| author | desharna | 
| Fri, 21 Mar 2025 15:20:13 +0100 | |
| changeset 82314 | c95eca07f6a0 | 
| parent 82310 | 41f5266e5595 | 
| child 82691 | b69e4da2604b | 
| permissions | -rw-r--r-- | 
| 49087 | 1 | (* Title: HOL/Library/Sublist.thy | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 2 | Author: Tobias Nipkow and Markus Wenzel, TU München | 
| 49087 | 3 | Author: Christian Sternagel, JAIST | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 4 | Author: Manuel Eberl, TU München | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 5 | *) | 
| 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 6 | |
| 60500 | 7 | section \<open>List prefixes, suffixes, and homeomorphic embedding\<close> | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 8 | |
| 49087 | 9 | theory Sublist | 
| 10 | imports Main | |
| 15131 | 11 | begin | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 12 | |
| 60500 | 13 | subsection \<open>Prefix order on lists\<close> | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 14 | |
| 63117 | 15 | definition prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 16 | where "prefix xs ys \<longleftrightarrow> (\<exists>zs. ys = xs @ zs)" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 17 | |
| 63117 | 18 | definition strict_prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 19 | where "strict_prefix xs ys \<longleftrightarrow> prefix xs ys \<and> xs \<noteq> ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 20 | |
| 73411 | 21 | global_interpretation prefix_order: ordering prefix strict_prefix | 
| 22 | by standard (auto simp add: prefix_def strict_prefix_def) | |
| 23 | ||
| 63117 | 24 | interpretation prefix_order: order prefix strict_prefix | 
| 25 | by standard (auto simp: prefix_def strict_prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 26 | |
| 73411 | 27 | global_interpretation prefix_bot: ordering_top \<open>\<lambda>xs ys. prefix ys xs\<close> \<open>\<lambda>xs ys. strict_prefix ys xs\<close> \<open>[]\<close> | 
| 28 | by standard (simp add: prefix_def) | |
| 29 | ||
| 63117 | 30 | interpretation prefix_bot: order_bot Nil prefix strict_prefix | 
| 31 | by standard (simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 32 | |
| 63117 | 33 | lemma prefixI [intro?]: "ys = xs @ zs \<Longrightarrow> prefix xs ys" | 
| 34 | unfolding prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 35 | |
| 63117 | 36 | lemma prefixE [elim?]: | 
| 37 | assumes "prefix xs ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 38 | obtains zs where "ys = xs @ zs" | 
| 63117 | 39 | using assms unfolding prefix_def by blast | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 40 | |
| 63117 | 41 | lemma strict_prefixI' [intro?]: "ys = xs @ z # zs \<Longrightarrow> strict_prefix xs ys" | 
| 42 | unfolding strict_prefix_def prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 43 | |
| 63117 | 44 | lemma strict_prefixE' [elim?]: | 
| 45 | assumes "strict_prefix xs ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 46 | obtains z zs where "ys = xs @ z # zs" | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 47 | proof - | 
| 63117 | 48 | from \<open>strict_prefix xs ys\<close> obtain us where "ys = xs @ us" and "xs \<noteq> ys" | 
| 49 | unfolding strict_prefix_def prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 50 | with that show ?thesis by (auto simp add: neq_Nil_conv) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 51 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 52 | |
| 63155 | 53 | (* FIXME rm *) | 
| 63117 | 54 | lemma strict_prefixI [intro?]: "prefix xs ys \<Longrightarrow> xs \<noteq> ys \<Longrightarrow> strict_prefix xs ys" | 
| 63155 | 55 | by(fact prefix_order.le_neq_trans) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 56 | |
| 63117 | 57 | lemma strict_prefixE [elim?]: | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 58 | fixes xs ys :: "'a list" | 
| 63117 | 59 | assumes "strict_prefix xs ys" | 
| 60 | obtains "prefix xs ys" and "xs \<noteq> ys" | |
| 61 | using assms unfolding strict_prefix_def by blast | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 62 | |
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 63 | |
| 60500 | 64 | subsection \<open>Basic properties of prefixes\<close> | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 65 | |
| 65869 | 66 | theorem Nil_prefix [simp]: "prefix [] xs" | 
| 67 | by (fact prefix_bot.bot_least) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 68 | |
| 63117 | 69 | theorem prefix_Nil [simp]: "(prefix xs []) = (xs = [])" | 
| 65869 | 70 | by (fact prefix_bot.bot_unique) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 71 | |
| 63117 | 72 | lemma prefix_snoc [simp]: "prefix xs (ys @ [y]) \<longleftrightarrow> xs = ys @ [y] \<or> prefix xs ys" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 73 | proof | 
| 63117 | 74 | assume "prefix xs (ys @ [y])" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 75 | then obtain zs where zs: "ys @ [y] = xs @ zs" .. | 
| 63117 | 76 | show "xs = ys @ [y] \<or> prefix xs ys" | 
| 77 | by (metis append_Nil2 butlast_append butlast_snoc prefixI zs) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 78 | next | 
| 63117 | 79 | assume "xs = ys @ [y] \<or> prefix xs ys" | 
| 80 | then show "prefix xs (ys @ [y])" | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 81 | using prefix_def prefix_order.order_trans by blast | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 82 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 83 | |
| 63117 | 84 | lemma Cons_prefix_Cons [simp]: "prefix (x # xs) (y # ys) = (x = y \<and> prefix xs ys)" | 
| 85 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 86 | |
| 63117 | 87 | lemma prefix_code [code]: | 
| 88 | "prefix [] xs \<longleftrightarrow> True" | |
| 89 | "prefix (x # xs) [] \<longleftrightarrow> False" | |
| 90 | "prefix (x # xs) (y # ys) \<longleftrightarrow> x = y \<and> prefix xs ys" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 91 | by simp_all | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 92 | |
| 63117 | 93 | lemma same_prefix_prefix [simp]: "prefix (xs @ ys) (xs @ zs) = prefix ys zs" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 94 | by (induct xs) simp_all | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 95 | |
| 65869 | 96 | lemma same_prefix_nil [simp]: "prefix (xs @ ys) xs = (ys = [])" | 
| 81332 | 97 | by (simp add: prefix_def) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 98 | |
| 63117 | 99 | lemma prefix_prefix [simp]: "prefix xs ys \<Longrightarrow> prefix xs (ys @ zs)" | 
| 64886 | 100 | unfolding prefix_def by fastforce | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 101 | |
| 63117 | 102 | lemma append_prefixD: "prefix (xs @ ys) zs \<Longrightarrow> prefix xs zs" | 
| 103 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 104 | |
| 63117 | 105 | theorem prefix_Cons: "prefix xs (y # ys) = (xs = [] \<or> (\<exists>zs. xs = y # zs \<and> prefix zs ys))" | 
| 106 | by (cases xs) (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 107 | |
| 63117 | 108 | theorem prefix_append: | 
| 109 | "prefix xs (ys @ zs) = (prefix xs ys \<or> (\<exists>us. xs = ys @ us \<and> prefix us zs))" | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 110 | proof (induct zs rule: rev_induct) | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 111 | case Nil | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 112 | then show ?case by force | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 113 | next | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 114 | case (snoc x xs) | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 115 | then show ?case | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 116 | by (metis append.assoc prefix_snoc) | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 117 | qed | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 118 | |
| 63117 | 119 | lemma append_one_prefix: | 
| 120 | "prefix xs ys \<Longrightarrow> length xs < length ys \<Longrightarrow> prefix (xs @ [ys ! length xs]) ys" | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 121 | proof (unfold prefix_def) | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 122 | assume a1: "\<exists>zs. ys = xs @ zs" | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 123 | then obtain sk :: "'a list" where sk: "ys = xs @ sk" by fastforce | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 124 | assume a2: "length xs < length ys" | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 125 | have f1: "\<And>v. ([]::'a list) @ v = v" using append_Nil2 by simp | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 126 | have "[] \<noteq> sk" using a1 a2 sk less_not_refl by force | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 127 | hence "\<exists>v. xs @ hd sk # v = ys" using sk by (metis hd_Cons_tl) | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 128 | thus "\<exists>zs. ys = (xs @ [ys ! length xs]) @ zs" using f1 by fastforce | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 129 | qed | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 130 | |
| 63117 | 131 | theorem prefix_length_le: "prefix xs ys \<Longrightarrow> length xs \<le> length ys" | 
| 132 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 133 | |
| 63117 | 134 | lemma prefix_same_cases: | 
| 135 | "prefix (xs\<^sub>1::'a list) ys \<Longrightarrow> prefix xs\<^sub>2 ys \<Longrightarrow> prefix xs\<^sub>1 xs\<^sub>2 \<or> prefix xs\<^sub>2 xs\<^sub>1" | |
| 136 | unfolding prefix_def by (force simp: append_eq_append_conv2) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 137 | |
| 63173 | 138 | lemma prefix_length_prefix: | 
| 139 | "prefix ps xs \<Longrightarrow> prefix qs xs \<Longrightarrow> length ps \<le> length qs \<Longrightarrow> prefix ps qs" | |
| 140 | by (auto simp: prefix_def) (metis append_Nil2 append_eq_append_conv_if) | |
| 141 | ||
| 63117 | 142 | lemma set_mono_prefix: "prefix xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 143 | by (auto simp add: prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 144 | |
| 63117 | 145 | lemma take_is_prefix: "prefix (take n xs) xs" | 
| 146 | unfolding prefix_def by (metis append_take_drop_id) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 147 | |
| 73380 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 148 | lemma takeWhile_is_prefix: "prefix (takeWhile P xs) xs" | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 149 | unfolding prefix_def by (metis takeWhile_dropWhile_id) | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 150 | |
| 63155 | 151 | lemma prefixeq_butlast: "prefix (butlast xs) xs" | 
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 152 | by (simp add: butlast_conv_take take_is_prefix) | 
| 63155 | 153 | |
| 71789 | 154 | lemma prefix_map_rightE: | 
| 155 | assumes "prefix xs (map f ys)" | |
| 156 | shows "\<exists>xs'. prefix xs' ys \<and> xs = map f xs'" | |
| 157 | proof - | |
| 158 | define n where "n = length xs" | |
| 159 | have "xs = take n (map f ys)" | |
| 160 | using assms by (auto simp: prefix_def n_def) | |
| 161 | thus ?thesis | |
| 162 | by (intro exI[of _ "take n ys"]) (auto simp: take_map take_is_prefix) | |
| 163 | qed | |
| 164 | ||
| 67606 | 165 | lemma map_mono_prefix: "prefix xs ys \<Longrightarrow> prefix (map f xs) (map f ys)" | 
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 166 | by (auto simp: prefix_def) | 
| 67606 | 167 | |
| 168 | lemma filter_mono_prefix: "prefix xs ys \<Longrightarrow> prefix (filter P xs) (filter P ys)" | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 169 | by (auto simp: prefix_def) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 170 | |
| 67612 | 171 | lemma sorted_antimono_prefix: "prefix xs ys \<Longrightarrow> sorted ys \<Longrightarrow> sorted xs" | 
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 172 | by (metis sorted_append prefix_def) | 
| 67612 | 173 | |
| 63117 | 174 | lemma prefix_length_less: "strict_prefix xs ys \<Longrightarrow> length xs < length ys" | 
| 175 | by (auto simp: strict_prefix_def prefix_def) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 176 | |
| 63155 | 177 | lemma prefix_snocD: "prefix (xs@[x]) ys \<Longrightarrow> strict_prefix xs ys" | 
| 178 | by (simp add: strict_prefixI' prefix_order.dual_order.strict_trans1) | |
| 179 | ||
