with_key f k v) xs t)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2380 | by(induct xs rule: rev_induct)(auto simp add: rbt_insertwk_rbt_sorted) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2381 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2382 | lemma is_rbt_fold_rbt_insertwk: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2383 | assumes "is_rbt t1" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2384 | shows "is_rbt (fold (rbt_insert_with_key f) t2 t1)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2385 | proof - | 
| 63040 | 2386 | define xs where "xs = entries t2" | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2387 | from assms show ?thesis unfolding fold_def xs_def[symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2388 | by(induct xs rule: rev_induct)(auto simp add: rbt_insertwk_is_rbt) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2389 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2390 | |
| 73211 | 2391 | lemma rbt_delete: "inv_12 t \<Longrightarrow> inv_12 (rbt_delete x t)" | 
| 2392 | using rbt_del_inv1_inv2[of t x] | |
| 2393 | by (auto simp: inv_12_def rbt_delete_def rbt_del_inv1_inv2) | |
| 2394 | ||
| 2395 | lemma rbt_sorted_delete: "rbt_sorted t \<Longrightarrow> rbt_sorted (rbt_delete x t)" | |
| 2396 | by (auto simp: rbt_delete_def rbt_del_rbt_sorted) | |
| 2397 | ||
| 2398 | lemma rbt_fold_rbt_delete: | |
| 2399 | assumes "inv_12 t2" | |
| 2400 | shows "inv_12 (RBT_Impl.fold (\<lambda>k _ t. rbt_delete k t) t1 t2)" | |
| 2401 | proof - | |
| 2402 | define xs where "xs = RBT_Impl.entries t1" | |
| 2403 | from assms show ?thesis | |
| 2404 | unfolding RBT_Impl.fold_def xs_def[symmetric] | |
| 2405 | by (induct xs rule: rev_induct) (auto simp: rbt_delete) | |
| 2406 | qed | |
| 2407 | ||
| 2408 | lemma rbt_minus_rec: "inv_12 t1 \<Longrightarrow> inv_12 t2 \<Longrightarrow> inv_12 (rbt_minus_rec t1 t2)" | |
| 2409 | proof(induction t1 t2 rule: rbt_minus_rec.induct) | |
| 2410 | case (1 t1 t2) | |
| 2411 | thus ?case | |
| 2412 | by (auto simp: rbt_minus_rec.simps[of t1 t2] inv_rbt_join inv_rbt_join2 rbt_split | |
| 2413 | rbt_fold_rbt_delete split!: RBT_Impl.rbt.splits RBT_Impl.color.splits prod.split if_splits | |
| 2414 | dest: rbt_Node) | |
| 2415 | qed | |
| 2416 | ||
| 2417 | end | |
| 2418 | ||
| 2419 | context linorder begin | |
| 2420 | ||
| 2421 | lemma rbt_sorted_rbt_baliL: "rbt_sorted l \<Longrightarrow> rbt_sorted r \<Longrightarrow> l |\<guillemotleft> a \<Longrightarrow> a \<guillemotleft>| r \<Longrightarrow> | |
| 2422 | rbt_sorted (rbt_baliL l a b r)" | |
| 2423 | using rbt_greater_trans rbt_less_trans | |
| 2424 | by (cases "(l,a,b,r)" rule: rbt_baliL.cases) fastforce+ | |
| 2425 | ||
| 2426 | lemma rbt_lookup_rbt_baliL: "rbt_sorted l \<Longrightarrow> rbt_sorted r \<Longrightarrow> l |\<guillemotleft> a \<Longrightarrow> a \<guillemotleft>| r \<Longrightarrow> | |
| 2427 | rbt_lookup (rbt_baliL l a b r) k = | |
| 2428 | (if k < a then rbt_lookup l k else if k = a then Some b else rbt_lookup r k)" | |
| 2429 | by (cases "(l,a,b,r)" rule: rbt_baliL.cases) (auto split!: if_splits) | |
| 2430 | ||
| 2431 | lemma rbt_sorted_rbt_baliR: "rbt_sorted l \<Longrightarrow> rbt_sorted r \<Longrightarrow> l |\<guillemotleft> a \<Longrightarrow> a \<guillemotleft>| r \<Longrightarrow> | |
| 2432 | rbt_sorted (rbt_baliR l a b r)" | |
| 2433 | using rbt_greater_trans rbt_less_trans | |
| 2434 | by (cases "(l,a,b,r)" rule: rbt_baliR.cases) fastforce+ | |
| 2435 | ||
| 2436 | lemma rbt_lookup_rbt_baliR: "rbt_sorted l \<Longrightarrow> rbt_sorted r \<Longrightarrow> l |\<guillemotleft> a \<Longrightarrow> a \<guillemotleft>| r \<Longrightarrow> | |
| 2437 | rbt_lookup (rbt_baliR l a b r) k = | |
| 2438 | (if k < a then rbt_lookup l k else if k = a then Some b else rbt_lookup r k)" | |
| 2439 | by (cases "(l,a,b,r)" rule: rbt_baliR.cases) (auto split!: if_splits) | |
| 2440 | ||
| 2441 | lemma rbt_sorted_rbt_joinL: "rbt_sorted (RBT_Impl.Branch c l a b r) \<Longrightarrow> bheight l \<le> bheight r \<Longrightarrow> | |
| 2442 | rbt_sorted (rbt_joinL l a b r)" | |
| 2443 | proof (induction l a b r arbitrary: c rule: rbt_joinL.induct) | |
| 2444 | case (1 l a b r) | |
| 2445 | thus ?case | |
| 2446 | by (auto simp: rbt_set_rbt_baliL rbt_joinL.simps[of l a b r] set_rbt_joinL rbt_less_prop | |
| 2447 | intro!: rbt_sorted_rbt_baliL split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2448 | qed | |
| 2449 | ||
| 2450 | lemma rbt_lookup_rbt_joinL: "rbt_sorted l \<Longrightarrow> rbt_sorted r \<Longrightarrow> l |\<guillemotleft> a \<Longrightarrow> a \<guillemotleft>| r \<Longrightarrow> | |
| 2451 | rbt_lookup (rbt_joinL l a b r) k = | |
| 2452 | (if k < a then rbt_lookup l k else if k = a then Some b else rbt_lookup r k)" | |
| 2453 | proof (induction l a b r rule: rbt_joinL.induct) | |
| 2454 | case (1 l a b r) | |
| 2455 | have less_rbt_joinL: | |
| 2456 | "rbt_sorted r1 \<Longrightarrow> r1 |\<guillemotleft> x \<Longrightarrow> a \<guillemotleft>| r1 \<Longrightarrow> a < x \<Longrightarrow> rbt_joinL l a b r1 |\<guillemotleft> x" for x r1 | |
| 2457 | using 1(5) | |
| 2458 | by (auto simp: rbt_less_prop rbt_greater_prop set_rbt_joinL) | |
| 2459 | show ?case | |
| 2460 | using 1 less_rbt_joinL rbt_lookup_rbt_baliL[OF rbt_sorted_rbt_joinL[of _ l a b], where ?k=k] | |
| 2461 | by (auto simp: rbt_joinL.simps[of l a b r] split!: if_splits rbt.splits color.splits) | |
| 2462 | qed | |
| 2463 | ||
| 2464 | lemma rbt_sorted_rbt_joinR: "rbt_sorted l \<Longrightarrow> rbt_sorted r \<Longrightarrow> l |\<guillemotleft> a \<Longrightarrow> a \<guillemotleft>| r \<Longrightarrow> | |
| 2465 | rbt_sorted (rbt_joinR l a b r)" | |
| 2466 | proof (induction l a b r rule: rbt_joinR.induct) | |
| 2467 | case (1 l a b r) | |
| 2468 | thus ?case | |
| 2469 | by (auto simp: rbt_set_rbt_baliR rbt_joinR.simps[of l a b r] set_rbt_joinR rbt_greater_prop | |
| 2470 | intro!: rbt_sorted_rbt_baliR split!: RBT_Impl.rbt.splits RBT_Impl.color.splits) | |
| 2471 | qed | |
| 2472 | ||
| 2473 | lemma rbt_lookup_rbt_joinR: "rbt_sorted l \<Longrightarrow> rbt_sorted r \<Longrightarrow> l |\<guillemotleft> a \<Longrightarrow> a \<guillemotleft>| r \<Longrightarrow> | |
| 2474 | rbt_lookup (rbt_joinR l a b r) k = | |
