| author | blanchet | 
| Mon, 19 Apr 2010 17:18:21 +0200 | |
| changeset 36229 | c95fab3f9cc5 | 
| parent 35372 | ca158c7b1144 | 
| child 36696 | 1b69f78be286 | 
| permissions | -rw-r--r-- | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 1 | (* Title: HOL/PReal.thy | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 2 | Author: Jacques D. Fleuriot, University of Cambridge | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 3 | |
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 4 | The positive reals as Dedekind sections of positive | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 5 | rationals. Fundamentals of Abstract Analysis [Gleason- p. 121] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 6 | provides some of the definitions. | 
| 5078 | 7 | *) | 
| 8 | ||
| 17428 | 9 | header {* Positive real numbers *}
 | 
| 10 | ||
| 15131 | 11 | theory PReal | 
| 35372 | 12 | imports Rat | 
| 15131 | 13 | begin | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 14 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35028diff
changeset | 15 | text{*Could be generalized and moved to @{text Groups}*}
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 16 | lemma add_eq_exists: "\<exists>x. a+x = (b::rat)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 17 | by (rule_tac x="b-a" in exI, simp) | 
| 5078 | 18 | |
| 19765 | 19 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 20 | cut :: "rat set => bool" where | 
| 28562 | 21 |   [code del]: "cut A = ({} \<subset> A &
 | 
| 19765 | 22 |             A < {r. 0 < r} &
 | 
| 23 | (\<forall>y \<in> A. ((\<forall>z. 0<z & z < y --> z \<in> A) & (\<exists>u \<in> A. y < u))))" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 24 | |
| 29811 
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
 chaieb@chaieb-laptop parents: 
29667diff
changeset | 25 | lemma interval_empty_iff: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32960diff
changeset | 26 |   "{y. (x::'a::dense_linorder) < y \<and> y < z} = {} \<longleftrightarrow> \<not> x < z"
 | 
| 29811 
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
 chaieb@chaieb-laptop parents: 
29667diff
changeset | 27 | by (auto dest: dense) | 
| 
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
 chaieb@chaieb-laptop parents: 
29667diff
changeset | 28 | |
| 
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
 chaieb@chaieb-laptop parents: 
29667diff
changeset | 29 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 30 | lemma cut_of_rat: | 
| 20495 | 31 |   assumes q: "0 < q" shows "cut {r::rat. 0 < r & r < q}" (is "cut ?A")
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 32 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 33 |   from q have pos: "?A < {r. 0 < r}" by force
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 34 |   have nonempty: "{} \<subset> ?A"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 35 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 36 |     show "{} \<subseteq> ?A" by simp
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 37 |     show "{} \<noteq> ?A"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 38 |       by (force simp only: q eq_commute [of "{}"] interval_empty_iff)
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 39 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 40 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 41 | by (simp add: cut_def pos nonempty, | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 42 | blast dest: dense intro: order_less_trans) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 43 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 44 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 45 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 46 | typedef preal = "{A. cut A}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 47 | by (blast intro: cut_of_rat [OF zero_less_one]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 48 | |
| 19765 | 49 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 50 | preal_of_rat :: "rat => preal" where | 
| 20495 | 51 |   "preal_of_rat q = Abs_preal {x::rat. 0 < x & x < q}"
 | 
| 5078 | 52 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 53 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 54 | psup :: "preal set => preal" where | 
| 32115 
8f10fb3bb46e
swapped bootstrap order of UNION/Union and INTER/Inter in theory Set
 haftmann parents: 
29811diff
changeset | 55 | [code del]: "psup P = Abs_preal (\<Union>X \<in> P. Rep_preal X)" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 56 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 57 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 58 | add_set :: "[rat set,rat set] => rat set" where | 
| 19765 | 59 |   "add_set A B = {w. \<exists>x \<in> A. \<exists>y \<in> B. w = x + y}"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 60 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 61 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 62 | diff_set :: "[rat set,rat set] => rat set" where | 
| 28562 | 63 |   [code del]: "diff_set A B = {w. \<exists>x. 0 < w & 0 < x & x \<notin> B & x + w \<in> A}"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 64 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 65 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 66 | mult_set :: "[rat set,rat set] => rat set" where | 
| 19765 | 67 |   "mult_set A B = {w. \<exists>x \<in> A. \<exists>y \<in> B. w = x * y}"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 68 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 69 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20495diff
changeset | 70 | inverse_set :: "rat set => rat set" where | 
| 28562 | 71 |   [code del]: "inverse_set A = {x. \<exists>y. 0 < x & x < y & inverse y \<notin> A}"
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 72 | |
| 26511 | 73 | instantiation preal :: "{ord, plus, minus, times, inverse, one}"
 | 
| 74 | begin | |
| 5078 | 75 | |
| 26511 | 76 | definition | 
| 28562 | 77 | preal_less_def [code del]: | 
| 20495 | 78 | "R < S == Rep_preal R < Rep_preal S" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 79 | |
| 26511 | 80 | definition | 
| 28562 | 81 | preal_le_def [code del]: | 
| 20495 | 82 | "R \<le> S == Rep_preal R \<subseteq> Rep_preal S" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 83 | |
| 26511 | 84 | definition | 
| 14335 | 85 | preal_add_def: | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 86 | "R + S == Abs_preal (add_set (Rep_preal R) (Rep_preal S))" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 87 | |
| 26511 | 88 | definition | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 89 | preal_diff_def: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 90 | "R - S == Abs_preal (diff_set (Rep_preal R) (Rep_preal S))" | 
| 5078 | 91 | |
| 26511 | 92 | definition | 
| 14335 | 93 | preal_mult_def: | 
| 20495 | 94 | "R * S == Abs_preal (mult_set (Rep_preal R) (Rep_preal S))" | 
| 5078 | 95 | |
| 26511 | 96 | definition | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 97 | preal_inverse_def: | 
| 20495 | 98 | "inverse R == Abs_preal (inverse_set (Rep_preal R))" | 
| 14335 | 99 | |
| 26564 | 100 | definition "R / S = R * inverse (S\<Colon>preal)" | 
| 101 | ||