| 63117 | 180 | lemma strict_prefix_simps [simp, code]: | 
| 181 | "strict_prefix xs [] \<longleftrightarrow> False" | |
| 182 | "strict_prefix [] (x # xs) \<longleftrightarrow> True" | |
| 183 | "strict_prefix (x # xs) (y # ys) \<longleftrightarrow> x = y \<and> strict_prefix xs ys" | |
| 184 | by (simp_all add: strict_prefix_def cong: conj_cong) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 185 | |
| 63117 | 186 | lemma take_strict_prefix: "strict_prefix xs ys \<Longrightarrow> strict_prefix (take n xs) ys" | 
| 63649 | 187 | proof (induct n arbitrary: xs ys) | 
| 188 | case 0 | |
| 189 | then show ?case by (cases ys) simp_all | |
| 190 | next | |
| 191 | case (Suc n) | |
| 192 | then show ?case by (metis prefix_order.less_trans strict_prefixI take_is_prefix) | |
| 193 | qed | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 194 | |
| 71789 | 195 | lemma prefix_takeWhile: | 
| 196 | assumes "prefix xs ys" | |
| 197 | shows "prefix (takeWhile P xs) (takeWhile P ys)" | |
| 198 | proof - | |
| 199 | from assms obtain zs where ys: "ys = xs @ zs" | |
| 200 | by (auto simp: prefix_def) | |
| 201 | have "prefix (takeWhile P xs) (takeWhile P (xs @ zs))" | |
| 202 | by (induction xs) auto | |
| 203 | thus ?thesis by (simp add: ys) | |
| 204 | qed | |
| 205 | ||
| 206 | lemma prefix_dropWhile: | |
| 207 | assumes "prefix xs ys" | |
| 208 | shows "prefix (dropWhile P xs) (dropWhile P ys)" | |
| 209 | proof - | |
| 210 | from assms obtain zs where ys: "ys = xs @ zs" | |
| 211 | by (auto simp: prefix_def) | |
| 212 | have "prefix (dropWhile P xs) (dropWhile P (xs @ zs))" | |
| 213 | by (induction xs) auto | |
| 214 | thus ?thesis by (simp add: ys) | |
| 215 | qed | |
| 216 | ||
| 217 | lemma prefix_remdups_adj: | |
| 218 | assumes "prefix xs ys" | |
| 219 | shows "prefix (remdups_adj xs) (remdups_adj ys)" | |
| 220 | using assms | |
| 221 | proof (induction "length xs" arbitrary: xs ys rule: less_induct) | |
| 222 | case (less xs) | |
| 223 | show ?case | |
| 224 | proof (cases xs) | |
| 225 | case [simp]: (Cons x xs') | |
| 226 | then obtain y ys' where [simp]: "ys = y # ys'" | |
| 227 | using \<open>prefix xs ys\<close> by (cases ys) auto | |
| 228 | from less show ?thesis | |
| 229 | by (auto simp: remdups_adj_Cons' less_Suc_eq_le length_dropWhile_le | |
| 230 | intro!: less prefix_dropWhile) | |
| 231 | qed auto | |
| 232 | qed | |
| 233 | ||
| 63117 | 234 | lemma not_prefix_cases: | 
| 235 | assumes pfx: "\<not> prefix ps ls" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 236 | obtains | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 237 | (c1) "ps \<noteq> []" and "ls = []" | 
| 63117 | 238 | | (c2) a as x xs where "ps = a#as" and "ls = x#xs" and "x = a" and "\<not> prefix as xs" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 239 | | (c3) a as x xs where "ps = a#as" and "ls = x#xs" and "x \<noteq> a" | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 240 | proof (cases ps) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 241 | case Nil | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 242 | then show ?thesis using pfx by simp | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 243 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 244 | case (Cons a as) | 
| 60500 | 245 | note c = \<open>ps = a#as\<close> | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 246 | show ?thesis | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 247 | proof (cases ls) | 
| 63117 | 248 | case Nil then show ?thesis by (metis append_Nil2 pfx c1 same_prefix_nil) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 249 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 250 | case (Cons x xs) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 251 | show ?thesis | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 252 | proof (cases "x = a") | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 253 | case True | 
| 63117 | 254 | have "\<not> prefix as xs" using pfx c Cons True by simp | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 255 | with c Cons True show ?thesis by (rule c2) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 256 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 257 | case False | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 258 | with c Cons show ?thesis by (rule c3) | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 259 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 260 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 261 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 262 | |
| 63117 | 263 | lemma not_prefix_induct [consumes 1, case_names Nil Neq Eq]: | 
| 264 | assumes np: "\<not> prefix ps ls" | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 265 | and base: "\<And>x xs. P (x#xs) []" | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 266 | and r1: "\<And>x xs y ys. x \<noteq> y \<Longrightarrow> P (x#xs) (y#ys)" | 
| 63117 | 267 | and r2: "\<And>x xs y ys. \<lbrakk> x = y; \<not> prefix xs ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys)" | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 268 | shows "P ps ls" using np | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 269 | proof (induct ls arbitrary: ps) | 
| 63649 | 270 | case Nil | 
| 271 | then show ?case | |
| 63117 | 272 | by (auto simp: neq_Nil_conv elim!: not_prefix_cases intro!: base) | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 273 | next | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 274 | case (Cons y ys) | 
| 63117 | 275 | then have npfx: "\<not> prefix ps (y # ys)" by simp | 
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 276 | then obtain x xs where pv: "ps = x # xs" | 
| 63117 | 277 | by (rule not_prefix_cases) auto | 
| 278 | show ?case by (metis Cons.hyps Cons_prefix_Cons npfx pv r1 r2) | |
| 55579 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 279 | qed | 
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 280 | |
| 
207538943038
reverted ba7392b52a7c: List_Prefix not needed anymore by codatatypes
 traytel parents: 
54538diff
changeset | 281 | |
| 63155 | 282 | subsection \<open>Prefixes\<close> | 
| 283 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 284 | primrec prefixes where | 
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 285 | "prefixes [] = [[]]" | | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 286 | "prefixes (x#xs) = [] # map ((#) x) (prefixes xs)" | 
| 63155 | 287 | |
| 288 | lemma in_set_prefixes[simp]: "xs \<in> set (prefixes ys) \<longleftrightarrow> prefix xs ys" | |
| 63649 | 289 | proof (induct xs arbitrary: ys) | 
| 290 | case Nil | |
| 291 | then show ?case by (cases ys) auto | |
| 292 | next | |
| 293 | case (Cons a xs) | |
| 294 | then show ?case by (cases ys) auto | |
| 295 | qed | |
| 63155 | 296 | |
| 297 | lemma length_prefixes[simp]: "length (prefixes xs) = length xs+1" | |
| 65869 | 298 | by (induction xs) auto | 
| 81332 | 299 | |
| 65869 | 300 | lemma distinct_prefixes [intro]: "distinct (prefixes xs)" | 
| 301 | by (induction xs) (auto simp: distinct_map) | |
| 302 | ||
| 303 | lemma prefixes_snoc [simp]: "prefixes (xs@[x]) = prefixes xs @ [xs@[x]]" | |
| 304 | by (induction xs) auto | |
| 305 | ||
| 306 | lemma prefixes_not_Nil [simp]: "prefixes xs \<noteq> []" | |
| 307 | by (cases xs) auto | |
| 63155 | 308 | |
| 65869 | 309 | lemma hd_prefixes [simp]: "hd (prefixes xs) = []" | 
| 310 | by (cases xs) simp_all | |
| 63155 | 311 | |
| 65869 | 312 | lemma last_prefixes [simp]: "last (prefixes xs) = xs" | 
| 313 | by (induction xs) (simp_all add: last_map) | |
| 81332 | 314 | |
| 315 | lemma prefixes_append: | |
| 65869 | 316 | "prefixes (xs @ ys) = prefixes xs @ map (\<lambda>ys'. xs @ ys') (tl (prefixes ys))" | 
| 317 | proof (induction xs) | |
| 318 | case Nil | |
| 319 | thus ?case by (cases ys) auto | |
| 320 | qed simp_all | |
| 321 | ||
| 322 | lemma prefixes_eq_snoc: | |
| 63155 | 323 | "prefixes ys = xs @ [x] \<longleftrightarrow> | 
| 324 | (ys = [] \<and> xs = [] \<or> (\<exists>z zs. ys = zs@[z] \<and> xs = prefixes zs)) \<and> x = ys" | |
| 65869 | 325 | by (cases ys rule: rev_cases) auto | 
| 326 | ||
| 81332 | 327 | lemma prefixes_tailrec [code]: | 
| 65869 | 328 | "prefixes xs = rev (snd (foldl (\<lambda>(acc1, acc2) x. (x#acc1, rev (x#acc1)#acc2)) ([],[[]]) xs))" | 
| 329 | proof - | |
| 330 | have "foldl (\<lambda>(acc1, acc2) x. (x#acc1, rev (x#acc1)#acc2)) (ys, rev ys # zs) xs = | |
| 331 | (rev xs @ ys, rev (map (\<lambda>as. rev ys @ as) (prefixes xs)) @ zs)" for ys zs | |
| 332 | proof (induction xs arbitrary: ys zs) | |
| 333 | case (Cons x xs ys zs) | |
| 334 | from Cons.IH[of "x # ys" "rev ys # zs"] | |
| 335 | show ?case by (simp add: o_def) | |
| 336 | qed simp_all | |
| 337 | from this [of "[]" "[]"] show ?thesis by simp | |
| 338 | qed | |
| 81332 | 339 | |
| 65869 | 340 | lemma set_prefixes_eq: "set (prefixes xs) = {ys. prefix ys xs}"
 | 
| 341 | by auto | |
| 342 | ||
| 343 | lemma card_set_prefixes [simp]: "card (set (prefixes xs)) = Suc (length xs)" | |
| 344 | by (subst distinct_card) auto | |
| 345 | ||
| 81332 | 346 | lemma set_prefixes_append: | 
| 65869 | 347 |   "set (prefixes (xs @ ys)) = set (prefixes xs) \<union> {xs @ ys' |ys'. ys' \<in> set (prefixes ys)}"
 | 
| 348 | by (subst prefixes_append, cases ys) auto | |
| 63155 | 349 | |
| 350 | ||
| 63173 | 351 | subsection \<open>Longest Common Prefix\<close> | 
| 352 | ||
| 353 | definition Longest_common_prefix :: "'a list set \<Rightarrow> 'a list" where | |
| 65954 | 354 | "Longest_common_prefix L = (ARG_MAX length ps. \<forall>xs \<in> L. prefix ps xs)" | 
| 63173 | 355 | |
| 356 | lemma Longest_common_prefix_ex: "L \<noteq> {} \<Longrightarrow>
 | |
| 357 | \<exists>ps. (\<forall>xs \<in> L. prefix ps xs) \<and> (\<forall>qs. (\<forall>xs \<in> L. prefix qs xs) \<longrightarrow> size qs \<le> size ps)" | |
| 358 | (is "_ \<Longrightarrow> \<exists>ps. ?P L ps") | |
| 359 | proof(induction "LEAST n. \<exists>xs \<in>L. n = length xs" arbitrary: L) | |
| 360 | case 0 | |
| 67613 | 361 |   have "[] \<in> L" using "0.hyps" LeastI[of "\<lambda>n. \<exists>xs\<in>L. n = length xs"] \<open>L \<noteq> {}\<close>
 | 
| 63173 | 362 | by auto | 
| 363 | hence "?P L []" by(auto) | |
| 364 | thus ?case .. | |
| 365 | next | |
| 366 | case (Suc n) | |
| 367 | let ?EX = "\<lambda>n. \<exists>xs\<in>L. n = length xs" | |
| 368 | obtain x xs where xxs: "x#xs \<in> L" "size xs = n" using Suc.prems Suc.hyps(2) | |
| 369 | by(metis LeastI_ex[of ?EX] Suc_length_conv ex_in_conv) | |
| 370 | hence "[] \<notin> L" using Suc.hyps(2) by auto | |
| 371 | show ?case | |
| 372 | proof (cases "\<forall>xs \<in> L. \<exists>ys. xs = x#ys") | |
| 373 | case True | |
| 374 |     let ?L = "{ys. x#ys \<in> L}"
 | |
| 375 | have 1: "(LEAST n. \<exists>xs \<in> ?L. n = length xs) = n" | |
| 376 | using xxs Suc.prems Suc.hyps(2) Least_le[of "?EX"] | |
| 377 | by - (rule Least_equality, fastforce+) | |
| 378 |     have 2: "?L \<noteq> {}" using \<open>x # xs \<in> L\<close> by auto
 | |
| 379 | from Suc.hyps(1)[OF 1[symmetric] 2] obtain ps where IH: "?P ?L ps" .. | |
| 81332 | 380 | have "length qs \<le> Suc (length ps)" | 
| 381 | if "\<forall>qs. (\<forall>xa. x # xa \<in> L \<longrightarrow> prefix qs xa) \<longrightarrow> length qs \<le> length ps" | |
| 382 | and "\<forall>xs\<in>L. prefix qs xs" for qs | |
| 383 | proof - | |
| 384 | from that have "length (tl qs) \<le> length ps" | |
| 385 | by (metis Cons_prefix_Cons hd_Cons_tl list.sel(2) Nil_prefix) | |
| 386 | thus ?thesis by auto | |
| 387 | qed | |
| 63173 | 388 | hence "?P L (x#ps)" using True IH by auto | 
| 389 | thus ?thesis .. | |
| 390 | next | |
| 391 | case False | |
| 392 | then obtain y ys where yys: "x\<noteq>y" "y#ys \<in> L" using \<open>[] \<notin> L\<close> | |
| 393 | by (auto) (metis list.exhaust) | |
| 394 | have "\<forall>qs. (\<forall>xs\<in>L. prefix qs xs) \<longrightarrow> qs = []" using yys \<open>x#xs \<in> L\<close> | |
| 395 | by auto (metis Cons_prefix_Cons prefix_Cons) | |
| 396 | hence "?P L []" by auto | |
| 397 | thus ?thesis .. | |
| 398 | qed | |
| 399 | qed | |
| 400 | ||
| 73411 | 401 | lemma Longest_common_prefix_unique: | 
| 402 | \<open>\<exists>! ps. (\<forall>xs \<in> L. prefix ps xs) \<and> (\<forall>qs. (\<forall>xs \<in> L. prefix qs xs) \<longrightarrow> length qs \<le> length ps)\<close> | |
| 403 |   if \<open>L \<noteq> {}\<close>
 | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 404 | apply (intro ex_ex1I[OF Longest_common_prefix_ex [OF that]]) | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 405 | by (meson that all_not_in_conv prefix_length_prefix prefix_order.dual_order.eq_iff) | 
| 63173 | 406 | |
| 407 | lemma Longest_common_prefix_eq: | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 408 |   "\<lbrakk> L \<noteq> {};  \<forall>xs \<in> L. prefix ps xs;
 | 
| 63173 | 409 | \<forall>qs. (\<forall>xs \<in> L. prefix qs xs) \<longrightarrow> size qs \<le> size ps \<rbrakk> | 
| 410 | \<Longrightarrow> Longest_common_prefix L = ps" | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 411 | unfolding Longest_common_prefix_def arg_max_def is_arg_max_linorder | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 412 | by(rule some1_equality[OF Longest_common_prefix_unique]) auto | 
| 63173 | 413 | |
| 414 | lemma Longest_common_prefix_prefix: | |
| 415 | "xs \<in> L \<Longrightarrow> prefix (Longest_common_prefix L) xs" | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 416 | unfolding Longest_common_prefix_def arg_max_def is_arg_max_linorder | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 417 | by(rule someI2_ex[OF Longest_common_prefix_ex]) auto | 
| 63173 | 418 | |
| 419 | lemma Longest_common_prefix_longest: | |
| 420 |   "L \<noteq> {} \<Longrightarrow> \<forall>xs\<in>L. prefix ps xs \<Longrightarrow> length ps \<le> length(Longest_common_prefix L)"
 | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 421 | unfolding Longest_common_prefix_def arg_max_def is_arg_max_linorder | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 422 | by(rule someI2_ex[OF Longest_common_prefix_ex]) auto | 
| 63173 | 423 | |
| 424 | lemma Longest_common_prefix_max_prefix: | |
| 425 |   "L \<noteq> {} \<Longrightarrow> \<forall>xs\<in>L. prefix ps xs \<Longrightarrow> prefix ps (Longest_common_prefix L)"
 | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 426 | by(metis Longest_common_prefix_prefix Longest_common_prefix_longest | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 427 | prefix_length_prefix ex_in_conv) | 
| 63173 | 428 | |
| 429 | lemma Longest_common_prefix_Nil: "[] \<in> L \<Longrightarrow> Longest_common_prefix L = []" | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 430 | using Longest_common_prefix_prefix prefix_Nil by blast | 
| 63173 | 431 | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 432 | lemma Longest_common_prefix_image_Cons: | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 433 |   assumes "L \<noteq> {}"
 | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 434 | shows "Longest_common_prefix ((#) x ` L) = x # Longest_common_prefix L" | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 435 | proof (intro Longest_common_prefix_eq strip) | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 436 | show "\<And>qs. \<forall>xs\<in>(#) x ` L. prefix qs xs \<Longrightarrow> | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 437 | length qs \<le> length (x # Longest_common_prefix L)" | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 438 | by (metis assms Longest_common_prefix_longest[of L] Cons_prefix_Cons Suc_le_mono hd_Cons_tl | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 439 | image_eqI length_Cons prefix_bot.bot_least prefix_length_le) | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 440 | qed (auto simp add: assms Longest_common_prefix_prefix) | 
| 63173 | 441 | |
| 442 | lemma Longest_common_prefix_eq_Cons: assumes "L \<noteq> {}" "[] \<notin> L"  "\<forall>xs\<in>L. hd xs = x"
 | |
| 443 | shows "Longest_common_prefix L = x # Longest_common_prefix {ys. x#ys \<in> L}"
 | |
| 444 | proof - | |
| 67399 | 445 |   have "L = (#) x ` {ys. x#ys \<in> L}" using assms(2,3)
 | 
| 63173 | 446 | by (auto simp: image_def)(metis hd_Cons_tl) | 
| 447 | thus ?thesis | |
| 448 | by (metis Longest_common_prefix_image_Cons image_is_empty assms(1)) | |
| 449 | qed | |
| 450 | ||
| 451 | lemma Longest_common_prefix_eq_Nil: | |
| 452 | "\<lbrakk>x#ys \<in> L; y#zs \<in> L; x \<noteq> y \<rbrakk> \<Longrightarrow> Longest_common_prefix L = []" | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 453 | by (metis Longest_common_prefix_prefix list.inject prefix_Cons) | 
| 63173 | 454 | |
| 455 | fun longest_common_prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 456 | "longest_common_prefix (x#xs) (y#ys) = | 
| 63173 | 457 | (if x=y then x # longest_common_prefix xs ys else [])" | | 
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 458 | "longest_common_prefix _ _ = []" | 
| 63173 | 459 | |
| 460 | lemma longest_common_prefix_prefix1: | |
| 461 | "prefix (longest_common_prefix xs ys) xs" | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 462 | by(induction xs ys rule: longest_common_prefix.induct) auto | 
| 63173 | 463 | |
| 464 | lemma longest_common_prefix_prefix2: | |
| 465 | "prefix (longest_common_prefix xs ys) ys" | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 466 | by(induction xs ys rule: longest_common_prefix.induct) auto | 
| 63173 | 467 | |
| 468 | lemma longest_common_prefix_max_prefix: | |
| 469 | "\<lbrakk> prefix ps xs; prefix ps ys \<rbrakk> | |
| 470 | \<Longrightarrow> prefix ps (longest_common_prefix xs ys)" | |
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 471 | by(induction xs ys arbitrary: ps rule: longest_common_prefix.induct) | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 472 | (auto simp: prefix_Cons) | 
| 63173 | 473 | |
| 474 | ||
| 60500 | 475 | subsection \<open>Parallel lists\<close> | 
| 10389 | 476 | |
| 80914 
d97fdabd9e2b
standardize mixfix annotations via "isabelle update -a -u mixfix_cartouches" --- to simplify systematic editing;
 wenzelm parents: 
75564diff
changeset | 477 | definition parallel :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infixl \<open>\<parallel>\<close> 50) | 
| 63117 | 478 | where "(xs \<parallel> ys) = (\<not> prefix xs ys \<and> \<not> prefix ys xs)" | 
| 10389 | 479 | |
| 63117 | 480 | lemma parallelI [intro]: "\<not> prefix xs ys \<Longrightarrow> \<not> prefix ys xs \<Longrightarrow> xs \<parallel> ys" | 
| 25692 | 481 | unfolding parallel_def by blast | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 482 | |
| 10389 | 483 | lemma parallelE [elim]: | 
| 25692 | 484 | assumes "xs \<parallel> ys" | 
| 63117 | 485 | obtains "\<not> prefix xs ys \<and> \<not> prefix ys xs" | 
| 25692 | 486 | using assms unfolding parallel_def by blast | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 487 | |
| 63117 | 488 | theorem prefix_cases: | 
| 489 | obtains "prefix xs ys" | "strict_prefix ys xs" | "xs \<parallel> ys" | |
| 490 | unfolding parallel_def strict_prefix_def by blast | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 491 | |
| 73186 | 492 | lemma parallel_cancel: "a#xs \<parallel> a#ys \<Longrightarrow> xs \<parallel> ys" | 
| 493 | by (simp add: parallel_def) | |
| 494 | ||
| 10389 | 495 | theorem parallel_decomp: | 
| 50516 | 496 | "xs \<parallel> ys \<Longrightarrow> \<exists>as b bs c cs. b \<noteq> c \<and> xs = as @ b # bs \<and> ys = as @ c # cs" | 
| 73186 | 497 | proof (induct rule: list_induct2', blast, force, force) | 
| 498 | case (4 x xs y ys) | |
| 499 | then show ?case | |
| 500 | proof (cases "x \<noteq> y", blast) | |
| 501 | assume "\<not> x \<noteq> y" hence "x = y" by blast | |
| 502 | then show ?thesis | |
| 503 | using "4.hyps"[OF parallel_cancel[OF "4.prems"[folded \<open>x = y\<close>]]] | |
| 504 | by (meson Cons_eq_appendI) | |
| 10389 | 505 | qed | 
| 506 | qed | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 507 | |
| 25564 | 508 | lemma parallel_append: "a \<parallel> b \<Longrightarrow> a @ c \<parallel> b @ d" | 
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 509 | by (meson parallelE parallelI prefixI prefix_order.trans prefix_same_cases) | 
| 25299 | 510 | |
| 25692 | 511 | lemma parallel_appendI: "xs \<parallel> ys \<Longrightarrow> x = xs @ xs' \<Longrightarrow> y = ys @ ys' \<Longrightarrow> x \<parallel> y" | 
| 512 | by (simp add: parallel_append) | |
| 25299 | 513 | |
| 25692 | 514 | lemma parallel_commute: "a \<parallel> b \<longleftrightarrow> b \<parallel> a" | 
| 515 | unfolding parallel_def by auto | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 516 | |
| 25356 | 517 | |
| 60500 | 518 | subsection \<open>Suffix order on lists\<close> | 
| 17201 | 519 | |
| 63149 | 520 | definition suffix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 521 | where "suffix xs ys = (\<exists>zs. ys = zs @ xs)" | |
| 49087 | 522 | |
| 63149 | 523 | definition strict_suffix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 65869 | 524 | where "strict_suffix xs ys \<longleftrightarrow> suffix xs ys \<and> xs \<noteq> ys" | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 525 | |
| 73411 | 526 | global_interpretation suffix_order: ordering suffix strict_suffix | 
| 527 | by standard (auto simp: suffix_def strict_suffix_def) | |
| 528 | ||
| 65869 | 529 | interpretation suffix_order: order suffix strict_suffix | 
| 530 | by standard (auto simp: suffix_def strict_suffix_def) | |
| 531 | ||
| 73411 | 532 | global_interpretation suffix_bot: ordering_top \<open>\<lambda>xs ys. suffix ys xs\<close> \<open>\<lambda>xs ys. strict_suffix ys xs\<close> \<open>[]\<close> | 
| 533 | by standard (simp add: suffix_def) | |
| 534 | ||
| 65869 | 535 | interpretation suffix_bot: order_bot Nil suffix strict_suffix | 
| 536 | by standard (simp add: suffix_def) | |
| 49087 | 537 | |
| 63149 | 538 | lemma suffixI [intro?]: "ys = zs @ xs \<Longrightarrow> suffix xs ys" | 
| 539 | unfolding suffix_def by blast | |
| 21305 | 540 | |
| 63149 | 541 | lemma suffixE [elim?]: | 
| 542 | assumes "suffix xs ys" | |
| 49087 | 543 | obtains zs where "ys = zs @ xs" | 
| 63149 | 544 | using assms unfolding suffix_def by blast | 
| 81332 | 545 | |
| 63149 | 546 | lemma suffix_tl [simp]: "suffix (tl xs) xs" | 
| 49087 | 547 | by (induct xs) (auto simp: suffix_def) | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 548 | |
| 63149 | 549 | lemma strict_suffix_tl [simp]: "xs \<noteq> [] \<Longrightarrow> strict_suffix (tl xs) xs" | 
| 65869 | 550 | by (induct xs) (auto simp: strict_suffix_def suffix_def) | 
| 63149 | 551 | |
| 65869 | 552 | lemma Nil_suffix [simp]: "suffix [] xs" | 
| 63149 | 553 | by (simp add: suffix_def) | 
| 49087 | 554 | |
| 63149 | 555 | lemma suffix_Nil [simp]: "(suffix xs []) = (xs = [])" | 
| 556 | by (auto simp add: suffix_def) | |
| 557 | ||
| 558 | lemma suffix_ConsI: "suffix xs ys \<Longrightarrow> suffix xs (y # ys)" | |
| 559 | by (auto simp add: suffix_def) | |
| 560 | ||
| 561 | lemma suffix_ConsD: "suffix (x # xs) ys \<Longrightarrow> suffix xs ys" | |
| 562 | by (auto simp add: suffix_def) | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 563 | |
| 63149 | 564 | lemma suffix_appendI: "suffix xs ys \<Longrightarrow> suffix xs (zs @ ys)" | 
| 565 | by (auto simp add: suffix_def) | |
| 566 | ||
| 567 | lemma suffix_appendD: "suffix (zs @ xs) ys \<Longrightarrow> suffix xs ys" | |
| 568 | by (auto simp add: suffix_def) | |
| 49087 | 569 | |
| 63149 | 570 | lemma strict_suffix_set_subset: "strict_suffix xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 65869 | 571 | by (auto simp: strict_suffix_def suffix_def) | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 572 | |
| 67606 | 573 | lemma set_mono_suffix: "suffix xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 574 | by (auto simp: suffix_def) | |
| 49087 | 575 | |
| 67612 | 576 | lemma sorted_antimono_suffix: "suffix xs ys \<Longrightarrow> sorted ys \<Longrightarrow> sorted xs" | 
| 577 | by (metis sorted_append suffix_def) | |
| 578 | ||
| 63149 | 579 | lemma suffix_ConsD2: "suffix (x # xs) (y # ys) \<Longrightarrow> suffix xs ys" | 
| 21305 | 580 | proof - | 
| 63149 | 581 | assume "suffix (x # xs) (y # ys)" | 
| 49107 | 582 | then obtain zs where "y # ys = zs @ x # xs" .. | 
| 49087 | 583 | then show ?thesis | 
| 63149 | 584 | by (induct zs) (auto intro!: suffix_appendI suffix_ConsI) | 
| 21305 | 585 | qed | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 586 | |
| 63149 | 587 | lemma suffix_to_prefix [code]: "suffix xs ys \<longleftrightarrow> prefix (rev xs) (rev ys)" | 
| 49087 | 588 | proof | 
| 63149 | 589 | assume "suffix xs ys" | 