| 2475 | (if k < a then rbt_lookup l k else if k = a then Some b else rbt_lookup r k)" | |
| 2476 | proof (induction l a b r rule: rbt_joinR.induct) | |
| 2477 | case (1 l a b r) | |
| 2478 | have less_rbt_joinR: | |
| 2479 | "rbt_sorted l1 \<Longrightarrow> x \<guillemotleft>| l1 \<Longrightarrow> l1 |\<guillemotleft> a \<Longrightarrow> x < a \<Longrightarrow> x \<guillemotleft>| rbt_joinR l1 a b r" for x l1 | |
| 2480 | using 1(6) | |
| 2481 | by (auto simp: rbt_less_prop rbt_greater_prop set_rbt_joinR) | |
| 2482 | show ?case | |
| 2483 | using 1 less_rbt_joinR rbt_lookup_rbt_baliR[OF _ rbt_sorted_rbt_joinR[of _ r a b], where ?k=k] | |
| 2484 | by (auto simp: rbt_joinR.simps[of l a b r] split!: if_splits rbt.splits color.splits) | |
| 2485 | qed | |
| 2486 | ||
| 2487 | lemma rbt_sorted_paint: "rbt_sorted (paint c t) = rbt_sorted t" | |
| 2488 | by (cases t) auto | |
| 2489 | ||
| 2490 | lemma rbt_sorted_rbt_join: "rbt_sorted (RBT_Impl.Branch c l a b r) \<Longrightarrow> | |
| 2491 | rbt_sorted (rbt_join l a b r)" | |
| 2492 | by (auto simp: rbt_sorted_paint rbt_sorted_rbt_joinL rbt_sorted_rbt_joinR rbt_join_def Let_def) | |
| 2493 | ||
| 2494 | lemma rbt_lookup_rbt_join: "rbt_sorted l \<Longrightarrow> rbt_sorted r \<Longrightarrow> l |\<guillemotleft> a \<Longrightarrow> a \<guillemotleft>| r \<Longrightarrow> | |
| 2495 | rbt_lookup (rbt_join l a b r) k = | |
| 2496 | (if k < a then rbt_lookup l k else if k = a then Some b else rbt_lookup r k)" | |
| 2497 | by (auto simp: rbt_join_def Let_def rbt_lookup_rbt_joinL rbt_lookup_rbt_joinR) | |
| 2498 | ||
| 2499 | lemma rbt_split_min_rbt_sorted: "rbt_split_min t = (a,b,t') \<Longrightarrow> rbt_sorted t \<Longrightarrow> t \<noteq> RBT_Impl.Empty \<Longrightarrow> | |
| 2500 | rbt_sorted t' \<and> (\<forall>x \<in> set (RBT_Impl.keys t'). a < x)" | |
| 2501 | by (induction t arbitrary: t') | |
| 2502 | (fastforce simp: rbt_split_min_set rbt_sorted_rbt_join set_rbt_join rbt_less_prop rbt_greater_prop | |
| 2503 | split: if_splits prod.splits)+ | |
| 2504 | ||
| 2505 | lemma rbt_split_min_rbt_lookup: "rbt_split_min t = (a,b,t') \<Longrightarrow> rbt_sorted t \<Longrightarrow> t \<noteq> RBT_Impl.Empty \<Longrightarrow> | |
| 2506 | rbt_lookup t k = (if k < a then None else if k = a then Some b else rbt_lookup t' k)" | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73212diff
changeset | 2507 | apply (induction t arbitrary: a b t') | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73212diff
changeset | 2508 | apply(simp_all split: if_splits prod.splits) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73212diff
changeset | 2509 | apply(auto simp: rbt_less_prop rbt_split_min_set rbt_lookup_rbt_join rbt_split_min_rbt_sorted) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73212diff
changeset | 2510 | done | 
| 73211 | 2511 | |
| 2512 | lemma rbt_sorted_rbt_join2: "rbt_sorted l \<Longrightarrow> rbt_sorted r \<Longrightarrow> | |
| 2513 | \<forall>x \<in> set (RBT_Impl.keys l). \<forall>y \<in> set (RBT_Impl.keys r). x < y \<Longrightarrow> rbt_sorted (rbt_join2 l r)" | |
| 2514 | by (simp add: rbt_join2_def rbt_sorted_rbt_join rbt_split_min_set rbt_split_min_rbt_sorted set_rbt_join | |
| 2515 | rbt_greater_prop rbt_less_prop split: prod.split) | |
| 2516 | ||
| 2517 | lemma rbt_lookup_rbt_join2: "rbt_sorted l \<Longrightarrow> rbt_sorted r \<Longrightarrow> | |
| 2518 | \<forall>x \<in> set (RBT_Impl.keys l). \<forall>y \<in> set (RBT_Impl.keys r). x < y \<Longrightarrow> | |
| 2519 | rbt_lookup (rbt_join2 l r) k = (case rbt_lookup l k of None \<Rightarrow> rbt_lookup r k | Some v \<Rightarrow> Some v)" | |
| 2520 | using rbt_lookup_keys | |
| 2521 | by (fastforce simp: rbt_join2_def rbt_greater_prop rbt_less_prop rbt_lookup_rbt_join | |
| 2522 | rbt_split_min_rbt_lookup rbt_split_min_rbt_sorted rbt_split_min_set split: option.splits prod.splits) | |
| 2523 | ||
| 2524 | lemma rbt_split_props: "rbt_split t x = (l,\<beta>,r) \<Longrightarrow> rbt_sorted t \<Longrightarrow> | |
| 2525 |   set (RBT_Impl.keys l) = {a \<in> set (RBT_Impl.keys t). a < x} \<and>
 | |
| 2526 |   set (RBT_Impl.keys r) = {a \<in> set (RBT_Impl.keys t). x < a} \<and>
 | |
| 2527 | rbt_sorted l \<and> rbt_sorted r" | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73212diff
changeset | 2528 | apply (induction t arbitrary: l r) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73212diff
changeset | 2529 | apply(simp_all split!: prod.splits if_splits) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73212diff
changeset | 2530 | apply(force simp: set_rbt_join rbt_greater_prop rbt_less_prop | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73212diff
changeset | 2531 | intro: rbt_sorted_rbt_join)+ | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73212diff
changeset | 2532 | done | 
| 73211 | 2533 | |
| 2534 | lemma rbt_split_lookup: "rbt_split t x = (l,\<beta>,r) \<Longrightarrow> rbt_sorted t \<Longrightarrow> | |
| 2535 | rbt_lookup t k = (if k < x then rbt_lookup l k else if k = x then \<beta> else rbt_lookup r k)" | |
| 2536 | proof (induction t arbitrary: x l \<beta> r) | |
| 2537 | case (Branch c t1 a b t2) | |
| 2538 | have "rbt_sorted r1" "r1 |\<guillemotleft> a" if "rbt_split t1 x = (l, \<beta>, r1)" for r1 | |
| 2539 | using rbt_split_props Branch(4) that | |
| 2540 | by (fastforce simp: rbt_less_prop)+ | |
| 2541 | moreover have "rbt_sorted l1" "a \<guillemotleft>| l1" if "rbt_split t2 x = (l1, \<beta>, r)" for l1 | |
| 2542 | using rbt_split_props Branch(4) that | |
| 2543 | by (fastforce simp: rbt_greater_prop)+ | |
| 2544 | ultimately show ?case | |
| 2545 | using Branch rbt_lookup_rbt_join[of t1 _ a b k] rbt_lookup_rbt_join[of _ t2 a b k] | |
| 2546 | by (auto split!: if_splits prod.splits) | |
| 2547 | qed simp | |
| 2548 | ||
| 2549 | lemma rbt_sorted_fold_insertwk: "rbt_sorted t \<Longrightarrow> | |
| 2550 | rbt_sorted (RBT_Impl.fold (rbt_insert_with_key f) t' t)" | |
| 2551 | by (induct t' arbitrary: t) | |
| 2552 | (simp_all add: rbt_insertwk_rbt_sorted) | |
| 2553 | ||
| 2554 | lemma rbt_lookup_iff_keys: | |
| 2555 |   "rbt_sorted t \<Longrightarrow> set (RBT_Impl.keys t) = {k. \<exists>v. rbt_lookup t k = Some v}"
 | |
| 2556 | "rbt_sorted t \<Longrightarrow> rbt_lookup t k = None \<longleftrightarrow> k \<notin> set (RBT_Impl.keys t)" | |