| 26511 | 102 | definition | 
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 103 | preal_one_def: | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 104 | "1 == preal_of_rat 1" | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 105 | |
| 26511 | 106 | instance .. | 
| 107 | ||
| 108 | end | |
| 109 | ||
| 14335 | 110 | |
| 15413 | 111 | text{*Reduces equality on abstractions to equality on representatives*}
 | 
| 112 | declare Abs_preal_inject [simp] | |
| 20495 | 113 | declare Abs_preal_inverse [simp] | 
| 114 | ||
| 115 | lemma rat_mem_preal: "0 < q ==> {r::rat. 0 < r & r < q} \<in> preal"
 | |
| 116 | by (simp add: preal_def cut_of_rat) | |
| 14335 | 117 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 118 | lemma preal_nonempty: "A \<in> preal ==> \<exists>x\<in>A. 0 < x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 119 | by (unfold preal_def cut_def, blast) | 
| 14335 | 120 | |
| 20495 | 121 | lemma preal_Ex_mem: "A \<in> preal \<Longrightarrow> \<exists>x. x \<in> A" | 
| 122 | by (drule preal_nonempty, fast) | |
| 123 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 124 | lemma preal_imp_psubset_positives: "A \<in> preal ==> A < {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 125 | by (force simp add: preal_def cut_def) | 
| 14335 | 126 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 127 | lemma preal_exists_bound: "A \<in> preal ==> \<exists>x. 0 < x & x \<notin> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 128 | by (drule preal_imp_psubset_positives, auto) | 
| 14335 | 129 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 130 | lemma preal_exists_greater: "[| A \<in> preal; y \<in> A |] ==> \<exists>u \<in> A. y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 131 | by (unfold preal_def cut_def, blast) | 
| 14335 | 132 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 133 | lemma preal_downwards_closed: "[| A \<in> preal; y \<in> A; 0 < z; z < y |] ==> z \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 134 | by (unfold preal_def cut_def, blast) | 
| 14335 | 135 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 136 | text{*Relaxing the final premise*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 137 | lemma preal_downwards_closed': | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 138 | "[| A \<in> preal; y \<in> A; 0 < z; z \<le> y |] ==> z \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 139 | apply (simp add: order_le_less) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 140 | apply (blast intro: preal_downwards_closed) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 141 | done | 
| 14335 | 142 | |
| 143 | text{*A positive fraction not in a positive real is an upper bound.
 | |
| 144 | Gleason p. 122 - Remark (1)*} | |
| 145 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 146 | lemma not_in_preal_ub: | 
| 19765 | 147 | assumes A: "A \<in> preal" | 
| 148 | and notx: "x \<notin> A" | |
| 149 | and y: "y \<in> A" | |
| 150 | and pos: "0 < x" | |
| 151 | shows "y < x" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 152 | proof (cases rule: linorder_cases) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 153 | assume "x<y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 154 | with notx show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 155 | by (simp add: preal_downwards_closed [OF A y] pos) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 156 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 157 | assume "x=y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 158 | with notx and y show ?thesis by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 159 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 160 | assume "y<x" | 
| 20495 | 161 | thus ?thesis . | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 162 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 163 | |
| 20495 | 164 | text {* preal lemmas instantiated to @{term "Rep_preal X"} *}
 | 
| 165 | ||
| 166 | lemma mem_Rep_preal_Ex: "\<exists>x. x \<in> Rep_preal X" | |
| 167 | by (rule preal_Ex_mem [OF Rep_preal]) | |
| 168 | ||
| 169 | lemma Rep_preal_exists_bound: "\<exists>x>0. x \<notin> Rep_preal X" | |
| 170 | by (rule preal_exists_bound [OF Rep_preal]) | |
| 171 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 172 | lemmas not_in_Rep_preal_ub = not_in_preal_ub [OF Rep_preal] | 
| 14335 | 173 | |
| 174 | ||
| 20495 | 175 | |
| 176 | subsection{*@{term preal_of_prat}: the Injection from prat to preal*}
 | |
| 177 | ||
| 178 | lemma rat_less_set_mem_preal: "0 < y ==> {u::rat. 0 < u & u < y} \<in> preal"
 | |
| 179 | by (simp add: preal_def cut_of_rat) | |
| 180 | ||
| 181 | lemma rat_subset_imp_le: | |
| 182 |      "[|{u::rat. 0 < u & u < x} \<subseteq> {u. 0 < u & u < y}; 0<x|] ==> x \<le> y"
 | |
| 183 | apply (simp add: linorder_not_less [symmetric]) | |
| 184 | apply (blast dest: dense intro: order_less_trans) | |
| 185 | done | |
| 186 | ||
| 187 | lemma rat_set_eq_imp_eq: | |
| 188 |      "[|{u::rat. 0 < u & u < x} = {u. 0 < u & u < y};
 | |
| 189 | 0 < x; 0 < y|] ==> x = y" | |
| 190 | by (blast intro: rat_subset_imp_le order_antisym) | |
| 191 | ||
| 192 | ||
| 193 | ||
| 194 | subsection{*Properties of Ordering*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 195 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 196 | instance preal :: order | 
| 27682 | 197 | proof | 
| 198 | fix w :: preal | |
| 199 | show "w \<le> w" by (simp add: preal_le_def) | |
| 200 | next | |
| 201 | fix i j k :: preal | |
| 202 | assume "i \<le> j" and "j \<le> k" | |
| 203 | then show "i \<le> k" by (simp add: preal_le_def) | |
| 204 | next | |
| 205 | fix z w :: preal | |
| 206 | assume "z \<le> w" and "w \<le> z" | |
| 207 | then show "z = w" by (simp add: preal_le_def Rep_preal_inject) | |
| 208 | next | |
| 209 | fix z w :: preal | |
| 210 | show "z < w \<longleftrightarrow> z \<le> w \<and> \<not> w \<le> z" | |
| 211 | by (auto simp add: preal_le_def preal_less_def Rep_preal_inject) | |
| 212 | qed | |
| 14335 | 213 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 214 | lemma preal_imp_pos: "[|A \<in> preal; r \<in> A|] ==> 0 < r" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 215 | by (insert preal_imp_psubset_positives, blast) | 
| 14335 | 216 | |
| 27682 | 217 | instance preal :: linorder | 
| 218 | proof | |
| 219 | fix x y :: preal | |
| 220 | show "x <= y | y <= x" | |
| 221 | apply (auto simp add: preal_le_def) | |
| 222 | apply (rule ccontr) | |
| 223 | apply (blast dest: not_in_Rep_preal_ub intro: preal_imp_pos [OF Rep_preal] | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 224 | elim: order_less_asym) | 
| 27682 | 225 | done | 
| 226 | qed | |
| 14335 | 227 | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 228 | instantiation preal :: distrib_lattice | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 229 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 230 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 231 | definition | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 232 | "(inf \<Colon> preal \<Rightarrow> preal \<Rightarrow> preal) = min" | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 233 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 234 | definition | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 235 | "(sup \<Colon> preal \<Rightarrow> preal \<Rightarrow> preal) = max" | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 236 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 237 | instance | 