| 49087 | 590 | then obtain zs where "ys = zs @ xs" .. | 
| 591 | then have "rev ys = rev xs @ rev zs" by simp | |
| 63117 | 592 | then show "prefix (rev xs) (rev ys)" .. | 
| 49087 | 593 | next | 
| 63117 | 594 | assume "prefix (rev xs) (rev ys)" | 
| 49087 | 595 | then obtain zs where "rev ys = rev xs @ zs" .. | 
| 596 | then have "rev (rev ys) = rev zs @ rev (rev xs)" by simp | |
| 597 | then have "ys = rev zs @ xs" by simp | |
| 63149 | 598 | then show "suffix xs ys" .. | 
| 21305 | 599 | qed | 
| 81332 | 600 | |
| 65869 | 601 | lemma strict_suffix_to_prefix [code]: "strict_suffix xs ys \<longleftrightarrow> strict_prefix (rev xs) (rev ys)" | 
| 602 | by (auto simp: suffix_to_prefix strict_suffix_def strict_prefix_def) | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 603 | |
| 63149 | 604 | lemma distinct_suffix: "distinct ys \<Longrightarrow> suffix xs ys \<Longrightarrow> distinct xs" | 
| 605 | by (clarsimp elim!: suffixE) | |
| 17201 | 606 | |
| 67606 | 607 | lemma map_mono_suffix: "suffix xs ys \<Longrightarrow> suffix (map f xs) (map f ys)" | 
| 608 | by (auto elim!: suffixE intro: suffixI) | |
| 609 | ||
| 75564 | 610 | lemma map_mono_strict_suffix: "strict_suffix xs ys \<Longrightarrow> strict_suffix (map f xs) (map f ys)" | 
| 611 | by (auto simp: strict_suffix_def suffix_def) | |
| 612 | ||
| 67606 | 613 | lemma filter_mono_suffix: "suffix xs ys \<Longrightarrow> suffix (filter P xs) (filter P ys)" | 
| 614 | by (auto simp: suffix_def) | |
| 25299 | 615 | |
| 63149 | 616 | lemma suffix_drop: "suffix (drop n as) as" | 
| 73380 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 617 | unfolding suffix_def by (metis append_take_drop_id) | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 618 | |
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 619 | lemma suffix_dropWhile: "suffix (dropWhile P xs) xs" | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 620 | unfolding suffix_def by (metis takeWhile_dropWhile_id) | 
| 25299 | 621 | |
| 63149 | 622 | lemma suffix_take: "suffix xs ys \<Longrightarrow> ys = take (length ys - length xs) ys @ xs" | 
| 623 | by (auto elim!: suffixE) | |
| 25299 | 624 | |
| 63149 | 625 | lemma strict_suffix_reflclp_conv: "strict_suffix\<^sup>=\<^sup>= = suffix" | 
| 65869 | 626 | by (intro ext) (auto simp: suffix_def strict_suffix_def) | 
| 63149 | 627 | |
| 628 | lemma suffix_lists: "suffix xs ys \<Longrightarrow> ys \<in> lists A \<Longrightarrow> xs \<in> lists A" | |
| 629 | unfolding suffix_def by auto | |
| 49087 | 630 | |
| 65869 | 631 | lemma suffix_snoc [simp]: "suffix xs (ys @ [y]) \<longleftrightarrow> xs = [] \<or> (\<exists>zs. xs = zs @ [y] \<and> suffix zs ys)" | 
| 632 | by (cases xs rule: rev_cases) (auto simp: suffix_def) | |
| 633 | ||
| 634 | lemma snoc_suffix_snoc [simp]: "suffix (xs @ [x]) (ys @ [y]) = (x = y \<and> suffix xs ys)" | |
| 635 | by (auto simp add: suffix_def) | |
| 636 | ||
| 637 | lemma same_suffix_suffix [simp]: "suffix (ys @ xs) (zs @ xs) = suffix ys zs" | |
| 638 | by (simp add: suffix_to_prefix) | |
| 639 | ||
| 640 | lemma same_suffix_nil [simp]: "suffix (ys @ xs) xs = (ys = [])" | |
| 641 | by (simp add: suffix_to_prefix) | |
| 642 | ||
| 643 | theorem suffix_Cons: "suffix xs (y # ys) \<longleftrightarrow> xs = y # ys \<or> suffix xs ys" | |
| 644 | unfolding suffix_def by (auto simp: Cons_eq_append_conv) | |
| 645 | ||
| 81332 | 646 | theorem suffix_append: | 
| 65869 | 647 | "suffix xs (ys @ zs) \<longleftrightarrow> suffix xs zs \<or> (\<exists>xs'. xs = xs' @ zs \<and> suffix xs' ys)" | 
| 648 | by (auto simp: suffix_def append_eq_append_conv2) | |
| 649 | ||
| 650 | theorem suffix_length_le: "suffix xs ys \<Longrightarrow> length xs \<le> length ys" | |
| 651 | by (auto simp add: suffix_def) | |
| 652 | ||
| 653 | lemma suffix_same_cases: | |
| 654 | "suffix (xs\<^sub>1::'a list) ys \<Longrightarrow> suffix xs\<^sub>2 ys \<Longrightarrow> suffix xs\<^sub>1 xs\<^sub>2 \<or> suffix xs\<^sub>2 xs\<^sub>1" | |
| 655 | unfolding suffix_def by (force simp: append_eq_append_conv2) | |
| 656 | ||
| 657 | lemma suffix_length_suffix: | |
| 658 | "suffix ps xs \<Longrightarrow> suffix qs xs \<Longrightarrow> length ps \<le> length qs \<Longrightarrow> suffix ps qs" | |
| 659 | by (auto simp: suffix_to_prefix intro: prefix_length_prefix) | |
| 660 | ||
| 661 | lemma suffix_length_less: "strict_suffix xs ys \<Longrightarrow> length xs < length ys" | |
| 662 | by (auto simp: strict_suffix_def suffix_def) | |
| 663 | ||
| 664 | lemma suffix_ConsD': "suffix (x#xs) ys \<Longrightarrow> strict_suffix xs ys" | |
| 665 | by (auto simp: strict_suffix_def suffix_def) | |
| 666 | ||
| 667 | lemma drop_strict_suffix: "strict_suffix xs ys \<Longrightarrow> strict_suffix (drop n xs) ys" | |
| 668 | proof (induct n arbitrary: xs ys) | |
| 669 | case 0 | |
| 670 | then show ?case by (cases ys) simp_all | |
| 671 | next | |
| 672 | case (Suc n) | |
| 81332 | 673 | then show ?case | 
| 65869 | 674 | by (cases xs) (auto intro: Suc dest: suffix_ConsD' suffix_order.less_imp_le) | 
| 675 | qed | |
| 676 | ||
| 71789 | 677 | lemma suffix_map_rightE: | 
| 678 | assumes "suffix xs (map f ys)" | |
| 679 | shows "\<exists>xs'. suffix xs' ys \<and> xs = map f xs'" | |
| 680 | proof - | |
| 681 | from assms obtain xs' where xs': "map f ys = xs' @ xs" | |
| 682 | by (auto simp: suffix_def) | |
| 683 | define n where "n = length xs'" | |
| 684 | have "xs = drop n (map f ys)" | |
| 685 | by (simp add: xs' n_def) | |
| 686 | thus ?thesis | |
| 687 | by (intro exI[of _ "drop n ys"]) (auto simp: drop_map suffix_drop) | |
| 688 | qed | |
| 689 | ||
| 690 | lemma suffix_remdups_adj: "suffix xs ys \<Longrightarrow> suffix (remdups_adj xs) (remdups_adj ys)" | |
| 691 | using prefix_remdups_adj[of "rev xs" "rev ys"] | |
| 692 | by (simp add: suffix_to_prefix) | |
| 693 | ||
| 65869 | 694 | lemma not_suffix_cases: | 
| 695 | assumes pfx: "\<not> suffix ps ls" | |
| 696 | obtains | |
| 697 | (c1) "ps \<noteq> []" and "ls = []" | |
| 698 | | (c2) a as x xs where "ps = as@[a]" and "ls = xs@[x]" and "x = a" and "\<not> suffix as xs" | |
| 699 | | (c3) a as x xs where "ps = as@[a]" and "ls = xs@[x]" and "x \<noteq> a" | |
| 700 | proof (cases ps rule: rev_cases) | |
| 701 | case Nil | |
| 702 | then show ?thesis using pfx by simp | |
| 703 | next | |
| 704 | case (snoc as a) | |
| 705 | note c = \<open>ps = as@[a]\<close> | |
| 706 | show ?thesis | |
| 707 | proof (cases ls rule: rev_cases) | |
| 708 | case Nil then show ?thesis by (metis append_Nil2 pfx c1 same_suffix_nil) | |
| 709 | next | |
| 710 | case (snoc xs x) | |
| 711 | show ?thesis | |
| 712 | proof (cases "x = a") | |
| 713 | case True | |
| 714 | have "\<not> suffix as xs" using pfx c snoc True by simp | |
| 715 | with c snoc True show ?thesis by (rule c2) | |
| 716 | next | |
| 717 | case False | |
| 718 | with c snoc show ?thesis by (rule c3) | |
| 719 | qed | |
| 720 | qed | |
| 721 | qed | |
| 722 | ||
| 723 | lemma not_suffix_induct [consumes 1, case_names Nil Neq Eq]: | |
| 724 | assumes np: "\<not> suffix ps ls" | |
| 725 | and base: "\<And>x xs. P (xs@[x]) []" | |
| 726 | and r1: "\<And>x xs y ys. x \<noteq> y \<Longrightarrow> P (xs@[x]) (ys@[y])" | |
| 727 | and r2: "\<And>x xs y ys. \<lbrakk> x = y; \<not> suffix xs ys; P xs ys \<rbrakk> \<Longrightarrow> P (xs@[x]) (ys@[y])" | |
| 728 | shows "P ps ls" using np | |
| 729 | proof (induct ls arbitrary: ps rule: rev_induct) | |
| 730 | case Nil | |
| 731 | then show ?case by (cases ps rule: rev_cases) (auto intro: base) | |
| 732 | next | |
| 733 | case (snoc y ys ps) | |
| 734 | then have npfx: "\<not> suffix ps (ys @ [y])" by simp | |
| 735 | then obtain x xs where pv: "ps = xs @ [x]" | |
| 736 | by (rule not_suffix_cases) auto | |
| 737 | show ?case by (metis snoc.hyps snoc_suffix_snoc npfx pv r1 r2) | |
| 738 | qed | |
| 739 | ||
| 740 | ||
| 63117 | 741 | lemma parallelD1: "x \<parallel> y \<Longrightarrow> \<not> prefix x y" | 
| 25692 | 742 | by blast | 
| 25299 | 743 | |
| 63117 | 744 | lemma parallelD2: "x \<parallel> y \<Longrightarrow> \<not> prefix y x" | 
| 25692 | 745 | by blast | 
| 25355 | 746 | |
| 747 | lemma parallel_Nil1 [simp]: "\<not> x \<parallel> []" | |
| 25692 | 748 | unfolding parallel_def by simp | 
| 25355 | 749 | |
| 25299 | 750 | lemma parallel_Nil2 [simp]: "\<not> [] \<parallel> x" | 
| 25692 | 751 | unfolding parallel_def by simp | 
| 25299 | 752 | |
| 25564 | 753 | lemma Cons_parallelI1: "a \<noteq> b \<Longrightarrow> a # as \<parallel> b # bs" | 
| 25692 | 754 | by auto | 
| 25299 | 755 | |
| 25564 | 756 | lemma Cons_parallelI2: "\<lbrakk> a = b; as \<parallel> bs \<rbrakk> \<Longrightarrow> a # as \<parallel> b # bs" | 
| 63117 | 757 | by (metis Cons_prefix_Cons parallelE parallelI) | 
| 25665 | 758 | |
| 25299 | 759 | lemma not_equal_is_parallel: | 
| 760 | assumes neq: "xs \<noteq> ys" | |
| 25356 | 761 | and len: "length xs = length ys" | 
| 762 | shows "xs \<parallel> ys" | |
| 25299 | 763 | using len neq | 
| 25355 | 764 | proof (induct rule: list_induct2) | 
| 26445 | 765 | case Nil | 
| 25356 | 766 | then show ?case by simp | 
| 25299 | 767 | next | 
| 26445 | 768 | case (Cons a as b bs) | 
| 25355 | 769 | have ih: "as \<noteq> bs \<Longrightarrow> as \<parallel> bs" by fact | 
| 25299 | 770 | show ?case | 
| 771 | proof (cases "a = b") | |
| 25355 | 772 | case True | 
| 26445 | 773 | then have "as \<noteq> bs" using Cons by simp | 
| 25355 | 774 | then show ?thesis by (rule Cons_parallelI2 [OF True ih]) | 
| 25299 | 775 | next | 
| 776 | case False | |
| 25355 | 777 | then show ?thesis by (rule Cons_parallelI1) | 
| 25299 | 778 | qed | 
| 779 | qed | |
| 22178 | 780 | |
| 71789 | 781 | |
| 65869 | 782 | subsection \<open>Suffixes\<close> | 
| 783 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 784 | primrec suffixes where | 
| 65869 | 785 | "suffixes [] = [[]]" | 
| 786 | | "suffixes (x#xs) = suffixes xs @ [x # xs]" | |
| 787 | ||
| 788 | lemma in_set_suffixes [simp]: "xs \<in> set (suffixes ys) \<longleftrightarrow> suffix xs ys" | |
| 789 | by (induction ys) (auto simp: suffix_def Cons_eq_append_conv) | |
| 790 | ||
| 791 | lemma distinct_suffixes [intro]: "distinct (suffixes xs)" | |
| 792 | by (induction xs) (auto simp: suffix_def) | |
| 793 | ||
| 794 | lemma length_suffixes [simp]: "length (suffixes xs) = Suc (length xs)" | |
| 795 | by (induction xs) auto | |
| 796 | ||
| 797 | lemma suffixes_snoc [simp]: "suffixes (xs @ [x]) = [] # map (\<lambda>ys. ys @ [x]) (suffixes xs)" | |
| 798 | by (induction xs) auto | |
| 799 | ||
| 800 | lemma suffixes_not_Nil [simp]: "suffixes xs \<noteq> []" | |
| 801 | by (cases xs) auto | |
| 802 | ||
| 803 | lemma hd_suffixes [simp]: "hd (suffixes xs) = []" | |
| 804 | by (induction xs) simp_all | |
| 805 | ||
| 806 | lemma last_suffixes [simp]: "last (suffixes xs) = xs" | |
| 807 | by (cases xs) simp_all | |
| 808 | ||
| 81332 | 809 | lemma suffixes_append: | 
| 65869 | 810 | "suffixes (xs @ ys) = suffixes ys @ map (\<lambda>xs'. xs' @ ys) (tl (suffixes xs))" | 
| 811 | proof (induction ys rule: rev_induct) | |
| 812 | case Nil | |
| 813 | thus ?case by (cases xs rule: rev_cases) auto | |
| 814 | next | |
| 815 | case (snoc y ys) | |
| 816 | show ?case | |
| 817 | by (simp only: append.assoc [symmetric] suffixes_snoc snoc.IH) simp | |
| 818 | qed | |
| 819 | ||
| 820 | lemma suffixes_eq_snoc: | |
| 821 | "suffixes ys = xs @ [x] \<longleftrightarrow> | |
| 822 | (ys = [] \<and> xs = [] \<or> (\<exists>z zs. ys = z#zs \<and> xs = suffixes zs)) \<and> x = ys" | |
| 823 | by (cases ys) auto | |
| 824 | ||
| 81332 | 825 | lemma suffixes_tailrec [code]: | 
| 65869 | 826 | "suffixes xs = rev (snd (foldl (\<lambda>(acc1, acc2) x. (x#acc1, (x#acc1)#acc2)) ([],[[]]) (rev xs)))" | 
| 827 | proof - | |
| 828 | have "foldl (\<lambda>(acc1, acc2) x. (x#acc1, (x#acc1)#acc2)) (ys, ys # zs) (rev xs) = | |
| 829 | (xs @ ys, rev (map (\<lambda>as. as @ ys) (suffixes xs)) @ zs)" for ys zs | |
| 830 | proof (induction xs arbitrary: ys zs) | |
| 831 | case (Cons x xs ys zs) | |
| 832 | from Cons.IH[of ys zs] | |
| 833 | show ?case by (simp add: o_def case_prod_unfold) | |
| 834 | qed simp_all | |
| 835 | from this [of "[]" "[]"] show ?thesis by simp | |
| 836 | qed | |
| 81332 | 837 | |
| 65869 | 838 | lemma set_suffixes_eq: "set (suffixes xs) = {ys. suffix ys xs}"
 | 
| 839 | by auto | |
| 81332 | 840 | |