| 2557 | "rbt_sorted t \<Longrightarrow> (\<exists>v. rbt_lookup t k = Some v) \<longleftrightarrow> k \<in> set (RBT_Impl.keys t)" | |
| 2558 | using entry_in_tree_keys rbt_lookup_keys[of t] | |
| 2559 | by force+ | |
| 2560 | ||
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2561 | lemma rbt_lookup_fold_rbt_insertwk: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2562 | assumes t1: "rbt_sorted t1" and t2: "rbt_sorted t2" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2563 | shows "rbt_lookup (fold (rbt_insert_with_key f) t1 t2) k = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2564 | (case rbt_lookup t1 k of None \<Rightarrow> rbt_lookup t2 k | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2565 | | Some v \<Rightarrow> case rbt_lookup t2 k of None \<Rightarrow> Some v | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2566 | | Some w \<Rightarrow> Some (f k w v))" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2567 | proof - | 
| 63040 | 2568 | define xs where "xs = entries t1" | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2569 | hence dt1: "distinct (map fst xs)" using t1 by(simp add: distinct_entries) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2570 | with t2 show ?thesis | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2571 | unfolding fold_def map_of_entries[OF t1, symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2572 | xs_def[symmetric] distinct_map_of_rev[OF dt1, symmetric] | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2573 | apply(induct xs rule: rev_induct) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2574 | apply(auto simp add: rbt_lookup_rbt_insertwk rbt_sorted_fold_rbt_insertwk split: option.splits) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2575 | apply(auto simp add: distinct_map_of_rev intro: rev_image_eqI) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2576 | done | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2577 | qed | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2578 | |
| 73211 | 2579 | lemma rbt_lookup_union_rec: "rbt_sorted t1 \<Longrightarrow> rbt_sorted t2 \<Longrightarrow> | 
| 2580 | rbt_sorted (rbt_union_rec f t1 t2) \<and> rbt_lookup (rbt_union_rec f t1 t2) k = | |
| 2581 | (case rbt_lookup t1 k of None \<Rightarrow> rbt_lookup t2 k | |
| 2582 | | Some v \<Rightarrow> (case rbt_lookup t2 k of None \<Rightarrow> Some v | |
| 2583 | | Some w \<Rightarrow> Some (f k v w)))" | |
| 2584 | proof(induction f t1 t2 arbitrary: k rule: rbt_union_rec.induct) | |
| 2585 | case (1 f t1 t2) | |
| 2586 | obtain f' t1' t2' where flip: "(f', t2', t1') = | |
| 2587 | (if flip_rbt t2 t1 then (\<lambda>k v v'. f k v' v, t1, t2) else (f, t2, t1))" | |
| 2588 | by fastforce | |
| 2589 | have rbt_sorted': "rbt_sorted t1'" "rbt_sorted t2'" | |
| 2590 | using 1(3,4) flip | |
| 2591 | by (auto split: if_splits) | |
| 2592 | show ?case | |
| 2593 | proof (cases t1') | |
| 2594 | case Empty | |
| 2595 | show ?thesis | |
| 2596 | unfolding rbt_union_rec.simps[of _ t1] flip[symmetric] | |
| 2597 | using flip rbt_sorted' rbt_split_props[of t2] | |
| 2598 | by (auto simp: Empty rbt_lookup_fold_rbt_insertwk | |
| 2599 | intro!: rbt_sorted_fold_insertwk split: if_splits option.splits) | |
| 2600 | next | |
| 2601 | case (Branch c l1 a b r1) | |
| 2602 |     {
 | |
| 2603 | assume not_small: "\<not>small_rbt t2'" | |
| 2604 | obtain l2 \<beta> r2 where rbt_split_t2': "rbt_split t2' a = (l2, \<beta>, r2)" | |
| 2605 | by (cases "rbt_split t2' a") auto | |
| 2606 | have rbt_sort: "rbt_sorted l1" "rbt_sorted r1" | |
| 2607 | using 1(3,4) flip | |
| 2608 | by (auto simp: Branch split: if_splits) | |
| 2609 | note rbt_split_t2'_props = rbt_split_props[OF rbt_split_t2' rbt_sorted'(2)] | |
| 2610 | have union_l1_l2: "rbt_sorted (rbt_union_rec f' l1 l2)" "rbt_lookup (rbt_union_rec f' l1 l2) k = | |
| 2611 | (case rbt_lookup l1 k of None \<Rightarrow> rbt_lookup l2 k | |
| 2612 | | Some v \<Rightarrow> (case rbt_lookup l2 k of None \<Rightarrow> Some v | Some w \<Rightarrow> Some (f' k v w)))" for k | |
| 2613 | using 1(1)[OF flip refl refl _ Branch rbt_split_t2'[symmetric]] rbt_sort rbt_split_t2'_props | |
| 2614 | by (auto simp: not_small) | |
| 2615 | have union_r1_r2: "rbt_sorted (rbt_union_rec f' r1 r2)" "rbt_lookup (rbt_union_rec f' r1 r2) k = | |
| 2616 | (case rbt_lookup r1 k of None \<Rightarrow> rbt_lookup r2 k | |
| 2617 | | Some v \<Rightarrow> (case rbt_lookup r2 k of None \<Rightarrow> Some v | Some w \<Rightarrow> Some (f' k v w)))" for k | |
| 2618 | using 1(2)[OF flip refl refl _ Branch rbt_split_t2'[symmetric]] rbt_sort rbt_split_t2'_props | |
| 2619 | by (auto simp: not_small) | |
| 2620 | have union_l1_l2_keys: "set (RBT_Impl.keys (rbt_union_rec f' l1 l2)) = | |
| 2621 | set (RBT_Impl.keys l1) \<union> set (RBT_Impl.keys l2)" | |
| 2622 | using rbt_sorted'(1) rbt_split_t2'_props | |
| 2623 | by (auto simp: Branch rbt_lookup_iff_keys(1) union_l1_l2 split: option.splits) | |
| 2624 | have union_r1_r2_keys: "set (RBT_Impl.keys (rbt_union_rec f' r1 r2)) = | |
| 2625 | set (RBT_Impl.keys r1) \<union> set (RBT_Impl.keys r2)" | |
| 2626 | using rbt_sorted'(1) rbt_split_t2'_props | |
| 2627 | by (auto simp: Branch rbt_lookup_iff_keys(1) union_r1_r2 split: option.splits) | |
| 2628 | have union_l1_l2_less: "rbt_union_rec f' l1 l2 |\<guillemotleft> a" | |
| 2629 | using rbt_sorted'(1) rbt_split_t2'_props | |
| 2630 | by (auto simp: Branch rbt_less_prop union_l1_l2_keys) | |
| 2631 | have union_r1_r2_greater: "a \<guillemotleft>| rbt_union_rec f' r1 r2" | |
| 2632 | using rbt_sorted'(1) rbt_split_t2'_props | |
| 2633 | by (auto simp: Branch rbt_greater_prop union_r1_r2_keys) | |
| 2634 | have "rbt_lookup (rbt_union_rec f t1 t2) k = | |
| 2635 | (case rbt_lookup t1' k of None \<Rightarrow> rbt_lookup t2' k | |
| 2636 | | Some v \<Rightarrow> (case rbt_lookup t2' k of None \<Rightarrow> Some v | Some w \<Rightarrow> Some (f' k v w)))" | |
| 2637 | using rbt_sorted' union_l1_l2 union_r1_r2 rbt_split_t2'_props | |
| 2638 | union_l1_l2_less union_r1_r2_greater not_small | |
| 2639 | by (auto simp: rbt_union_rec.simps[of _ t1] flip[symmetric] Branch | |
| 2640 | rbt_split_t2' rbt_lookup_rbt_join rbt_split_lookup[OF rbt_split_t2'] split: option.splits) | |
| 2641 | moreover have "rbt_sorted (rbt_union_rec f t1 t2)" | |