| 22483 | 238 | by intro_classes | 
| 239 | (auto simp add: inf_preal_def sup_preal_def min_max.sup_inf_distrib1) | |
| 14335 | 240 | |
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 241 | end | 
| 14335 | 242 | |
| 243 | subsection{*Properties of Addition*}
 | |
| 244 | ||
| 245 | lemma preal_add_commute: "(x::preal) + y = y + x" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 246 | apply (unfold preal_add_def add_set_def) | 
| 14335 | 247 | apply (rule_tac f = Abs_preal in arg_cong) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 248 | apply (force simp add: add_commute) | 
| 14335 | 249 | done | 
| 250 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 251 | text{*Lemmas for proving that addition of two positive reals gives
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 252 | a positive real*} | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 253 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 254 | lemma empty_psubset_nonempty: "a \<in> A ==> {} \<subset> A"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 255 | by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 256 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 257 | text{*Part 1 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 258 | lemma add_set_not_empty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 259 |      "[|A \<in> preal; B \<in> preal|] ==> {} \<subset> add_set A B"
 | 
| 20495 | 260 | apply (drule preal_nonempty)+ | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 261 | apply (auto simp add: add_set_def) | 
| 14335 | 262 | done | 
| 263 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 264 | text{*Part 2 of Dedekind sections definition.  A structured version of
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 265 | this proof is @{text preal_not_mem_mult_set_Ex} below.*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 266 | lemma preal_not_mem_add_set_Ex: | 
| 20495 | 267 | "[|A \<in> preal; B \<in> preal|] ==> \<exists>q>0. q \<notin> add_set A B" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 268 | apply (insert preal_exists_bound [of A] preal_exists_bound [of B], auto) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 269 | apply (rule_tac x = "x+xa" in exI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 270 | apply (simp add: add_set_def, clarify) | 
| 20495 | 271 | apply (drule (3) not_in_preal_ub)+ | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 272 | apply (force dest: add_strict_mono) | 
| 14335 | 273 | done | 
| 274 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 275 | lemma add_set_not_rat_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 276 | assumes A: "A \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 277 | and B: "B \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 278 |      shows "add_set A B < {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 279 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 280 | from preal_imp_pos [OF A] preal_imp_pos [OF B] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 281 |   show "add_set A B \<subseteq> {r. 0 < r}" by (force simp add: add_set_def) 
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 282 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 283 |   show "add_set A B \<noteq> {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 284 | by (insert preal_not_mem_add_set_Ex [OF A B], blast) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 285 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 286 | |
| 14335 | 287 | text{*Part 3 of Dedekind sections definition*}
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 288 | lemma add_set_lemma3: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 289 | "[|A \<in> preal; B \<in> preal; u \<in> add_set A B; 0 < z; z < u|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 290 | ==> z \<in> add_set A B" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 291 | proof (unfold add_set_def, clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 292 | fix x::rat and y::rat | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 293 | assume A: "A \<in> preal" | 
| 19765 | 294 | and B: "B \<in> preal" | 
| 295 | and [simp]: "0 < z" | |
| 296 | and zless: "z < x + y" | |
| 297 | and x: "x \<in> A" | |
| 298 | and y: "y \<in> B" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 299 | have xpos [simp]: "0<x" by (rule preal_imp_pos [OF A x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 300 | have ypos [simp]: "0<y" by (rule preal_imp_pos [OF B y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 301 | have xypos [simp]: "0 < x+y" by (simp add: pos_add_strict) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 302 | let ?f = "z/(x+y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 303 | have fless: "?f < 1" by (simp add: zless pos_divide_less_eq) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 304 | show "\<exists>x' \<in> A. \<exists>y'\<in>B. z = x' + y'" | 
| 20495 | 305 | proof (intro bexI) | 
| 306 | show "z = x*?f + y*?f" | |
| 307 | by (simp add: left_distrib [symmetric] divide_inverse mult_ac | |
| 308 | order_less_imp_not_eq2) | |
| 309 | next | |
| 310 | show "y * ?f \<in> B" | |
| 311 | proof (rule preal_downwards_closed [OF B y]) | |
| 312 | show "0 < y * ?f" | |
| 313 | by (simp add: divide_inverse zero_less_mult_iff) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 314 | next | 
| 20495 | 315 | show "y * ?f < y" | 
| 316 | by (insert mult_strict_left_mono [OF fless ypos], simp) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 317 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 318 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 319 | show "x * ?f \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 320 | proof (rule preal_downwards_closed [OF A x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 321 | show "0 < x * ?f" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 322 | by (simp add: divide_inverse zero_less_mult_iff) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 323 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 324 | show "x * ?f < x" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 325 | by (insert mult_strict_left_mono [OF fless xpos], simp) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 326 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 327 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 328 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 329 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 330 | text{*Part 4 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 331 | lemma add_set_lemma4: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 332 | "[|A \<in> preal; B \<in> preal; y \<in> add_set A B|] ==> \<exists>u \<in> add_set A B. y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 333 | apply (auto simp add: add_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 334 | apply (frule preal_exists_greater [of A], auto) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 335 | apply (rule_tac x="u + y" in exI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 336 | apply (auto intro: add_strict_left_mono) | 