| 65869 | 841 | lemma card_set_suffixes [simp]: "card (set (suffixes xs)) = Suc (length xs)" | 
| 842 | by (subst distinct_card) auto | |
| 81332 | 843 | |
| 844 | lemma set_suffixes_append: | |
| 65869 | 845 |   "set (suffixes (xs @ ys)) = set (suffixes ys) \<union> {xs' @ ys |xs'. xs' \<in> set (suffixes xs)}"
 | 
| 846 | by (subst suffixes_append, cases xs rule: rev_cases) auto | |
| 847 | ||
| 848 | ||
| 849 | lemma suffixes_conv_prefixes: "suffixes xs = map rev (prefixes (rev xs))" | |
| 850 | by (induction xs) auto | |
| 851 | ||
| 852 | lemma prefixes_conv_suffixes: "prefixes xs = map rev (suffixes (rev xs))" | |
| 853 | by (induction xs) auto | |
| 81332 | 854 | |
| 65869 | 855 | lemma prefixes_rev: "prefixes (rev xs) = map rev (suffixes xs)" | 
| 856 | by (induction xs) auto | |
| 81332 | 857 | |
| 65869 | 858 | lemma suffixes_rev: "suffixes (rev xs) = map rev (prefixes xs)" | 
| 859 | by (induction xs) auto | |
| 860 | ||
| 49087 | 861 | |
| 60500 | 862 | subsection \<open>Homeomorphic embedding on lists\<close> | 
| 49087 | 863 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 864 | inductive list_emb :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool"
 | 
| 49087 | 865 |   for P :: "('a \<Rightarrow> 'a \<Rightarrow> bool)"
 | 
| 866 | where | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 867 | list_emb_Nil [intro, simp]: "list_emb P [] ys" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 868 | | list_emb_Cons [intro] : "list_emb P xs ys \<Longrightarrow> list_emb P xs (y#ys)" | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 869 | | list_emb_Cons2 [intro]: "P x y \<Longrightarrow> list_emb P xs ys \<Longrightarrow> list_emb P (x#xs) (y#ys)" | 
| 50516 | 870 | |
| 81332 | 871 | lemma list_emb_mono: | 
| 57499 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 872 | assumes "\<And>x y. P x y \<longrightarrow> Q x y" | 
| 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 873 | shows "list_emb P xs ys \<longrightarrow> list_emb Q xs ys" | 
| 81332 | 874 | proof | 
| 875 | assume "list_emb P xs ys" | |
| 57499 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 876 | then show "list_emb Q xs ys" by (induct) (auto simp: assms) | 
| 81332 | 877 | qed | 
| 57499 
7e22776f2d32
added monotonicity lemma for list embedding
 Christian Sternagel parents: 
57498diff
changeset | 878 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 879 | lemma list_emb_Nil2 [simp]: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 880 | assumes "list_emb P xs []" shows "xs = []" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 881 | using assms by (cases rule: list_emb.cases) auto | 
| 49087 | 882 | |
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 883 | lemma list_emb_refl: | 
| 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 884 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> P x x" | 
| 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 885 | shows "list_emb P xs xs" | 
| 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 886 | using assms by (induct xs) auto | 
| 49087 | 887 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 888 | lemma list_emb_Cons_Nil [simp]: "list_emb P (x#xs) [] = False" | 
| 81332 | 889 | proof | 
| 890 | show False if "list_emb P (x#xs) []" | |
| 891 | using list_emb_Nil2 [OF that] by simp | |
| 892 | show "list_emb P (x#xs) []" if False | |
| 893 | using that .. | |
| 49087 | 894 | qed | 
| 895 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 896 | lemma list_emb_append2 [intro]: "list_emb P xs ys \<Longrightarrow> list_emb P xs (zs @ ys)" | 
| 49087 | 897 | by (induct zs) auto | 
| 898 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 899 | lemma list_emb_prefix [intro]: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 900 | assumes "list_emb P xs ys" shows "list_emb P xs (ys @ zs)" | 
| 49087 | 901 | using assms | 
| 902 | by (induct arbitrary: zs) auto | |
| 903 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 904 | lemma list_emb_ConsD: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 905 | assumes "list_emb P (x#xs) ys" | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 906 | shows "\<exists>us v vs. ys = us @ v # vs \<and> P x v \<and> list_emb P xs vs" | 
| 49087 | 907 | using assms | 
| 49107 | 908 | proof (induct x \<equiv> "x # xs" ys arbitrary: x xs) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 909 | case list_emb_Cons | 
| 49107 | 910 | then show ?case by (metis append_Cons) | 
| 49087 | 911 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 912 | case (list_emb_Cons2 x y xs ys) | 
| 54483 | 913 | then show ?case by blast | 
| 49087 | 914 | qed | 
| 915 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 916 | lemma list_emb_appendD: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 917 | assumes "list_emb P (xs @ ys) zs" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 918 | shows "\<exists>us vs. zs = us @ vs \<and> list_emb P xs us \<and> list_emb P ys vs" | 
| 49087 | 919 | using assms | 
| 920 | proof (induction xs arbitrary: ys zs) | |
| 49107 | 921 | case Nil then show ?case by auto | 
| 49087 | 922 | next | 
| 923 | case (Cons x xs) | |
| 54483 | 924 | then obtain us v vs where | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 925 | zs: "zs = us @ v # vs" and p: "P x v" and lh: "list_emb P (xs @ ys) vs" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 926 | by (auto dest: list_emb_ConsD) | 
| 54483 | 927 | obtain sk\<^sub>0 :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" and sk\<^sub>1 :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 928 | sk: "\<forall>x\<^sub>0 x\<^sub>1. \<not> list_emb P (xs @ x\<^sub>0) x\<^sub>1 \<or> sk\<^sub>0 x\<^sub>0 x\<^sub>1 @ sk\<^sub>1 x\<^sub>0 x\<^sub>1 = x\<^sub>1 \<and> list_emb P xs (sk\<^sub>0 x\<^sub>0 x\<^sub>1) \<and> list_emb P x\<^sub>0 (sk\<^sub>1 x\<^sub>0 x\<^sub>1)" | 
| 54483 | 929 | using Cons(1) by (metis (no_types)) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 930 | hence "\<forall>x\<^sub>2. list_emb P (x # xs) (x\<^sub>2 @ v # sk\<^sub>0 ys vs)" using p lh by auto | 
| 54483 | 931 | thus ?case using lh zs sk by (metis (no_types) append_Cons append_assoc) | 
| 49087 | 932 | qed | 
| 933 | ||
| 63149 | 934 | lemma list_emb_strict_suffix: | 
| 935 | assumes "list_emb P xs ys" and "strict_suffix ys zs" | |
| 936 | shows "list_emb P xs zs" | |
| 65869 | 937 | using assms(2) and list_emb_append2 [OF assms(1)] by (auto simp: strict_suffix_def suffix_def) | 
| 63149 | 938 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 939 | lemma list_emb_suffix: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 940 | assumes "list_emb P xs ys" and "suffix ys zs" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 941 | shows "list_emb P xs zs" | 
| 63149 | 942 | using assms and list_emb_strict_suffix | 
| 943 | unfolding strict_suffix_reflclp_conv[symmetric] by auto | |
| 49087 | 944 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 945 | lemma list_emb_length: "list_emb P xs ys \<Longrightarrow> length xs \<le> length ys" | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 946 | by (induct rule: list_emb.induct) auto | 
| 49087 | 947 | |
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 948 | lemma list_emb_trans: | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 949 | assumes "\<And>x y z. \<lbrakk>x \<in> set xs; y \<in> set ys; z \<in> set zs; P x y; P y z\<rbrakk> \<Longrightarrow> P x z" | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 950 | shows "\<lbrakk>list_emb P xs ys; list_emb P ys zs\<rbrakk> \<Longrightarrow> list_emb P xs zs" | 
| 50516 | 951 | proof - | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 952 | assume "list_emb P xs ys" and "list_emb P ys zs" | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 953 | then show "list_emb P xs zs" using assms | 
| 49087 | 954 | proof (induction arbitrary: zs) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 955 | case list_emb_Nil show ?case by blast | 
| 49087 | 956 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 957 | case (list_emb_Cons xs ys y) | 
| 60500 | 958 | from list_emb_ConsD [OF \<open>list_emb P (y#ys) zs\<close>] obtain us v vs | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 959 | where zs: "zs = us @ v # vs" and "P\<^sup>=\<^sup>= y v" and "list_emb P ys vs" by blast | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 960 | then have "list_emb P ys (v#vs)" by blast | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 961 | then have "list_emb P ys zs" unfolding zs by (rule list_emb_append2) | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 962 | from list_emb_Cons.IH [OF this] and list_emb_Cons.prems show ?case by auto | 
| 49087 | 963 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 964 | case (list_emb_Cons2 x y xs ys) | 
| 60500 | 965 | from list_emb_ConsD [OF \<open>list_emb P (y#ys) zs\<close>] obtain us v vs | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 966 | where zs: "zs = us @ v # vs" and "P y v" and "list_emb P ys vs" by blast | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 967 | with list_emb_Cons2 have "list_emb P xs vs" by auto | 
| 57498 
ea44ec62a574
no built-in reflexivity of list embedding (which is more standard; now embedding is reflexive whenever the base-order is)
 Christian Sternagel parents: 
57497diff
changeset | 968 | moreover have "P x v" | 
| 49087 | 969 | proof - | 
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 970 | from zs have "v \<in> set zs" by auto | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 971 | moreover have "x \<in> set (x#xs)" and "y \<in> set (y#ys)" by simp_all | 
| 50516 | 972 | ultimately show ?thesis | 
| 60500 | 973 | using \<open>P x y\<close> and \<open>P y v\<close> and list_emb_Cons2 | 
| 50516 | 974 | by blast | 
| 49087 | 975 | qed | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 976 | ultimately have "list_emb P (x#xs) (v#vs)" by blast | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 977 | then show ?case unfolding zs by (rule list_emb_append2) | 
| 49087 | 978 | qed | 
| 979 | qed | |
| 980 | ||
| 57500 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 981 | lemma list_emb_set: | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 982 | assumes "list_emb P xs ys" and "x \<in> set xs" | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 983 | obtains y where "y \<in> set ys" and "P x y" | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 984 | using assms by (induct) auto | 
| 
5a8b3e9d82a4
weaker assumption for "list_emb_trans"; added lemma
 Christian Sternagel parents: 
57499diff
changeset | 985 | |
| 65869 | 986 | lemma list_emb_Cons_iff1 [simp]: | 
| 987 | assumes "P x y" | |
| 988 | shows "list_emb P (x#xs) (y#ys) \<longleftrightarrow> list_emb P xs ys" | |
| 989 | using assms by (subst list_emb.simps) (auto dest: list_emb_ConsD) | |
| 990 | ||
| 991 | lemma list_emb_Cons_iff2 [simp]: | |
| 992 | assumes "\<not>P x y" | |
| 993 | shows "list_emb P (x#xs) (y#ys) \<longleftrightarrow> list_emb P (x#xs) ys" | |
| 994 | using assms by (subst list_emb.simps) auto | |
| 995 | ||
| 996 | lemma list_emb_code [code]: | |
| 997 | "list_emb P [] ys \<longleftrightarrow> True" | |
| 998 | "list_emb P (x#xs) [] \<longleftrightarrow> False" | |
| 999 | "list_emb P (x#xs) (y#ys) \<longleftrightarrow> (if P x y then list_emb P xs ys else list_emb P (x#xs) ys)" | |
| 1000 | by simp_all | |
| 81332 | 1001 | |
| 65869 | 1002 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1003 | subsection \<open>Subsequences (special case of homeomorphic embedding)\<close> | 
| 49087 | 1004 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1005 | abbreviation subseq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 67399 | 1006 | where "subseq xs ys \<equiv> list_emb (=) xs ys" | 
| 81332 | 1007 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1008 | definition strict_subseq where "strict_subseq xs ys \<longleftrightarrow> xs \<noteq> ys \<and> subseq xs ys" | 
| 49087 | 1009 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1010 | lemma subseq_Cons2: "subseq xs ys \<Longrightarrow> subseq (x#xs) (x#ys)" by auto | 
| 49087 | 1011 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1012 | lemma subseq_same_length: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1013 | assumes "subseq xs ys" and "length xs = length ys" shows "xs = ys" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1014 | using assms by (induct) (auto dest: list_emb_length) | 