| 2642 | using rbt_sorted' rbt_split_t2'_props not_small | |
| 2643 | by (auto simp: rbt_union_rec.simps[of _ t1] flip[symmetric] Branch rbt_split_t2' | |
| 2644 | union_l1_l2 union_r1_r2 union_l1_l2_keys union_r1_r2_keys rbt_less_prop | |
| 2645 | rbt_greater_prop intro!: rbt_sorted_rbt_join) | |
| 2646 | ultimately have ?thesis | |
| 2647 | using flip | |
| 2648 | by (auto split: if_splits option.splits) | |
| 2649 | } | |
| 2650 | then show ?thesis | |
| 2651 | unfolding rbt_union_rec.simps[of _ t1] flip[symmetric] | |
| 2652 | using rbt_sorted' flip | |
| 2653 | by (auto simp: rbt_sorted_fold_insertwk rbt_lookup_fold_rbt_insertwk split: option.splits) | |
| 2654 | qed | |
| 2655 | qed | |
| 2656 | ||
| 2657 | lemma rbtreeify_map_filter_inter: | |
| 2658 | fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b" | |
| 2659 | assumes "rbt_sorted t2" | |
| 2660 | shows "rbt_sorted (rbtreeify (map_filter_inter f t1 t2))" | |
| 2661 | "rbt_lookup (rbtreeify (map_filter_inter f t1 t2)) k = | |
| 2662 | (case rbt_lookup t1 k of None \<Rightarrow> None | |
| 2663 | | Some v \<Rightarrow> (case rbt_lookup t2 k of None \<Rightarrow> None | Some w \<Rightarrow> Some (f k v w)))" | |
| 2664 | proof - | |
| 2665 | have map_of_map_filter: "map_of (List.map_filter (\<lambda>(k, v). | |
| 2666 | case rbt_lookup t1 k of None \<Rightarrow> None | Some v' \<Rightarrow> Some (k, f k v' v)) xs) k = | |
| 2667 | (case rbt_lookup t1 k of None \<Rightarrow> None | |
| 2668 | | Some v \<Rightarrow> (case map_of xs k of None \<Rightarrow> None | Some w \<Rightarrow> Some (f k v w)))" for xs k | |
| 2669 | by (induction xs) (auto simp: List.map_filter_def split: option.splits) (* slow *) | |
| 2670 | have map_fst_map_filter: "map fst (List.map_filter (\<lambda>(k, v). | |
| 2671 | case rbt_lookup t1 k of None \<Rightarrow> None | Some v' \<Rightarrow> Some (k, f k v' v)) xs) = | |
| 2672 | filter (\<lambda>k. rbt_lookup t1 k \<noteq> None) (map fst xs)" for xs | |
| 2673 | by (induction xs) (auto simp: List.map_filter_def split: option.splits) | |
| 2674 | have "sorted (map fst (map_filter_inter f t1 t2))" | |
| 2675 | using sorted_filter[of id] rbt_sorted_entries[OF assms] | |
| 2676 | by (auto simp: map_filter_inter_def map_fst_map_filter) | |
| 2677 | moreover have "distinct (map fst (map_filter_inter f t1 t2))" | |
| 2678 | using distinct_filter distinct_entries[OF assms] | |
| 2679 | by (auto simp: map_filter_inter_def map_fst_map_filter) | |
| 2680 | ultimately show | |
| 2681 | "rbt_sorted (rbtreeify (map_filter_inter f t1 t2))" | |
| 2682 | "rbt_lookup (rbtreeify (map_filter_inter f t1 t2)) k = | |
| 2683 | (case rbt_lookup t1 k of None \<Rightarrow> None | |
| 2684 | | Some v \<Rightarrow> (case rbt_lookup t2 k of None \<Rightarrow> None | Some w \<Rightarrow> Some (f k v w)))" | |
| 2685 | using rbt_sorted_rbtreeify | |
| 2686 | by (auto simp: rbt_lookup_rbtreeify map_filter_inter_def map_of_map_filter | |
| 2687 | map_of_entries[OF assms] split: option.splits) | |
| 2688 | qed | |
| 2689 | ||
| 2690 | lemma rbt_lookup_inter_rec: "rbt_sorted t1 \<Longrightarrow> rbt_sorted t2 \<Longrightarrow> | |
| 2691 | rbt_sorted (rbt_inter_rec f t1 t2) \<and> rbt_lookup (rbt_inter_rec f t1 t2) k = | |
| 2692 | (case rbt_lookup t1 k of None \<Rightarrow> None | |
| 2693 | | Some v \<Rightarrow> (case rbt_lookup t2 k of None \<Rightarrow> None | Some w \<Rightarrow> Some (f k v w)))" | |
| 2694 | proof(induction f t1 t2 arbitrary: k rule: rbt_inter_rec.induct) | |
| 2695 | case (1 f t1 t2) | |
| 2696 | obtain f' t1' t2' where flip: "(f', t2', t1') = | |
| 2697 | (if flip_rbt t2 t1 then (\<lambda>k v v'. f k v' v, t1, t2) else (f, t2, t1))" | |
| 2698 | by fastforce | |
| 2699 | have rbt_sorted': "rbt_sorted t1'" "rbt_sorted t2'" | |
| 2700 | using 1(3,4) flip | |
| 2701 | by (auto split: if_splits) | |
| 2702 | show ?case | |
| 2703 | proof (cases t1') | |
| 2704 | case Empty | |
| 2705 | show ?thesis | |
| 2706 | unfolding rbt_inter_rec.simps[of _ t1] flip[symmetric] | |
| 2707 | using flip rbt_sorted' rbt_split_props[of t2] rbtreeify_map_filter_inter[OF rbt_sorted'(2)] | |
| 2708 | by (auto simp: Empty split: option.splits) | |
| 2709 | next | |
| 2710 | case (Branch c l1 a b r1) | |
| 2711 |     {
 | |
| 2712 | assume not_small: "\<not>small_rbt t2'" | |
| 2713 | obtain l2 \<beta> r2 where rbt_split_t2': "rbt_split t2' a = (l2, \<beta>, r2)" | |
| 2714 | by (cases "rbt_split t2' a") auto | |
| 2715 | note rbt_split_t2'_props = rbt_split_props[OF rbt_split_t2' rbt_sorted'(2)] | |
| 2716 | have rbt_sort: "rbt_sorted l1" "rbt_sorted r1" "rbt_sorted l2" "rbt_sorted r2" | |
| 2717 | using 1(3,4) flip | |
| 2718 | by (auto simp: Branch rbt_split_t2'_props split: if_splits) | |
| 2719 | have inter_l1_l2: "rbt_sorted (rbt_inter_rec f' l1 l2)" "rbt_lookup (rbt_inter_rec f' l1 l2) k = | |
| 2720 | (case rbt_lookup l1 k of None \<Rightarrow> None | |
| 2721 | | Some v \<Rightarrow> (case rbt_lookup l2 k of None \<Rightarrow> None | Some w \<Rightarrow> Some (f' k v w)))" for k | |
| 2722 | using 1(1)[OF flip refl refl _ Branch rbt_split_t2'[symmetric]] rbt_sort rbt_split_t2'_props | |
| 2723 | by (auto simp: not_small) | |
| 2724 | have inter_r1_r2: "rbt_sorted (rbt_inter_rec f' r1 r2)" "rbt_lookup (rbt_inter_rec f' r1 r2) k = | |
| 2725 | (case rbt_lookup r1 k of None \<Rightarrow> None | |
| 2726 | | Some v \<Rightarrow> (case rbt_lookup r2 k of None \<Rightarrow> None | Some w \<Rightarrow> Some (f' k v w)))" for k | |
| 2727 | using 1(2)[OF flip refl refl _ Branch rbt_split_t2'[symmetric]] rbt_sort rbt_split_t2'_props | |
| 2728 | by (auto simp: not_small) | |
| 2729 | have inter_l1_l2_keys: "set (RBT_Impl.keys (rbt_inter_rec f' l1 l2)) = | |
| 2730 | set (RBT_Impl.keys l1) \<inter> set (RBT_Impl.keys l2)" | |
| 2731 | using inter_l1_l2(1) | |
| 2732 | by (auto simp: rbt_lookup_iff_keys(1) inter_l1_l2(2) rbt_sort split: option.splits) | |
| 2733 | have inter_r1_r2_keys: "set (RBT_Impl.keys (rbt_inter_rec f' r1 r2)) = | |
| 2734 | set (RBT_Impl.keys r1) \<inter> set (RBT_Impl.keys r2)" | |
| 2735 | using inter_r1_r2(1) | |
| 2736 | by (auto simp: rbt_lookup_iff_keys(1) inter_r1_r2(2) rbt_sort split: option.splits) | |
| 2737 | have inter_l1_l2_less: "rbt_inter_rec f' l1 l2 |\<guillemotleft> a" | |