| 14335 | 337 | done | 
| 338 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 339 | lemma mem_add_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 340 | "[|A \<in> preal; B \<in> preal|] ==> add_set A B \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 341 | apply (simp (no_asm_simp) add: preal_def cut_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 342 | apply (blast intro!: add_set_not_empty add_set_not_rat_set | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 343 | add_set_lemma3 add_set_lemma4) | 
| 14335 | 344 | done | 
| 345 | ||
| 346 | lemma preal_add_assoc: "((x::preal) + y) + z = x + (y + z)" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 347 | apply (simp add: preal_add_def mem_add_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 348 | apply (force simp add: add_set_def add_ac) | 
| 14335 | 349 | done | 
| 350 | ||
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 351 | instance preal :: ab_semigroup_add | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 352 | proof | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 353 | fix a b c :: preal | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 354 | show "(a + b) + c = a + (b + c)" by (rule preal_add_assoc) | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 355 | show "a + b = b + a" by (rule preal_add_commute) | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 356 | qed | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 357 | |
| 14335 | 358 | lemma preal_add_left_commute: "x + (y + z) = y + ((x + z)::preal)" | 
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 359 | by (rule add_left_commute) | 
| 14335 | 360 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 361 | text{* Positive Real addition is an AC operator *}
 | 
| 14335 | 362 | lemmas preal_add_ac = preal_add_assoc preal_add_commute preal_add_left_commute | 
| 363 | ||
| 364 | ||
| 365 | subsection{*Properties of Multiplication*}
 | |
| 366 | ||
| 367 | text{*Proofs essentially same as for addition*}
 | |
| 368 | ||
| 369 | lemma preal_mult_commute: "(x::preal) * y = y * x" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 370 | apply (unfold preal_mult_def mult_set_def) | 
| 14335 | 371 | apply (rule_tac f = Abs_preal in arg_cong) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 372 | apply (force simp add: mult_commute) | 
| 14335 | 373 | done | 
| 374 | ||
| 15055 | 375 | text{*Multiplication of two positive reals gives a positive real.*}
 | 
| 14335 | 376 | |
| 377 | text{*Lemmas for proving positive reals multiplication set in @{typ preal}*}
 | |
| 378 | ||
| 379 | text{*Part 1 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 380 | lemma mult_set_not_empty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 381 |      "[|A \<in> preal; B \<in> preal|] ==> {} \<subset> mult_set A B"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 382 | apply (insert preal_nonempty [of A] preal_nonempty [of B]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 383 | apply (auto simp add: mult_set_def) | 
| 14335 | 384 | done | 
| 385 | ||
| 386 | text{*Part 2 of Dedekind sections definition*}
 | |
| 387 | lemma preal_not_mem_mult_set_Ex: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 388 | assumes A: "A \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 389 | and B: "B \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 390 | shows "\<exists>q. 0 < q & q \<notin> mult_set A B" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 391 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 392 | from preal_exists_bound [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 393 | obtain x where [simp]: "0 < x" "x \<notin> A" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 394 | from preal_exists_bound [OF B] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 395 | obtain y where [simp]: "0 < y" "y \<notin> B" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 396 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 397 | proof (intro exI conjI) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
15413diff
changeset | 398 | show "0 < x*y" by (simp add: mult_pos_pos) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 399 | show "x * y \<notin> mult_set A B" | 
| 14377 | 400 | proof - | 
| 401 |       { fix u::rat and v::rat
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 402 | assume "u \<in> A" and "v \<in> B" and "x*y = u*v" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 403 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 404 | with prems have "u<x" and "v<y" by (blast dest: not_in_preal_ub)+ | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 405 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 406 | with prems have "0\<le>v" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 407 | by (blast intro: preal_imp_pos [OF B] order_less_imp_le prems) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 408 | moreover | 
| 14550 | 409 | from calculation | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 410 | have "u*v < x*y" by (blast intro: mult_strict_mono prems) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 411 | ultimately have False by force } | 
| 14377 | 412 | thus ?thesis by (auto simp add: mult_set_def) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 413 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 414 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 415 | qed | 
| 14335 | 416 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 417 | lemma mult_set_not_rat_set: | 
| 19765 | 418 | assumes A: "A \<in> preal" | 
| 419 | and B: "B \<in> preal" | |
| 420 |   shows "mult_set A B < {r. 0 < r}"
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 421 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 422 |   show "mult_set A B \<subseteq> {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 423 | by (force simp add: mult_set_def | 
| 19765 | 424 | intro: preal_imp_pos [OF A] preal_imp_pos [OF B] mult_pos_pos) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 425 |   show "mult_set A B \<noteq> {r. 0 < r}"
 | 
| 19765 | 426 | using preal_not_mem_mult_set_Ex [OF A B] by blast | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 427 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 428 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 429 | |
| 14335 | 430 | |
| 431 | text{*Part 3 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 432 | lemma mult_set_lemma3: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 433 | "[|A \<in> preal; B \<in> preal; u \<in> mult_set A B; 0 < z; z < u|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 434 | ==> z \<in> mult_set A B" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 435 | proof (unfold mult_set_def, clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 436 | fix x::rat and y::rat | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 437 | assume A: "A \<in> preal" | 
| 19765 | 438 | and B: "B \<in> preal" | 
| 439 | and [simp]: "0 < z" | |
| 440 | and zless: "z < x * y" | |
| 441 | and x: "x \<in> A" | |