| 49087 | 1015 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1016 | lemma not_subseq_length [simp]: "length ys < length xs \<Longrightarrow> \<not> subseq xs ys" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1017 | by (metis list_emb_length linorder_not_less) | 
| 49087 | 1018 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1019 | lemma subseq_Cons': "subseq (x#xs) ys \<Longrightarrow> subseq xs ys" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1020 | by (induct xs, simp, blast dest: list_emb_ConsD) | 
| 49087 | 1021 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1022 | lemma subseq_Cons2': | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1023 | assumes "subseq (x#xs) (x#ys)" shows "subseq xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1024 | using assms by (cases) (rule subseq_Cons') | 
| 49087 | 1025 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1026 | lemma subseq_Cons2_neq: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1027 | assumes "subseq (x#xs) (y#ys)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1028 | shows "x \<noteq> y \<Longrightarrow> subseq (x#xs) ys" | 
| 49087 | 1029 | using assms by (cases) auto | 
| 1030 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1031 | lemma subseq_Cons2_iff [simp]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1032 | "subseq (x#xs) (y#ys) = (if x = y then subseq xs ys else subseq (x#xs) ys)" | 
| 65869 | 1033 | by simp | 
| 49087 | 1034 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1035 | lemma subseq_append': "subseq (zs @ xs) (zs @ ys) \<longleftrightarrow> subseq xs ys" | 
| 49087 | 1036 | by (induct zs) simp_all | 
| 73411 | 1037 | |
| 1038 | global_interpretation subseq_order: ordering subseq strict_subseq | |
| 65869 | 1039 | proof | 
| 73411 | 1040 | show \<open>subseq xs xs\<close> for xs :: \<open>'a list\<close> | 
| 1041 | using refl by (rule list_emb_refl) | |
| 1042 | show \<open>subseq xs zs\<close> if \<open>subseq xs ys\<close> and \<open>subseq ys zs\<close> | |
| 1043 | for xs ys zs :: \<open>'a list\<close> | |
| 1044 | using trans [OF refl] that by (rule list_emb_trans) simp | |
| 1045 | show \<open>xs = ys\<close> if \<open>subseq xs ys\<close> and \<open>subseq ys xs\<close> | |
| 1046 | for xs ys :: \<open>'a list\<close> | |
| 1047 | using that proof induction | |
| 1048 | case list_emb_Nil | |
| 1049 | from list_emb_Nil2 [OF this] show ?case by simp | |
| 1050 | next | |
| 1051 | case list_emb_Cons2 | |
| 1052 | then show ?case by simp | |
| 1053 | next | |
| 1054 | case list_emb_Cons | |
| 1055 | hence False using subseq_Cons' by fastforce | |
| 1056 | then show ?case .. | |
| 1057 | qed | |
| 1058 | show \<open>strict_subseq xs ys \<longleftrightarrow> subseq xs ys \<and> xs \<noteq> ys\<close> | |
| 1059 | for xs ys :: \<open>'a list\<close> | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1060 | by (auto simp: strict_subseq_def) | 
| 73411 | 1061 | qed | 
| 1062 | ||
| 1063 | interpretation subseq_order: order subseq strict_subseq | |
| 1064 | by (rule ordering_orderI) standard | |
| 49087 | 1065 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1066 | lemma in_set_subseqs [simp]: "xs \<in> set (subseqs ys) \<longleftrightarrow> subseq xs ys" | 
| 65869 | 1067 | proof | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1068 | assume "xs \<in> set (subseqs ys)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1069 | thus "subseq xs ys" | 
| 65869 | 1070 | by (induction ys arbitrary: xs) (auto simp: Let_def) | 
| 49087 | 1071 | next | 
| 81332 | 1072 | have [simp]: "[] \<in> set (subseqs ys)" for ys :: "'a list" | 
| 65869 | 1073 | by (induction ys) (auto simp: Let_def) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1074 | assume "subseq xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1075 | thus "xs \<in> set (subseqs ys)" | 
| 65869 | 1076 | by (induction xs ys rule: list_emb.induct) (auto simp: Let_def) | 
| 49087 | 1077 | qed | 
| 1078 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1079 | lemma set_subseqs_eq: "set (subseqs ys) = {xs. subseq xs ys}"
 | 
| 65869 | 1080 | by auto | 
| 49087 | 1081 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1082 | lemma subseq_append_le_same_iff: "subseq (xs @ ys) ys \<longleftrightarrow> xs = []" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1083 | by (auto dest: list_emb_length) | 
| 49087 | 1084 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1085 | lemma subseq_singleton_left: "subseq [x] ys \<longleftrightarrow> x \<in> set ys" | 
| 64886 | 1086 | by (fastforce dest: list_emb_ConsD split_list_last) | 
| 1087 | ||
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1088 | lemma list_emb_append_mono: | 
| 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1089 | "\<lbrakk> list_emb P xs xs'; list_emb P ys ys' \<rbrakk> \<Longrightarrow> list_emb P (xs@ys) (xs'@ys')" | 
| 65957 | 1090 | by (induct rule: list_emb.induct) auto | 
| 1091 | ||
| 1092 | lemma prefix_imp_subseq [intro]: "prefix xs ys \<Longrightarrow> subseq xs ys" | |
| 1093 | by (auto simp: prefix_def) | |
| 1094 | ||
| 1095 | lemma suffix_imp_subseq [intro]: "suffix xs ys \<Longrightarrow> subseq xs ys" | |
| 1096 | by (auto simp: suffix_def) | |
| 49087 | 1097 | |
| 82310 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1098 | text \<open>a subsequence of a sorted list\<close> | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1099 | lemma sorted_subset_imp_subseq: | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1100 | fixes xs :: "'a::order list" | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1101 | assumes "set xs \<subseteq> set ys" "sorted_wrt (<) xs" "sorted_wrt (\<le>) ys" | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1102 | shows "subseq xs ys" | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1103 | using assms | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1104 | proof (induction xs arbitrary: ys) | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1105 | case Nil | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1106 | then show ?case | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1107 | by auto | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1108 | next | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1109 | case (Cons x xs) | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1110 | then have "x \<in> set ys" | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1111 | by auto | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1112 | then obtain us vs where \<section>: "ys = us @ [x] @ vs" | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1113 | by (metis append.left_neutral append_eq_Cons_conv split_list) | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1114 | moreover | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1115 | have "set xs \<subseteq> set vs" | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1116 | using Cons.prems by (fastforce simp: \<section> sorted_wrt_append) | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1117 | with Cons have "subseq xs vs" | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1118 | by (metis \<section> sorted_wrt.simps(2) sorted_wrt_append) | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1119 | ultimately show ?case | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1120 | by auto | 
| 
41f5266e5595
New theorems, mostly from the number theory project
 paulson <lp15@cam.ac.uk> parents: 
82218diff
changeset | 1121 | qed | 
| 49087 | 1122 | |
| 60500 | 1123 | subsection \<open>Appending elements\<close> | 
| 49087 | 1124 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1125 | lemma subseq_append [simp]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1126 | "subseq (xs @ zs) (ys @ zs) \<longleftrightarrow> subseq xs ys" (is "?l = ?r") | 
| 49087 | 1127 | proof | 
| 81332 | 1128 | have "xs' = xs @ zs \<and> ys' = ys @ zs \<longrightarrow> subseq xs ys" | 
| 1129 | if "subseq xs' ys'" for xs' ys' xs ys zs :: "'a list" | |
| 1130 | using that | |
| 1131 | proof (induct arbitrary: xs ys zs) | |
| 1132 | case list_emb_Nil | |
| 1133 | show ?case by simp | |
| 1134 | next | |
| 1135 | case (list_emb_Cons xs' ys' x) | |
| 1136 | have ?case if "ys = []" | |
| 1137 | using list_emb_Cons(1) that by auto | |
| 1138 | moreover | |
| 1139 | have ?case if "ys = x#us" for us | |
| 1140 | using list_emb_Cons(2) that by (simp add: list_emb.list_emb_Cons) | |
| 1141 | ultimately show ?case | |
| 1142 | by (auto simp: Cons_eq_append_conv) | |
| 1143 | next | |
| 1144 | case (list_emb_Cons2 x y xs' ys') | |
| 1145 | have ?case if "xs = []" | |
| 1146 | using list_emb_Cons2(1) that by auto | |
| 1147 | moreover | |
| 1148 | have ?case if "xs = x#us" "ys = x#vs" for us vs | |
| 1149 | using list_emb_Cons2 that by auto | |
| 1150 | moreover | |
| 1151 | have ?case if "xs = x#us" "ys = []" for us | |
| 1152 | using list_emb_Cons2(2) that by bestsimp | |
| 1153 | ultimately show ?case | |
| 1154 | using \<open>x = y\<close> by (auto simp: Cons_eq_append_conv) | |
| 1155 | qed | |
| 1156 | then show "?l \<Longrightarrow> ?r" by blast | |
| 1157 | show "?r \<Longrightarrow> ?l" by (metis list_emb_append_mono subseq_order.order_refl) | |
| 49087 | 1158 | qed | 
| 1159 | ||
| 81332 | 1160 | lemma subseq_append_iff: | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1161 | "subseq xs (ys @ zs) \<longleftrightarrow> (\<exists>xs1 xs2. xs = xs1 @ xs2 \<and> subseq xs1 ys \<and> subseq xs2 zs)" | 
| 65869 | 1162 | (is "?lhs = ?rhs") | 
| 1163 | proof | |
| 1164 | assume ?lhs thus ?rhs | |
| 1165 | proof (induction xs "ys @ zs" arbitrary: ys zs rule: list_emb.induct) | |
| 1166 | case (list_emb_Cons xs ws y ys zs) | |
| 1167 | from list_emb_Cons(2)[of "tl ys" zs] and list_emb_Cons(2)[of "[]" "tl zs"] and list_emb_Cons(1,3) | |
| 81332 | 1168 | show ?case by (cases ys) auto | 
| 65869 | 1169 | next | 
| 1170 | case (list_emb_Cons2 x y xs ws ys zs) | |
| 1171 | from list_emb_Cons2(3)[of "tl ys" zs] and list_emb_Cons2(3)[of "[]" "tl zs"] | |
| 1172 | and list_emb_Cons2(1,2,4) | |
| 1173 | show ?case by (cases ys) (auto simp: Cons_eq_append_conv) | |
| 1174 | qed auto | |
| 1175 | qed (auto intro: list_emb_append_mono) | |
| 1176 | ||
| 81332 | 1177 | lemma subseq_appendE [case_names append]: | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1178 | assumes "subseq xs (ys @ zs)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1179 | obtains xs1 xs2 where "xs = xs1 @ xs2" "subseq xs1 ys" "subseq xs2 zs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1180 | using assms by (subst (asm) subseq_append_iff) auto | 
| 65869 | 1181 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1182 | lemma subseq_drop_many: "subseq xs ys \<Longrightarrow> subseq xs (zs @ ys)" | 
| 49087 | 1183 | by (induct zs) auto | 
| 1184 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1185 | lemma subseq_rev_drop_many: "subseq xs ys \<Longrightarrow> subseq xs (ys @ zs)" | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1186 | by (metis append_Nil2 list_emb_Nil list_emb_append_mono) | 
| 49087 | 1187 | |
| 1188 | ||
| 60500 | 1189 | subsection \<open>Relation to standard list operations\<close> | 
| 49087 | 1190 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1191 | lemma subseq_map: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1192 | assumes "subseq xs ys" shows "subseq (map f xs) (map f ys)" | 
| 49087 | 1193 | using assms by (induct) auto | 
| 1194 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1195 | lemma subseq_filter_left [simp]: "subseq (filter P xs) xs" | 
| 49087 | 1196 | by (induct xs) auto | 
| 1197 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1198 | lemma subseq_filter [simp]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1199 | assumes "subseq xs ys" shows "subseq (filter P xs) (filter P ys)" | 
| 54483 | 1200 | using assms by induct auto | 
| 49087 | 1201 | |
| 81332 | 1202 | lemma subseq_conv_nths: "subseq xs ys \<longleftrightarrow> (\<exists>N. xs = nths ys N)" | 
| 1203 | (is "?L = ?R") | |
| 49087 | 1204 | proof | 
| 81332 | 1205 | show ?R if ?L using that | 
| 49087 | 1206 | proof (induct) | 
| 81332 | 1207 | case list_emb_Nil | 