| 2738 | using rbt_sorted'(1) rbt_split_t2'_props | |
| 2739 | by (auto simp: Branch rbt_less_prop inter_l1_l2_keys) | |
| 2740 | have inter_r1_r2_greater: "a \<guillemotleft>| rbt_inter_rec f' r1 r2" | |
| 2741 | using rbt_sorted'(1) rbt_split_t2'_props | |
| 2742 | by (auto simp: Branch rbt_greater_prop inter_r1_r2_keys) | |
| 2743 | have rbt_lookup_join2: "rbt_lookup (rbt_join2 (rbt_inter_rec f' l1 l2) (rbt_inter_rec f' r1 r2)) k = | |
| 2744 | (case rbt_lookup (rbt_inter_rec f' l1 l2) k of None \<Rightarrow> rbt_lookup (rbt_inter_rec f' r1 r2) k | |
| 2745 | | Some v \<Rightarrow> Some v)" for k | |
| 2746 | using rbt_lookup_rbt_join2[OF inter_l1_l2(1) inter_r1_r2(1)] rbt_sorted'(1) | |
| 2747 | by (fastforce simp: Branch inter_l1_l2_keys inter_r1_r2_keys rbt_less_prop rbt_greater_prop) | |
| 2748 | have rbt_lookup_l1_k: "rbt_lookup l1 k = Some v \<Longrightarrow> k < a" for k v | |
| 2749 | using rbt_sorted'(1) rbt_lookup_iff_keys(3) | |
| 2750 | by (auto simp: Branch rbt_less_prop) | |
| 2751 | have rbt_lookup_r1_k: "rbt_lookup r1 k = Some v \<Longrightarrow> a < k" for k v | |
| 2752 | using rbt_sorted'(1) rbt_lookup_iff_keys(3) | |
| 2753 | by (auto simp: Branch rbt_greater_prop) | |
| 2754 | have "rbt_lookup (rbt_inter_rec f t1 t2) k = | |
| 2755 | (case rbt_lookup t1' k of None \<Rightarrow> None | |
| 2756 | | Some v \<Rightarrow> (case rbt_lookup t2' k of None \<Rightarrow> None | Some w \<Rightarrow> Some (f' k v w)))" | |
| 2757 | by (auto simp: Let_def rbt_inter_rec.simps[of _ t1] flip[symmetric] not_small Branch | |
| 2758 | rbt_split_t2' rbt_lookup_join2 rbt_lookup_rbt_join inter_l1_l2_less inter_r1_r2_greater | |
| 2759 | rbt_split_lookup[OF rbt_split_t2' rbt_sorted'(2)] inter_l1_l2 inter_r1_r2 | |
| 2760 | split!: if_splits option.splits dest: rbt_lookup_l1_k rbt_lookup_r1_k) | |
| 2761 | moreover have "rbt_sorted (rbt_inter_rec f t1 t2)" | |
| 2762 | using rbt_sorted' inter_l1_l2 inter_r1_r2 rbt_split_t2'_props not_small | |
| 2763 | by (auto simp: Let_def rbt_inter_rec.simps[of _ t1] flip[symmetric] Branch rbt_split_t2' | |
| 2764 | rbt_less_prop rbt_greater_prop inter_l1_l2_less inter_r1_r2_greater | |
| 2765 | inter_l1_l2_keys inter_r1_r2_keys intro!: rbt_sorted_rbt_join rbt_sorted_rbt_join2 | |
| 2766 | split: if_splits option.splits dest!: bspec) | |
| 2767 | ultimately have ?thesis | |
| 2768 | using flip | |
| 2769 | by (auto split: if_splits split: option.splits) | |
| 2770 | } | |
| 2771 | then show ?thesis | |
| 2772 | unfolding rbt_inter_rec.simps[of _ t1] flip[symmetric] | |
| 2773 | using rbt_sorted' flip rbtreeify_map_filter_inter[OF rbt_sorted'(2)] | |
| 2774 | by (auto split: option.splits) | |
| 2775 | qed | |
| 2776 | qed | |
| 2777 | ||
| 2778 | lemma rbt_lookup_delete: | |
| 2779 | assumes "inv_12 t" "rbt_sorted t" | |
| 2780 | shows "rbt_lookup (rbt_delete x t) k = (if x = k then None else rbt_lookup t k)" | |
| 2781 | proof - | |
| 2782 | note rbt_sorted_del = rbt_del_rbt_sorted[OF assms(2), of x] | |
| 2783 | show ?thesis | |
| 2784 | using assms rbt_sorted_del rbt_del_in_tree rbt_lookup_from_in_tree[OF assms(2) rbt_sorted_del] | |
| 2785 | by (fastforce simp: inv_12_def rbt_delete_def rbt_lookup_iff_keys(2) keys_entries) | |
| 2786 | qed | |
| 2787 | ||
| 2788 | lemma fold_rbt_delete: | |
| 2789 | assumes "inv_12 t1" "rbt_sorted t1" "rbt_sorted t2" | |
| 2790 | shows "inv_12 (RBT_Impl.fold (\<lambda>k _ t. rbt_delete k t) t2 t1) \<and> | |
| 2791 | rbt_sorted (RBT_Impl.fold (\<lambda>k _ t. rbt_delete k t) t2 t1) \<and> | |
| 2792 | rbt_lookup (RBT_Impl.fold (\<lambda>k _ t. rbt_delete k t) t2 t1) k = | |
| 2793 | (case rbt_lookup t1 k of None \<Rightarrow> None | |
| 2794 | | Some v \<Rightarrow> (case rbt_lookup t2 k of None \<Rightarrow> Some v | _ \<Rightarrow> None))" | |
| 2795 | proof - | |
| 2796 | define xs where "xs = RBT_Impl.entries t2" | |
| 2797 | show "inv_12 (RBT_Impl.fold (\<lambda>k _ t. rbt_delete k t) t2 t1) \<and> | |
| 2798 | rbt_sorted (RBT_Impl.fold (\<lambda>k _ t. rbt_delete k t) t2 t1) \<and> | |
| 2799 | rbt_lookup (RBT_Impl.fold (\<lambda>k _ t. rbt_delete k t) t2 t1) k = | |
| 2800 | (case rbt_lookup t1 k of None \<Rightarrow> None | |
| 2801 | | Some v \<Rightarrow> (case rbt_lookup t2 k of None \<Rightarrow> Some v | _ \<Rightarrow> None))" | |
| 2802 | using assms(1,2) | |
| 2803 | unfolding map_of_entries[OF assms(3), symmetric] RBT_Impl.fold_def xs_def[symmetric] | |
| 2804 | by (induction xs arbitrary: t1 rule: rev_induct) | |
| 2805 | (auto simp: rbt_delete rbt_sorted_delete rbt_lookup_delete split!: option.splits) | |
| 2806 | qed | |
| 2807 | ||
| 2808 | lemma rbtreeify_filter_minus: | |
| 2809 | assumes "rbt_sorted t1" | |
| 2810 | shows "rbt_sorted (rbtreeify (filter_minus t1 t2)) \<and> | |
| 2811 | rbt_lookup (rbtreeify (filter_minus t1 t2)) k = | |
| 2812 | (case rbt_lookup t1 k of None \<Rightarrow> None | |
| 2813 | | Some v \<Rightarrow> (case rbt_lookup t2 k of None \<Rightarrow> Some v | _ \<Rightarrow> None))" | |
| 2814 | proof - | |
| 2815 | have map_of_filter: "map_of (filter (\<lambda>(k, _). rbt_lookup t2 k = None) xs) k = | |
| 2816 | (case map_of xs k of None \<Rightarrow> None | |
| 2817 | | Some v \<Rightarrow> (case rbt_lookup t2 k of None \<Rightarrow> Some v | Some x \<Rightarrow> Map.empty x))" | |
| 2818 |       for xs :: "('a \<times> 'b) list"
 | |
| 2819 | by (induction xs) (auto split: option.splits) | |
| 2820 | have map_fst_filter_minus: "map fst (filter_minus t1 t2) = | |
| 2821 | filter (\<lambda>k. rbt_lookup t2 k = None) (map fst (RBT_Impl.entries t1))" | |
| 2822 | by (auto simp: filter_minus_def filter_map comp_def case_prod_unfold) | |
| 2823 | have "sorted (map fst (filter_minus t1 t2))" "distinct (map fst (filter_minus t1 t2))" | |
| 2824 | using distinct_filter distinct_entries[OF assms] | |
| 2825 | sorted_filter[of id] rbt_sorted_entries[OF assms] | |
| 2826 | by (auto simp: map_fst_filter_minus intro!: rbt_sorted_rbtreeify) | |
| 2827 | then show ?thesis | |
| 2828 | by (auto simp: rbt_lookup_rbtreeify filter_minus_def map_of_filter map_of_entries[OF assms] | |
| 2829 | intro!: rbt_sorted_rbtreeify) | |
| 2830 | qed | |
| 2831 | ||
| 2832 | lemma rbt_lookup_minus_rec: "inv_12 t1 \<Longrightarrow> rbt_sorted t1 \<Longrightarrow> rbt_sorted t2 \<Longrightarrow> | |