| 442 | and y: "y \<in> B" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 443 | have [simp]: "0<y" by (rule preal_imp_pos [OF B y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 444 | show "\<exists>x' \<in> A. \<exists>y' \<in> B. z = x' * y'" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 445 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 446 | show "\<exists>y'\<in>B. z = (z/y) * y'" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 447 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 448 | show "z = (z/y)*y" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 449 | by (simp add: divide_inverse mult_commute [of y] mult_assoc | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 450 | order_less_imp_not_eq2) | 
| 23389 | 451 | show "y \<in> B" by fact | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 452 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 453 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 454 | show "z/y \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 455 | proof (rule preal_downwards_closed [OF A x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 456 | show "0 < z/y" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 457 | by (simp add: zero_less_divide_iff) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 458 | show "z/y < x" by (simp add: pos_divide_less_eq zless) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 459 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 460 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 461 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 462 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 463 | text{*Part 4 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 464 | lemma mult_set_lemma4: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 465 | "[|A \<in> preal; B \<in> preal; y \<in> mult_set A B|] ==> \<exists>u \<in> mult_set A B. y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 466 | apply (auto simp add: mult_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 467 | apply (frule preal_exists_greater [of A], auto) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 468 | apply (rule_tac x="u * y" in exI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 469 | apply (auto intro: preal_imp_pos [of A] preal_imp_pos [of B] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 470 | mult_strict_right_mono) | 
| 14335 | 471 | done | 
| 472 | ||
| 473 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 474 | lemma mem_mult_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 475 | "[|A \<in> preal; B \<in> preal|] ==> mult_set A B \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 476 | apply (simp (no_asm_simp) add: preal_def cut_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 477 | apply (blast intro!: mult_set_not_empty mult_set_not_rat_set | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 478 | mult_set_lemma3 mult_set_lemma4) | 
| 14335 | 479 | done | 
| 480 | ||
| 481 | lemma preal_mult_assoc: "((x::preal) * y) * z = x * (y * z)" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 482 | apply (simp add: preal_mult_def mem_mult_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 483 | apply (force simp add: mult_set_def mult_ac) | 
| 14335 | 484 | done | 
| 485 | ||
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 486 | instance preal :: ab_semigroup_mult | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 487 | proof | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 488 | fix a b c :: preal | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 489 | show "(a * b) * c = a * (b * c)" by (rule preal_mult_assoc) | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 490 | show "a * b = b * a" by (rule preal_mult_commute) | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 491 | qed | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 492 | |
| 14335 | 493 | lemma preal_mult_left_commute: "x * (y * z) = y * ((x * z)::preal)" | 
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 494 | by (rule mult_left_commute) | 
| 14335 | 495 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 496 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 497 | text{* Positive Real multiplication is an AC operator *}
 | 
| 14335 | 498 | lemmas preal_mult_ac = | 
| 499 | preal_mult_assoc preal_mult_commute preal_mult_left_commute | |
| 500 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 501 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 502 | text{* Positive real 1 is the multiplicative identity element *}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 503 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 504 | lemma preal_mult_1: "(1::preal) * z = z" | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 505 | unfolding preal_one_def | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 506 | proof (induct z) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 507 | fix A :: "rat set" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 508 | assume A: "A \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 509 |   have "{w. \<exists>u. 0 < u \<and> u < 1 & (\<exists>v \<in> A. w = u * v)} = A" (is "?lhs = A")
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 510 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 511 | show "?lhs \<subseteq> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 512 | proof clarify | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 513 | fix x::rat and u::rat and v::rat | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 514 | assume upos: "0<u" and "u<1" and v: "v \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 515 | have vpos: "0<v" by (rule preal_imp_pos [OF A v]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 516 | hence "u*v < 1*v" by (simp only: mult_strict_right_mono prems) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 517 | thus "u * v \<in> A" | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
15413diff
changeset | 518 | by (force intro: preal_downwards_closed [OF A v] mult_pos_pos | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
15413diff
changeset | 519 | upos vpos) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 520 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 521 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 522 | show "A \<subseteq> ?lhs" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 523 | proof clarify | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 524 | fix x::rat | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 525 | assume x: "x \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 526 | have xpos: "0<x" by (rule preal_imp_pos [OF A x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 527 | from preal_exists_greater [OF A x] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 528 | obtain v where v: "v \<in> A" and xlessv: "x < v" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 529 | have vpos: "0<v" by (rule preal_imp_pos [OF A v]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 530 | show "\<exists>u. 0 < u \<and> u < 1 \<and> (\<exists>v\<in>A. x = u * v)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 531 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 532 | show "0 < x/v" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 533 | by (simp add: zero_less_divide_iff xpos vpos) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 534 | show "x / v < 1" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 535 | by (simp add: pos_divide_less_eq vpos xlessv) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 536 | show "\<exists>v'\<in>A. x = (x / v) * v'" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 537 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 538 | show "x = (x/v)*v" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 539 | by (simp add: divide_inverse mult_assoc vpos | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 540 | order_less_imp_not_eq2) | 