| 1208 | show ?case by (metis nths_empty) | |
| 49087 | 1209 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1210 | case (list_emb_Cons xs ys x) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1211 | then obtain N where "xs = nths ys N" by blast | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1212 | then have "xs = nths (x#ys) (Suc ` N)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1213 | by (clarsimp simp add: nths_Cons inj_image_mem_iff) | 
| 49107 | 1214 | then show ?case by blast | 
| 49087 | 1215 | next | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1216 | case (list_emb_Cons2 x y xs ys) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1217 | then obtain N where "xs = nths ys N" by blast | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1218 | then have "x#xs = nths (x#ys) (insert 0 (Suc ` N))" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1219 | by (clarsimp simp add: nths_Cons inj_image_mem_iff) | 
| 57497 
4106a2bc066a
renamed "list_hembeq" into slightly shorter "list_emb"
 Christian Sternagel parents: 
55579diff
changeset | 1220 | moreover from list_emb_Cons2 have "x = y" by simp | 
| 50516 | 1221 | ultimately show ?case by blast | 
| 49087 | 1222 | qed | 
| 81332 | 1223 | show ?L if ?R | 
| 1224 | proof - | |
| 1225 | from that obtain N where "xs = nths ys N" .. | |
| 1226 | moreover have "subseq (nths ys N) ys" | |
| 1227 | proof (induct ys arbitrary: N) | |
| 1228 | case Nil | |
| 1229 | show ?case by simp | |
| 1230 | next | |
| 1231 | case Cons | |
| 1232 | then show ?case by (auto simp: nths_Cons) | |
| 1233 | qed | |
| 1234 | ultimately show ?thesis by simp | |
| 49087 | 1235 | qed | 
| 1236 | qed | |
| 81332 | 1237 | |
| 1238 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1239 | subsection \<open>Contiguous sublists\<close> | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1240 | |
| 71789 | 1241 | subsubsection \<open>\<open>sublist\<close>\<close> | 
| 1242 | ||
| 81332 | 1243 | definition sublist :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" where | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1244 | "sublist xs ys = (\<exists>ps ss. ys = ps @ xs @ ss)" | 
| 81332 | 1245 | |
| 1246 | definition strict_sublist :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" where | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1247 | "strict_sublist xs ys \<longleftrightarrow> sublist xs ys \<and> xs \<noteq> ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1248 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1249 | interpretation sublist_order: order sublist strict_sublist | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1250 | proof | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1251 | fix xs ys zs :: "'a list" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1252 | assume "sublist xs ys" "sublist ys zs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1253 | then obtain xs1 xs2 ys1 ys2 where "ys = xs1 @ xs @ xs2" "zs = ys1 @ ys @ ys2" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1254 | by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1255 | hence "zs = (ys1 @ xs1) @ xs @ (xs2 @ ys2)" by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1256 | thus "sublist xs zs" unfolding sublist_def by blast | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1257 | next | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1258 | fix xs ys :: "'a list" | 
| 81332 | 1259 | show "xs = ys" if "sublist xs ys" "sublist ys xs" | 
| 1260 | proof - | |
| 1261 | from that obtain as bs cs ds where xs: "xs = as @ ys @ bs" and ys: "ys = cs @ xs @ ds" | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1262 | by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1263 | have "xs = as @ cs @ xs @ ds @ bs" by (subst xs, subst ys) auto | 
| 81332 | 1264 | also have "length \<dots> = length as + length cs + length xs + length bs + length ds" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1265 | by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1266 | finally have "as = []" "bs = []" by simp_all | 
| 81332 | 1267 | with xs show ?thesis by simp | 
| 1268 | qed | |
| 1269 | thus "strict_sublist xs ys \<longleftrightarrow> (sublist xs ys \<and> \<not> sublist ys xs)" | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1270 | by (auto simp: strict_sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1271 | qed (auto simp: strict_sublist_def sublist_def intro: exI[of _ "[]"]) | 
| 81332 | 1272 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1273 | lemma sublist_Nil_left [simp, intro]: "sublist [] ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1274 | by (auto simp: sublist_def) | 
| 81332 | 1275 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1276 | lemma sublist_Cons_Nil [simp]: "\<not>sublist (x#xs) []" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1277 | by (auto simp: sublist_def) | 
| 81332 | 1278 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1279 | lemma sublist_Nil_right [simp]: "sublist xs [] \<longleftrightarrow> xs = []" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1280 | by (cases xs) auto | 
| 81332 | 1281 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1282 | lemma sublist_appendI [simp, intro]: "sublist xs (ps @ xs @ ss)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1283 | by (auto simp: sublist_def) | 
| 81332 | 1284 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1285 | lemma sublist_append_leftI [simp, intro]: "sublist xs (ps @ xs)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1286 | by (auto simp: sublist_def intro: exI[of _ "[]"]) | 
| 81332 | 1287 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1288 | lemma sublist_append_rightI [simp, intro]: "sublist xs (xs @ ss)" | 
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 1289 | by (metis append_eq_append_conv2 sublist_appendI) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1290 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1291 | lemma sublist_altdef: "sublist xs ys \<longleftrightarrow> (\<exists>ys'. prefix ys' ys \<and> suffix xs ys')" | 
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 1292 | by (metis append_assoc prefix_def sublist_def suffix_def) | 
| 81332 | 1293 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1294 | lemma sublist_altdef': "sublist xs ys \<longleftrightarrow> (\<exists>ys'. suffix ys' ys \<and> prefix xs ys')" | 
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 1295 | by (metis prefixE prefixI sublist_appendI sublist_def suffixE suffixI) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1296 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1297 | lemma sublist_Cons_right: "sublist xs (y # ys) \<longleftrightarrow> prefix xs (y # ys) \<or> sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1298 | by (auto simp: sublist_def prefix_def Cons_eq_append_conv) | 
| 81332 | 1299 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1300 | lemma sublist_code [code]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1301 | "sublist [] ys \<longleftrightarrow> True" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1302 | "sublist (x # xs) [] \<longleftrightarrow> False" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1303 | "sublist (x # xs) (y # ys) \<longleftrightarrow> prefix (x # xs) (y # ys) \<or> sublist (x # xs) ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1304 | by (simp_all add: sublist_Cons_right) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1305 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1306 | lemma sublist_append: | 
| 81332 | 1307 | "sublist xs (ys @ zs) \<longleftrightarrow> | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1308 | sublist xs ys \<or> sublist xs zs \<or> (\<exists>xs1 xs2. xs = xs1 @ xs2 \<and> suffix xs1 ys \<and> prefix xs2 zs)" | 
| 71789 | 1309 | by (auto simp: sublist_altdef prefix_append suffix_append) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1310 | |
| 71789 | 1311 | lemma map_mono_sublist: | 
| 1312 | assumes "sublist xs ys" | |
| 1313 | shows "sublist (map f xs) (map f ys)" | |
| 1314 | proof - | |
| 1315 | from assms obtain xs1 xs2 where ys: "ys = xs1 @ xs @ xs2" | |
| 1316 | by (auto simp: sublist_def) | |
| 1317 | have "map f ys = map f xs1 @ map f xs @ map f xs2" | |
| 1318 | by (auto simp: ys) | |
| 1319 | thus ?thesis | |
| 1320 | by (auto simp: sublist_def) | |
| 1321 | qed | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1322 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1323 | lemma sublist_length_le: "sublist xs ys \<Longrightarrow> length xs \<le> length ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1324 | by (auto simp add: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1325 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1326 | lemma set_mono_sublist: "sublist xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1327 | by (auto simp add: sublist_def) | 
| 81332 | 1328 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1329 | lemma prefix_imp_sublist [simp, intro]: "prefix xs ys \<Longrightarrow> sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1330 | by (auto simp: sublist_def prefix_def intro: exI[of _ "[]"]) | 
| 81332 | 1331 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1332 | lemma suffix_imp_sublist [simp, intro]: "suffix xs ys \<Longrightarrow> sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1333 | by (auto simp: sublist_def suffix_def intro: exI[of _ "[]"]) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1334 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1335 | lemma sublist_take [simp, intro]: "sublist (take n xs) xs" | 
| 73380 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1336 | by (rule prefix_imp_sublist[OF take_is_prefix]) | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1337 | |
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1338 | lemma sublist_takeWhile [simp, intro]: "sublist (takeWhile P xs) xs" | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1339 | by (rule prefix_imp_sublist[OF takeWhile_is_prefix]) | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1340 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1341 | lemma sublist_drop [simp, intro]: "sublist (drop n xs) xs" | 
| 73380 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1342 | by (rule suffix_imp_sublist[OF suffix_drop]) | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1343 | |
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1344 | lemma sublist_dropWhile [simp, intro]: "sublist (dropWhile P xs) xs" | 
| 
99c1c4f89605
added lemmas takeWhile_is_prefix, suffix_dropWhile, and sublist_(take|drop)While
 desharna parents: 
73186diff
changeset | 1345 | by (rule suffix_imp_sublist[OF suffix_dropWhile]) | 
| 81332 | 1346 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1347 | lemma sublist_tl [simp, intro]: "sublist (tl xs) xs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1348 | by (rule suffix_imp_sublist) (simp_all add: suffix_drop) | 
| 81332 | 1349 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1350 | lemma sublist_butlast [simp, intro]: "sublist (butlast xs) xs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1351 | by (rule prefix_imp_sublist) (simp_all add: prefixeq_butlast) | 
| 81332 | 1352 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1353 | lemma sublist_rev [simp]: "sublist (rev xs) (rev ys) = sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1354 | proof | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1355 | assume "sublist (rev xs) (rev ys)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1356 | then obtain as bs where "rev ys = as @ rev xs @ bs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1357 | by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1358 | also have "rev \<dots> = rev bs @ xs @ rev as" by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1359 | finally show "sublist xs ys" by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1360 | next | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1361 | assume "sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1362 | then obtain as bs where "ys = as @ xs @ bs" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1363 | by (auto simp: sublist_def) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1364 | also have "rev \<dots> = rev bs @ rev xs @ rev as" by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1365 | finally show "sublist (rev xs) (rev ys)" by simp | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1366 | qed | 