| 2833 | rbt_sorted (rbt_minus_rec t1 t2) \<and> rbt_lookup (rbt_minus_rec t1 t2) k = | |
| 2834 | (case rbt_lookup t1 k of None \<Rightarrow> None | |
| 2835 | | Some v \<Rightarrow> (case rbt_lookup t2 k of None \<Rightarrow> Some v | _ \<Rightarrow> None))" | |
| 2836 | proof(induction t1 t2 arbitrary: k rule: rbt_minus_rec.induct) | |
| 2837 | case (1 t1 t2) | |
| 2838 | show ?case | |
| 2839 | proof (cases t2) | |
| 2840 | case Empty | |
| 2841 | show ?thesis | |
| 2842 | using rbtreeify_filter_minus[OF 1(4)] 1(4) | |
| 2843 | by (auto simp: rbt_minus_rec.simps[of t1] Empty split: option.splits) | |
| 2844 | next | |
| 2845 | case (Branch c l2 a b r2) | |
| 2846 |     {
 | |
| 2847 | assume not_small: "\<not>small_rbt t2" "\<not>small_rbt t1" | |
| 2848 | obtain l1 \<beta> r1 where rbt_split_t1: "rbt_split t1 a = (l1, \<beta>, r1)" | |
| 2849 | by (cases "rbt_split t1 a") auto | |
| 2850 | note rbt_split_t1_props = rbt_split_props[OF rbt_split_t1 1(4)] | |
| 2851 | have minus_l1_l2: "rbt_sorted (rbt_minus_rec l1 l2)" | |
| 2852 | "rbt_lookup (rbt_minus_rec l1 l2) k = | |
| 2853 | (case rbt_lookup l1 k of None \<Rightarrow> None | |
| 2854 | | Some v \<Rightarrow> (case rbt_lookup l2 k of None \<Rightarrow> Some v | Some x \<Rightarrow> None))" for k | |
| 2855 | using 1(1)[OF not_small Branch rbt_split_t1[symmetric] refl] 1(5) rbt_split_t1_props | |
| 2856 | rbt_split[OF rbt_split_t1 1(3)] | |
| 2857 | by (auto simp: Branch) | |
| 2858 | have minus_r1_r2: "rbt_sorted (rbt_minus_rec r1 r2)" | |
| 2859 | "rbt_lookup (rbt_minus_rec r1 r2) k = | |
| 2860 | (case rbt_lookup r1 k of None \<Rightarrow> None | |
| 2861 | | Some v \<Rightarrow> (case rbt_lookup r2 k of None \<Rightarrow> Some v | Some x \<Rightarrow> None))" for k | |
| 2862 | using 1(2)[OF not_small Branch rbt_split_t1[symmetric] refl] 1(5) rbt_split_t1_props | |
| 2863 | rbt_split[OF rbt_split_t1 1(3)] | |
| 2864 | by (auto simp: Branch) | |
| 2865 | have minus_l1_l2_keys: "set (RBT_Impl.keys (rbt_minus_rec l1 l2)) = | |
| 2866 | set (RBT_Impl.keys l1) - set (RBT_Impl.keys l2)" | |
| 2867 | using minus_l1_l2(1) 1(5) rbt_lookup_iff_keys(3) rbt_split_t1_props | |
| 2868 | by (auto simp: Branch rbt_lookup_iff_keys(1) minus_l1_l2(2) split: option.splits) | |
| 2869 | have minus_r1_r2_keys: "set (RBT_Impl.keys (rbt_minus_rec r1 r2)) = | |
| 2870 | set (RBT_Impl.keys r1) - set (RBT_Impl.keys r2)" | |
| 2871 | using minus_r1_r2(1) 1(5) rbt_lookup_iff_keys(3) rbt_split_t1_props | |
| 2872 | by (auto simp: Branch rbt_lookup_iff_keys(1) minus_r1_r2(2) split: option.splits) | |
| 2873 | have rbt_lookup_join2: "rbt_lookup (rbt_join2 (rbt_minus_rec l1 l2) (rbt_minus_rec r1 r2)) k = | |
| 2874 | (case rbt_lookup (rbt_minus_rec l1 l2) k of None \<Rightarrow> rbt_lookup (rbt_minus_rec r1 r2) k | |
| 2875 | | Some v \<Rightarrow> Some v)" for k | |
| 2876 | using rbt_lookup_rbt_join2[OF minus_l1_l2(1) minus_r1_r2(1)] rbt_split_t1_props | |
| 2877 | by (fastforce simp: minus_l1_l2_keys minus_r1_r2_keys) | |
| 2878 | have lookup_l1_r1_a: "rbt_lookup l1 a = None" "rbt_lookup r1 a = None" | |
| 2879 | using rbt_split_t1_props | |
| 2880 | by (auto simp: rbt_lookup_iff_keys(2)) | |
| 2881 | have "rbt_lookup (rbt_minus_rec t1 t2) k = | |
| 2882 | (case rbt_lookup t1 k of None \<Rightarrow> None | |
| 2883 | | Some v \<Rightarrow> (case rbt_lookup t2 k of None \<Rightarrow> Some v | _ \<Rightarrow> None))" | |
| 2884 | using not_small rbt_lookup_iff_keys(2)[of l1] rbt_lookup_iff_keys(3)[of l1] | |
| 2885 | rbt_lookup_iff_keys(3)[of r1] rbt_split_t1_props | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73212diff
changeset | 2886 | using [[simp_depth_limit = 2]] | 
| 73211 | 2887 | by (auto simp: rbt_minus_rec.simps[of t1] Branch rbt_split_t1 rbt_lookup_join2 | 
| 2888 | minus_l1_l2(2) minus_r1_r2(2) rbt_split_lookup[OF rbt_split_t1 1(4)] lookup_l1_r1_a | |
| 2889 | split: option.splits) | |
| 2890 | moreover have "rbt_sorted (rbt_minus_rec t1 t2)" | |
| 2891 | using not_small minus_l1_l2(1) minus_r1_r2(1) rbt_split_t1_props rbt_sorted_rbt_join2 | |
| 2892 | by (fastforce simp: rbt_minus_rec.simps[of t1] Branch rbt_split_t1 minus_l1_l2_keys minus_r1_r2_keys) | |
| 2893 | ultimately have ?thesis | |
| 2894 | by (auto split: if_splits split: option.splits) | |
| 2895 | } | |
| 2896 | then show ?thesis | |
| 2897 | using fold_rbt_delete[OF 1(3,4,5)] rbtreeify_filter_minus[OF 1(4)] | |
| 2898 | by (auto simp: rbt_minus_rec.simps[of t1]) | |
| 2899 | qed | |
| 2900 | qed | |
| 2901 | ||
| 2902 | end | |
| 2903 | ||
| 2904 | context ord begin | |
| 2905 | ||
| 2906 | definition rbt_union_with_key :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | |
| 2907 | where | |
| 2908 | "rbt_union_with_key f t1 t2 = paint B (rbt_union_swap_rec f False t1 t2)" | |
| 2909 | ||
| 2910 | definition rbt_union_with where | |
| 2911 | "rbt_union_with f = rbt_union_with_key (\<lambda>_. f)" | |
| 2912 | ||
| 2913 | definition rbt_union where | |
| 2914 | "rbt_union = rbt_union_with_key (%_ _ rv. rv)" | |
| 2915 | ||
| 2916 | definition rbt_inter_with_key :: "('a \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt"
 | |
| 2917 | where | |
| 2918 | "rbt_inter_with_key f t1 t2 = paint B (rbt_inter_swap_rec f False t1 t2)" | |
| 2919 | ||
| 2920 | definition rbt_inter_with where | |
| 2921 | "rbt_inter_with f = rbt_inter_with_key (\<lambda>_. f)" | |
| 2922 | ||
| 2923 | definition rbt_inter where | |
| 2924 | "rbt_inter = rbt_inter_with_key (\<lambda>_ _ rv. rv)" | |
| 2925 | ||
| 2926 | definition rbt_minus where | |
| 2927 | "rbt_minus t1 t2 = paint B (rbt_minus_rec t1 t2)" | |
| 2928 | ||
| 2929 | end | |
| 2930 | ||
| 2931 | context linorder begin | |
| 2932 | ||
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2933 | lemma is_rbt_rbt_unionwk [simp]: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2934 | "\<lbrakk> is_rbt t1; is_rbt t2 \<rbrakk> \<Longrightarrow> is_rbt (rbt_union_with_key f t1 t2)" | 
| 73211 | 2935 | using rbt_union_rec rbt_lookup_union_rec | 