| 23389 | 541 | show "v \<in> A" by fact | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 542 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 543 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 544 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 545 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 546 | thus "preal_of_rat 1 * Abs_preal A = Abs_preal A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 547 | by (simp add: preal_of_rat_def preal_mult_def mult_set_def | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 548 | rat_mem_preal A) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 549 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 550 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 551 | instance preal :: comm_monoid_mult | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 552 | by intro_classes (rule preal_mult_1) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 553 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 554 | lemma preal_mult_1_right: "z * (1::preal) = z" | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 555 | by (rule mult_1_right) | 
| 14335 | 556 | |
| 557 | ||
| 558 | subsection{*Distribution of Multiplication across Addition*}
 | |
| 559 | ||
| 560 | lemma mem_Rep_preal_add_iff: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 561 | "(z \<in> Rep_preal(R+S)) = (\<exists>x \<in> Rep_preal R. \<exists>y \<in> Rep_preal S. z = x + y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 562 | apply (simp add: preal_add_def mem_add_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 563 | apply (simp add: add_set_def) | 
| 14335 | 564 | done | 
| 565 | ||
| 566 | lemma mem_Rep_preal_mult_iff: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 567 | "(z \<in> Rep_preal(R*S)) = (\<exists>x \<in> Rep_preal R. \<exists>y \<in> Rep_preal S. z = x * y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 568 | apply (simp add: preal_mult_def mem_mult_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 569 | apply (simp add: mult_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 570 | done | 
| 14335 | 571 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 572 | lemma distrib_subset1: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 573 | "Rep_preal (w * (x + y)) \<subseteq> Rep_preal (w * x + w * y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 574 | apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 575 | apply (force simp add: right_distrib) | 
| 14335 | 576 | done | 
| 577 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 578 | lemma preal_add_mult_distrib_mean: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 579 | assumes a: "a \<in> Rep_preal w" | 
| 19765 | 580 | and b: "b \<in> Rep_preal w" | 
| 581 | and d: "d \<in> Rep_preal x" | |
| 582 | and e: "e \<in> Rep_preal y" | |
| 583 | shows "\<exists>c \<in> Rep_preal w. a * d + b * e = c * (d + e)" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 584 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 585 | let ?c = "(a*d + b*e)/(d+e)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 586 | have [simp]: "0<a" "0<b" "0<d" "0<e" "0<d+e" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 587 | by (blast intro: preal_imp_pos [OF Rep_preal] a b d e pos_add_strict)+ | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 588 | have cpos: "0 < ?c" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 589 | by (simp add: zero_less_divide_iff zero_less_mult_iff pos_add_strict) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 590 | show "a * d + b * e = ?c * (d + e)" | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 591 | by (simp add: divide_inverse mult_assoc order_less_imp_not_eq2) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 592 | show "?c \<in> Rep_preal w" | 
| 20495 | 593 | proof (cases rule: linorder_le_cases) | 
| 594 | assume "a \<le> b" | |
| 595 | hence "?c \<le> b" | |
| 596 | by (simp add: pos_divide_le_eq right_distrib mult_right_mono | |
| 597 | order_less_imp_le) | |
| 598 | thus ?thesis by (rule preal_downwards_closed' [OF Rep_preal b cpos]) | |
| 599 | next | |
| 600 | assume "b \<le> a" | |
| 601 | hence "?c \<le> a" | |
| 602 | by (simp add: pos_divide_le_eq right_distrib mult_right_mono | |
| 603 | order_less_imp_le) | |
| 604 | thus ?thesis by (rule preal_downwards_closed' [OF Rep_preal a cpos]) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 605 | qed | 
| 20495 | 606 | qed | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 607 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 608 | lemma distrib_subset2: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 609 | "Rep_preal (w * x + w * y) \<subseteq> Rep_preal (w * (x + y))" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 610 | apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 611 | apply (drule_tac w=w and x=x and y=y in preal_add_mult_distrib_mean, auto) | 
| 14335 | 612 | done | 
| 613 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 614 | lemma preal_add_mult_distrib2: "(w * ((x::preal) + y)) = (w * x) + (w * y)" | 
| 15413 | 615 | apply (rule Rep_preal_inject [THEN iffD1]) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 616 | apply (rule equalityI [OF distrib_subset1 distrib_subset2]) | 
| 14335 | 617 | done | 
| 618 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 619 | lemma preal_add_mult_distrib: "(((x::preal) + y) * w) = (x * w) + (y * w)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 620 | by (simp add: preal_mult_commute preal_add_mult_distrib2) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 621 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 622 | instance preal :: comm_semiring | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 623 | by intro_classes (rule preal_add_mult_distrib) | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 624 | |
| 14335 | 625 | |
| 626 | subsection{*Existence of Inverse, a Positive Real*}
 | |