| 81332 | 1367 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1368 | lemma sublist_rev_left: "sublist (rev xs) ys = sublist xs (rev ys)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1369 | by (subst sublist_rev [symmetric]) (simp only: rev_rev_ident) | 
| 81332 | 1370 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1371 | lemma sublist_rev_right: "sublist xs (rev ys) = sublist (rev xs) ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1372 | by (subst sublist_rev [symmetric]) (simp only: rev_rev_ident) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1373 | |
| 81332 | 1374 | lemma snoc_sublist_snoc: | 
| 1375 | "sublist (xs @ [x]) (ys @ [y]) \<longleftrightarrow> | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1376 | (x = y \<and> suffix xs ys \<or> sublist (xs @ [x]) ys) " | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1377 | by (subst (1 2) sublist_rev [symmetric]) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1378 | (simp del: sublist_rev add: sublist_Cons_right suffix_to_prefix) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1379 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1380 | lemma sublist_snoc: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1381 | "sublist xs (ys @ [y]) \<longleftrightarrow> suffix xs (ys @ [y]) \<or> sublist xs ys" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1382 | by (subst (1 2) sublist_rev [symmetric]) | 
| 81332 | 1383 | (simp del: sublist_rev add: sublist_Cons_right suffix_to_prefix) | 
| 1384 | ||
| 65957 | 1385 | lemma sublist_imp_subseq [intro]: "sublist xs ys \<Longrightarrow> subseq xs ys" | 
| 1386 | by (auto simp: sublist_def) | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1387 | |
| 71789 | 1388 | lemma sublist_map_rightE: | 
| 1389 | assumes "sublist xs (map f ys)" | |
| 1390 | shows "\<exists>xs'. sublist xs' ys \<and> xs = map f xs'" | |
| 1391 | proof - | |
| 1392 | note takedrop = sublist_take sublist_drop | |
| 1393 | define n where "n = (length ys - length xs)" | |
| 1394 | from assms obtain xs1 xs2 where xs12: "map f ys = xs1 @ xs @ xs2" | |
| 1395 | by (auto simp: sublist_def) | |
| 1396 | define n where "n = length xs1" | |
| 1397 | have "xs = take (length xs) (drop n (map f ys))" | |
| 1398 | by (simp add: xs12 n_def) | |
| 1399 | thus ?thesis | |
| 1400 | by (intro exI[of _ "take (length xs) (drop n ys)"]) | |
| 1401 | (auto simp: take_map drop_map intro!: takedrop[THEN sublist_order.order.trans]) | |
| 1402 | qed | |
| 1403 | ||
| 1404 | lemma sublist_remdups_adj: | |
| 1405 | assumes "sublist xs ys" | |
| 1406 | shows "sublist (remdups_adj xs) (remdups_adj ys)" | |
| 1407 | proof - | |
| 1408 | from assms obtain xs1 xs2 where ys: "ys = xs1 @ xs @ xs2" | |
| 1409 | by (auto simp: sublist_def) | |
| 1410 | have "suffix (remdups_adj (xs @ xs2)) (remdups_adj (xs1 @ xs @ xs2))" | |
| 1411 | by (rule suffix_remdups_adj, rule suffix_appendI) auto | |
| 1412 | then obtain zs1 where zs1: "remdups_adj (xs1 @ xs @ xs2) = zs1 @ remdups_adj (xs @ xs2)" | |
| 1413 | by (auto simp: suffix_def) | |
| 1414 | have "prefix (remdups_adj xs) (remdups_adj (xs @ xs2))" | |
| 1415 | by (intro prefix_remdups_adj) auto | |
| 1416 | then obtain zs2 where zs2: "remdups_adj (xs @ xs2) = remdups_adj xs @ zs2" | |
| 1417 | by (auto simp: prefix_def) | |
| 1418 | show ?thesis | |
| 1419 | by (simp add: ys zs1 zs2) | |
| 1420 | qed | |
| 1421 | ||
| 1422 | subsubsection \<open>\<open>sublists\<close>\<close> | |
| 1423 | ||
| 1424 | primrec sublists :: "'a list \<Rightarrow> 'a list list" where | |
| 1425 | "sublists [] = [[]]" | |
| 1426 | | "sublists (x # xs) = sublists xs @ map ((#) x) (prefixes xs)" | |
| 1427 | ||
| 81332 | 1428 | lemma in_set_sublists [simp]: "xs \<in> set (sublists ys) \<longleftrightarrow> sublist xs ys" | 
| 71789 | 1429 | by (induction ys arbitrary: xs) (auto simp: sublist_Cons_right prefix_Cons) | 
| 1430 | ||
| 1431 | lemma set_sublists_eq: "set (sublists xs) = {ys. sublist ys xs}"
 | |
| 1432 | by auto | |
| 1433 | ||
| 1434 | lemma length_sublists [simp]: "length (sublists xs) = Suc (length xs * Suc (length xs) div 2)" | |
| 1435 | by (induction xs) simp_all | |
| 1436 | ||
| 1437 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1438 | subsection \<open>Parametricity\<close> | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1439 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1440 | context includes lifting_syntax | 
| 81332 | 1441 | begin | 
| 1442 | ||
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1443 | private lemma prefix_primrec: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1444 | "prefix = rec_list (\<lambda>xs. True) (\<lambda>x xs xsa ys. | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1445 | case ys of [] \<Rightarrow> False | y # ys \<Rightarrow> x = y \<and> xsa ys)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1446 | proof (intro ext, goal_cases) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1447 | case (1 xs ys) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1448 | show ?case by (induction xs arbitrary: ys) (auto simp: prefix_Cons split: list.splits) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1449 | qed | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1450 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1451 | private lemma sublist_primrec: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1452 | "sublist = (\<lambda>xs ys. rec_list (\<lambda>xs. xs = []) (\<lambda>y ys ysa xs. prefix xs (y # ys) \<or> ysa xs) ys xs)" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1453 | proof (intro ext, goal_cases) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1454 | case (1 xs ys) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1455 | show ?case by (induction ys) (auto simp: sublist_Cons_right) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1456 | qed | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1457 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1458 | private lemma list_emb_primrec: | 
| 82218 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 1459 | "list_emb = (\<lambda>uu l' l. rec_list (\<lambda>P xs. List.null xs) (\<lambda>y ys ysa P xs. case xs of [] \<Rightarrow> True | 
| 
cbf9f856d3e0
Some new lemmas and some tidying
 paulson <lp15@cam.ac.uk> parents: 
81332diff
changeset | 1460 | | x # xs \<Rightarrow> if P x y then ysa P xs else ysa P (x # xs)) l uu l')" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1461 | proof (intro ext, goal_cases) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1462 | case (1 P xs ys) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1463 | show ?case | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1464 | by (induction ys arbitrary: xs) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1465 | (auto simp: list_emb_code List.null_def split: list.splits) | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1466 | qed | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1467 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1468 | lemma prefix_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1469 | assumes [transfer_rule]: "bi_unique A" | 
| 81332 | 1470 | shows "(list_all2 A ===> list_all2 A ===> (=)) prefix prefix" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1471 | unfolding prefix_primrec by transfer_prover | 
| 81332 | 1472 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1473 | lemma suffix_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1474 | assumes [transfer_rule]: "bi_unique A" | 
| 81332 | 1475 | shows "(list_all2 A ===> list_all2 A ===> (=)) suffix suffix" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1476 | unfolding suffix_to_prefix [abs_def] by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1477 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1478 | lemma sublist_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1479 | assumes [transfer_rule]: "bi_unique A" | 
| 67399 | 1480 | shows "(list_all2 A ===> list_all2 A ===> (=)) sublist sublist" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1481 | unfolding sublist_primrec by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1482 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1483 | lemma parallel_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1484 | assumes [transfer_rule]: "bi_unique A" | 
| 67399 | 1485 | shows "(list_all2 A ===> list_all2 A ===> (=)) parallel parallel" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1486 | unfolding parallel_def by transfer_prover | 
| 81332 | 1487 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1488 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1489 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1490 | lemma list_emb_transfer [transfer_rule]: | 
| 67399 | 1491 | "((A ===> A ===> (=)) ===> list_all2 A ===> list_all2 A ===> (=)) list_emb list_emb" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1492 | unfolding list_emb_primrec by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1493 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1494 | lemma strict_prefix_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1495 | assumes [transfer_rule]: "bi_unique A" | 
| 81332 | 1496 | shows "(list_all2 A ===> list_all2 A ===> (=)) strict_prefix strict_prefix" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1497 | unfolding strict_prefix_def by transfer_prover | 
| 81332 | 1498 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1499 | lemma strict_suffix_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1500 | assumes [transfer_rule]: "bi_unique A" | 
| 81332 | 1501 | shows "(list_all2 A ===> list_all2 A ===> (=)) strict_suffix strict_suffix" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1502 | unfolding strict_suffix_def by transfer_prover | 
| 81332 | 1503 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1504 | lemma strict_subseq_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1505 | assumes [transfer_rule]: "bi_unique A" | 
| 81332 | 1506 | shows "(list_all2 A ===> list_all2 A ===> (=)) strict_subseq strict_subseq" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1507 | unfolding strict_subseq_def by transfer_prover | 
| 81332 | 1508 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1509 | lemma strict_sublist_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1510 | assumes [transfer_rule]: "bi_unique A" | 
| 81332 | 1511 | shows "(list_all2 A ===> list_all2 A ===> (=)) strict_sublist strict_sublist" | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1512 | unfolding strict_sublist_def by transfer_prover | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1513 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1514 | lemma prefixes_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1515 | assumes [transfer_rule]: "bi_unique A" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1516 | shows "(list_all2 A ===> list_all2 (list_all2 A)) prefixes prefixes" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1517 | unfolding prefixes_def by transfer_prover | 
| 81332 | 1518 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1519 | lemma suffixes_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1520 | assumes [transfer_rule]: "bi_unique A" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1521 | shows "(list_all2 A ===> list_all2 (list_all2 A)) suffixes suffixes" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1522 | unfolding suffixes_def by transfer_prover | 
| 81332 | 1523 | |
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1524 | lemma sublists_transfer [transfer_rule]: | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1525 | assumes [transfer_rule]: "bi_unique A" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1526 | shows "(list_all2 A ===> list_all2 (list_all2 A)) sublists sublists" | 
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1527 | unfolding sublists_def by transfer_prover | 
| 49087 | 1528 | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 1529 | end | 
| 65956 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1530 | |
| 
639eb3617a86
reorganised material on sublists
 eberlm <eberlm@in.tum.de> parents: 
65954diff
changeset | 1531 | end |