| 2936 | by (fastforce simp: rbt_union_with_key_def rbt_union_swap_rec is_rbt_def inv_12_def) | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2937 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2938 | lemma rbt_lookup_rbt_unionwk: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2939 | "\<lbrakk> rbt_sorted t1; rbt_sorted t2 \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2940 | \<Longrightarrow> rbt_lookup (rbt_union_with_key f t1 t2) k = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2941 | (case rbt_lookup t1 k of None \<Rightarrow> rbt_lookup t2 k | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2942 | | Some v \<Rightarrow> case rbt_lookup t2 k of None \<Rightarrow> Some v | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2943 | | Some w \<Rightarrow> Some (f k v w))" | 
| 73211 | 2944 | using rbt_lookup_union_rec | 
| 2945 | by (auto simp: rbt_union_with_key_def rbt_union_swap_rec) | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2946 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2947 | lemma rbt_unionw_is_rbt: "\<lbrakk> is_rbt lt; is_rbt rt \<rbrakk> \<Longrightarrow> is_rbt (rbt_union_with f lt rt)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2948 | by(simp add: rbt_union_with_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2949 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2950 | lemma rbt_union_is_rbt: "\<lbrakk> is_rbt lt; is_rbt rt \<rbrakk> \<Longrightarrow> is_rbt (rbt_union lt rt)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2951 | by(simp add: rbt_union_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2952 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2953 | lemma rbt_lookup_rbt_union: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2954 | "\<lbrakk> rbt_sorted s; rbt_sorted t \<rbrakk> \<Longrightarrow> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2955 | rbt_lookup (rbt_union s t) = rbt_lookup s ++ rbt_lookup t" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2956 | by(rule ext)(simp add: rbt_lookup_rbt_unionwk rbt_union_def map_add_def split: option.split) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2957 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2958 | lemma rbt_interwk_is_rbt [simp]: | 
| 73211 | 2959 | "\<lbrakk> is_rbt t1; is_rbt t2 \<rbrakk> \<Longrightarrow> is_rbt (rbt_inter_with_key f t1 t2)" | 
| 2960 | using rbt_inter_rec rbt_lookup_inter_rec | |
| 2961 | by (fastforce simp: rbt_inter_with_key_def rbt_inter_swap_rec is_rbt_def inv_12_def rbt_sorted_paint) | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2962 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2963 | lemma rbt_interw_is_rbt: | 
| 73211 | 2964 | "\<lbrakk> is_rbt t1; is_rbt t2 \<rbrakk> \<Longrightarrow> is_rbt (rbt_inter_with f t1 t2)" | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2965 | by(simp add: rbt_inter_with_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2966 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2967 | lemma rbt_inter_is_rbt: | 
| 73211 | 2968 | "\<lbrakk> is_rbt t1; is_rbt t2 \<rbrakk> \<Longrightarrow> is_rbt (rbt_inter t1 t2)" | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2969 | by(simp add: rbt_inter_def) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2970 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2971 | lemma rbt_lookup_rbt_interwk: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2972 | "\<lbrakk> rbt_sorted t1; rbt_sorted t2 \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2973 | \<Longrightarrow> rbt_lookup (rbt_inter_with_key f t1 t2) k = | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2974 | (case rbt_lookup t1 k of None \<Rightarrow> None | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2975 | | Some v \<Rightarrow> case rbt_lookup t2 k of None \<Rightarrow> None | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2976 | | Some w \<Rightarrow> Some (f k v w))" | 
| 73211 | 2977 | using rbt_lookup_inter_rec | 
| 2978 | by (auto simp: rbt_inter_with_key_def rbt_inter_swap_rec) | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2979 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2980 | lemma rbt_lookup_rbt_inter: | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2981 | "\<lbrakk> rbt_sorted t1; rbt_sorted t2 \<rbrakk> | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2982 | \<Longrightarrow> rbt_lookup (rbt_inter t1 t2) = rbt_lookup t2 |` dom (rbt_lookup t1)" | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2983 | by(auto simp add: rbt_inter_def rbt_lookup_rbt_interwk restrict_map_def split: option.split) | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2984 | |
| 73211 | 2985 | lemma rbt_minus_is_rbt: | 
| 2986 | "\<lbrakk> is_rbt t1; is_rbt t2 \<rbrakk> \<Longrightarrow> is_rbt (rbt_minus t1 t2)" | |
| 2987 | using rbt_minus_rec[of t1 t2] rbt_lookup_minus_rec[of t1 t2] | |
| 2988 | by (auto simp: rbt_minus_def is_rbt_def inv_12_def) | |
| 2989 | ||
| 2990 | lemma rbt_lookup_rbt_minus: | |
| 2991 | "\<lbrakk> is_rbt t1; is_rbt t2 \<rbrakk> | |
| 2992 | \<Longrightarrow> rbt_lookup (rbt_minus t1 t2) = rbt_lookup t1 |` (- dom (rbt_lookup t2))" | |
| 2993 | by (rule ext) | |
| 2994 | (auto simp: rbt_minus_def is_rbt_def inv_12_def restrict_map_def rbt_lookup_minus_rec | |
| 2995 | split: option.splits) | |
| 2996 | ||
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2997 | end | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2998 | |
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 2999 | |
| 60500 | 3000 | subsection \<open>Code generator setup\<close> | 
| 49480 | 3001 | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3002 | lemmas [code] = | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3003 | ord.rbt_less_prop | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3004 | ord.rbt_greater_prop | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3005 | ord.rbt_sorted.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3006 | ord.rbt_lookup.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3007 | ord.is_rbt_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3008 | ord.rbt_ins.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3009 | ord.rbt_insert_with_key_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3010 | ord.rbt_insertw_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3011 | ord.rbt_insert_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3012 | ord.rbt_del_from_left.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3013 | ord.rbt_del_from_right.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3014 | ord.rbt_del.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3015 | ord.rbt_delete_def | 