| 627 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 628 | lemma mem_inv_set_ex: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 629 | assumes A: "A \<in> preal" shows "\<exists>x y. 0 < x & x < y & inverse y \<notin> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 630 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 631 | from preal_exists_bound [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 632 | obtain x where [simp]: "0<x" "x \<notin> A" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 633 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 634 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 635 | show "0 < inverse (x+1)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 636 | by (simp add: order_less_trans [OF _ less_add_one]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 637 | show "inverse(x+1) < inverse x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 638 | by (simp add: less_imp_inverse_less less_add_one) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 639 | show "inverse (inverse x) \<notin> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 640 | by (simp add: order_less_imp_not_eq2) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 641 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 642 | qed | 
| 14335 | 643 | |
| 644 | text{*Part 1 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 645 | lemma inverse_set_not_empty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 646 |      "A \<in> preal ==> {} \<subset> inverse_set A"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 647 | apply (insert mem_inv_set_ex [of A]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 648 | apply (auto simp add: inverse_set_def) | 
| 14335 | 649 | done | 
| 650 | ||
| 651 | text{*Part 2 of Dedekind sections definition*}
 | |
| 652 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 653 | lemma preal_not_mem_inverse_set_Ex: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 654 | assumes A: "A \<in> preal" shows "\<exists>q. 0 < q & q \<notin> inverse_set A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 655 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 656 | from preal_nonempty [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 657 | obtain x where x: "x \<in> A" and xpos [simp]: "0<x" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 658 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 659 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 660 | show "0 < inverse x" by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 661 | show "inverse x \<notin> inverse_set A" | 
| 14377 | 662 | proof - | 
| 663 |       { fix y::rat 
 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 664 | assume ygt: "inverse x < y" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 665 | have [simp]: "0 < y" by (simp add: order_less_trans [OF _ ygt]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 666 | have iyless: "inverse y < x" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 667 | by (simp add: inverse_less_imp_less [of x] ygt) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 668 | have "inverse y \<in> A" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 669 | by (simp add: preal_downwards_closed [OF A x] iyless)} | 
| 14377 | 670 | thus ?thesis by (auto simp add: inverse_set_def) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 671 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 672 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 673 | qed | 
| 14335 | 674 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 675 | lemma inverse_set_not_rat_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 676 |    assumes A: "A \<in> preal"  shows "inverse_set A < {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 677 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 678 |   show "inverse_set A \<subseteq> {r. 0 < r}"  by (force simp add: inverse_set_def)
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 679 | next | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 680 |   show "inverse_set A \<noteq> {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 681 | by (insert preal_not_mem_inverse_set_Ex [OF A], blast) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 682 | qed | 
| 14335 | 683 | |
| 684 | text{*Part 3 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 685 | lemma inverse_set_lemma3: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 686 | "[|A \<in> preal; u \<in> inverse_set A; 0 < z; z < u|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 687 | ==> z \<in> inverse_set A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 688 | apply (auto simp add: inverse_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 689 | apply (auto intro: order_less_trans) | 
| 14335 | 690 | done | 
| 691 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 692 | text{*Part 4 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 693 | lemma inverse_set_lemma4: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 694 | "[|A \<in> preal; y \<in> inverse_set A|] ==> \<exists>u \<in> inverse_set A. y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 695 | apply (auto simp add: inverse_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 696 | apply (drule dense [of y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 697 | apply (blast intro: order_less_trans) | 
| 14335 | 698 | done | 
| 699 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 700 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 701 | lemma mem_inverse_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 702 | "A \<in> preal ==> inverse_set A \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 703 | apply (simp (no_asm_simp) add: preal_def cut_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 704 | apply (blast intro!: inverse_set_not_empty inverse_set_not_rat_set | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 705 | inverse_set_lemma3 inverse_set_lemma4) | 
| 14335 | 706 | done | 
| 707 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 708 | |
| 14335 | 709 | subsection{*Gleason's Lemma 9-3.4, page 122*}
 | 
| 710 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 711 | lemma Gleason9_34_exists: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 712 | assumes A: "A \<in> preal" | 
| 19765 | 713 | and "\<forall>x\<in>A. x + u \<in> A" | 
| 714 | and "0 \<le> z" | |
| 715 | shows "\<exists>b\<in>A. b + (of_int z) * u \<in> A" | |
| 14369 | 716 | proof (cases z rule: int_cases) | 
| 717 | case (nonneg n) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 718 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 719 | proof (simp add: prems, induct n) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 720 | case 0 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 721 | from preal_nonempty [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 722 | show ?case by force | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 723 | case (Suc k) | 
| 15013 | 724 | from this obtain b where "b \<in> A" "b + of_nat k * u \<in> A" .. | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14377diff
changeset | 725 | hence "b + of_int (int k)*u + u \<in> A" by (simp add: prems) | 
| 29667 | 726 | thus ?case by (force simp add: algebra_simps prems) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 727 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 728 | next | 
| 14369 | 729 | case (neg n) | 
| 730 | with prems show ?thesis by simp | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 731 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 732 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 733 | lemma Gleason9_34_contra: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 734 | assumes A: "A \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 735 | shows "[|\<forall>x\<in>A. x + u \<in> A; 0 < u; 0 < y; y \<notin> A|] ==> False" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 736 | proof (induct u, induct y) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 737 | fix a::int and b::int | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 738 | fix c::int and d::int | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 739 | assume bpos [simp]: "0 < b" | 