| 73211 | 3016 | ord.rbt_split.simps | 
| 3017 | ord.rbt_union_swap_rec.simps | |
| 3018 | ord.map_filter_inter_def | |
| 3019 | ord.rbt_inter_swap_rec.simps | |
| 3020 | ord.filter_minus_def | |
| 3021 | ord.rbt_minus_rec.simps | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 3022 | ord.rbt_union_with_key_def | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3023 | ord.rbt_union_with_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3024 | ord.rbt_union_def | 
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 3025 | ord.rbt_inter_with_key_def | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 3026 | ord.rbt_inter_with_def | 
| 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 3027 | ord.rbt_inter_def | 
| 73211 | 3028 | ord.rbt_minus_def | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3029 | ord.rbt_map_entry.simps | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3030 | ord.rbt_bulkload_def | 
| 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3031 | |
| 69593 | 3032 | text \<open>More efficient implementations for \<^term>\<open>entries\<close> and \<^term>\<open>keys\<close>\<close> | 
| 49480 | 3033 | |
| 3034 | definition gen_entries :: | |
| 3035 |   "(('a \<times> 'b) \<times> ('a, 'b) rbt) list \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a \<times> 'b) list"
 | |
| 3036 | where | |
| 49770 
cf6a78acf445
efficient construction of red black trees from sorted associative lists
 Andreas Lochbihler parents: 
49480diff
changeset | 3037 | "gen_entries kvts t = entries t @ concat (map (\<lambda>(kv, t). kv # entries t) kvts)" | 
| 49480 | 3038 | |
| 3039 | lemma gen_entries_simps [simp, code]: | |
| 3040 | "gen_entries [] Empty = []" | |
| 3041 | "gen_entries ((kv, t) # kvts) Empty = kv # gen_entries kvts t" | |
| 3042 | "gen_entries kvts (Branch c l k v r) = gen_entries (((k, v), r) # kvts) l" | |
| 3043 | by(simp_all add: gen_entries_def) | |
| 3044 | ||
| 3045 | lemma entries_code [code]: | |
| 3046 | "entries = gen_entries []" | |
| 3047 | by(simp add: gen_entries_def fun_eq_iff) | |
| 3048 | ||
| 3049 | definition gen_keys :: "('a \<times> ('a, 'b) rbt) list \<Rightarrow> ('a, 'b) rbt \<Rightarrow> 'a list"
 | |
| 3050 | where "gen_keys kts t = RBT_Impl.keys t @ concat (List.map (\<lambda>(k, t). k # keys t) kts)" | |
| 3051 | ||
| 3052 | lemma gen_keys_simps [simp, code]: | |
| 3053 | "gen_keys [] Empty = []" | |
| 3054 | "gen_keys ((k, t) # kts) Empty = k # gen_keys kts t" | |
| 3055 | "gen_keys kts (Branch c l k v r) = gen_keys ((k, r) # kts) l" | |
| 3056 | by(simp_all add: gen_keys_def) | |
| 3057 | ||
| 3058 | lemma keys_code [code]: | |
| 3059 | "keys = gen_keys []" | |
| 3060 | by(simp add: gen_keys_def fun_eq_iff) | |
| 3061 | ||
| 60500 | 3062 | text \<open>Restore original type constraints for constants\<close> | 
| 3063 | setup \<open> | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3064 | fold Sign.add_const_constraint | 
| 69593 | 3065 |     [(\<^const_name>\<open>rbt_less\<close>, SOME \<^typ>\<open>('a :: order) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool\<close>),
 | 
| 3066 |      (\<^const_name>\<open>rbt_greater\<close>, SOME \<^typ>\<open>('a :: order) \<Rightarrow> ('a, 'b) rbt \<Rightarrow> bool\<close>),
 | |
| 3067 |      (\<^const_name>\<open>rbt_sorted\<close>, SOME \<^typ>\<open>('a :: linorder, 'b) rbt \<Rightarrow> bool\<close>),
 | |
| 3068 |      (\<^const_name>\<open>rbt_lookup\<close>, SOME \<^typ>\<open>('a :: linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b\<close>),
 | |
| 3069 |      (\<^const_name>\<open>is_rbt\<close>, SOME \<^typ>\<open>('a :: linorder, 'b) rbt \<Rightarrow> bool\<close>),
 | |
| 3070 |      (\<^const_name>\<open>rbt_ins\<close>, SOME \<^typ>\<open>('a::linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3071 |      (\<^const_name>\<open>rbt_insert_with_key\<close>, SOME \<^typ>\<open>('a::linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3072 |      (\<^const_name>\<open>rbt_insert_with\<close>, SOME \<^typ>\<open>('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a :: linorder) \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3073 |      (\<^const_name>\<open>rbt_insert\<close>, SOME \<^typ>\<open>('a :: linorder) \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3074 |      (\<^const_name>\<open>rbt_del_from_left\<close>, SOME \<^typ>\<open>('a::linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3075 |      (\<^const_name>\<open>rbt_del_from_right\<close>, SOME \<^typ>\<open>('a::linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3076 |      (\<^const_name>\<open>rbt_del\<close>, SOME \<^typ>\<open>('a::linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3077 |      (\<^const_name>\<open>rbt_delete\<close>, SOME \<^typ>\<open>('a::linorder) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3078 |      (\<^const_name>\<open>rbt_union_with_key\<close>, SOME \<^typ>\<open>('a::linorder \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3079 |      (\<^const_name>\<open>rbt_union_with\<close>, SOME \<^typ>\<open>('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a::linorder,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3080 |      (\<^const_name>\<open>rbt_union\<close>, SOME \<^typ>\<open>('a::linorder,'b) rbt \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3081 |      (\<^const_name>\<open>rbt_map_entry\<close>, SOME \<^typ>\<open>'a::linorder \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a,'b) rbt \<Rightarrow> ('a,'b) rbt\<close>),
 | |
| 3082 |      (\<^const_name>\<open>rbt_bulkload\<close>, SOME \<^typ>\<open>('a \<times> 'b) list \<Rightarrow> ('a::linorder,'b) rbt\<close>)]
 | |
| 60500 | 3083 | \<close> | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
47397diff
changeset | 3084 | |
| 73212 
87e3c180044a
hide the internal abbreviations MR and MB
 Andreas Lochbihler <mail@andreas-lochbihler.de> parents: 
73211diff
changeset | 3085 | hide_const (open) MR MB R B Empty entries keys fold gen_keys gen_entries | 
| 26192 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 3086 | |
| 
52617dca8386
new theory of red-black trees, an efficient implementation of finite maps.
 krauss parents: diff
changeset | 3087 | end |