| 19765 | 740 | and dpos [simp]: "0 < d" | 
| 741 | and closed: "\<forall>x\<in>A. x + (Fract c d) \<in> A" | |
| 742 | and upos: "0 < Fract c d" | |
| 743 | and ypos: "0 < Fract a b" | |
| 744 | and notin: "Fract a b \<notin> A" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 745 | have cpos [simp]: "0 < c" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 746 | by (simp add: zero_less_Fract_iff [OF dpos, symmetric] upos) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 747 | have apos [simp]: "0 < a" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 748 | by (simp add: zero_less_Fract_iff [OF bpos, symmetric] ypos) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 749 | let ?k = "a*d" | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14377diff
changeset | 750 | have frle: "Fract a b \<le> Fract ?k 1 * (Fract c d)" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 751 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 752 | have "?thesis = ((a * d * b * d) \<le> c * b * (a * d * b * d))" | 
| 35216 | 753 | by (simp add: order_less_imp_not_eq2 mult_ac) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 754 | moreover | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 755 | have "(1 * (a * d * b * d)) \<le> c * b * (a * d * b * d)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 756 | by (rule mult_mono, | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 757 | simp_all add: int_one_le_iff_zero_less zero_less_mult_iff | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 758 | order_less_imp_le) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 759 | ultimately | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 760 | show ?thesis by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 761 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 762 | have k: "0 \<le> ?k" by (simp add: order_less_imp_le zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 763 | from Gleason9_34_exists [OF A closed k] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 764 | obtain z where z: "z \<in> A" | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14377diff
changeset | 765 | and mem: "z + of_int ?k * Fract c d \<in> A" .. | 
| 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14377diff
changeset | 766 | have less: "z + of_int ?k * Fract c d < Fract a b" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 767 | by (rule not_in_preal_ub [OF A notin mem ypos]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 768 | have "0<z" by (rule preal_imp_pos [OF A z]) | 
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14377diff
changeset | 769 | with frle and less show False by (simp add: Fract_of_int_eq) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 770 | qed | 
| 14335 | 771 | |
| 772 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 773 | lemma Gleason9_34: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 774 | assumes A: "A \<in> preal" | 
| 19765 | 775 | and upos: "0 < u" | 
| 776 | shows "\<exists>r \<in> A. r + u \<notin> A" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 777 | proof (rule ccontr, simp) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 778 | assume closed: "\<forall>r\<in>A. r + u \<in> A" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 779 | from preal_exists_bound [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 780 | obtain y where y: "y \<notin> A" and ypos: "0 < y" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 781 | show False | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 782 | by (rule Gleason9_34_contra [OF A closed upos ypos y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 783 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 784 | |
| 14335 | 785 | |
| 786 | ||
| 787 | subsection{*Gleason's Lemma 9-3.6*}
 | |
| 788 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 789 | lemma lemma_gleason9_36: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 790 | assumes A: "A \<in> preal" | 
| 19765 | 791 | and x: "1 < x" | 
| 792 | shows "\<exists>r \<in> A. r*x \<notin> A" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 793 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 794 | from preal_nonempty [OF A] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 795 | obtain y where y: "y \<in> A" and ypos: "0<y" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 796 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 797 | proof (rule classical) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 798 | assume "~(\<exists>r\<in>A. r * x \<notin> A)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 799 | with y have ymem: "y * x \<in> A" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 800 | from ypos mult_strict_left_mono [OF x] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 801 | have yless: "y < y*x" by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 802 | let ?d = "y*x - y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 803 | from yless have dpos: "0 < ?d" and eq: "y + ?d = y*x" by auto | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 804 | from Gleason9_34 [OF A dpos] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 805 | obtain r where r: "r\<in>A" and notin: "r + ?d \<notin> A" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 806 | have rpos: "0<r" by (rule preal_imp_pos [OF A r]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 807 | with dpos have rdpos: "0 < r + ?d" by arith | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 808 | have "~ (r + ?d \<le> y + ?d)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 809 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 810 | assume le: "r + ?d \<le> y + ?d" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 811 | from ymem have yd: "y + ?d \<in> A" by (simp add: eq) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 812 | have "r + ?d \<in> A" by (rule preal_downwards_closed' [OF A yd rdpos le]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 813 | with notin show False by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 814 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 815 | hence "y < r" by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 816 | with ypos have dless: "?d < (r * ?d)/y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 817 | by (simp add: pos_less_divide_eq mult_commute [of ?d] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 818 | mult_strict_right_mono dpos) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 819 | have "r + ?d < r*x" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 820 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 821 | have "r + ?d < r + (r * ?d)/y" by (simp add: dless) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 822 | also with ypos have "... = (r/y) * (y + ?d)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32115diff
changeset | 823 | by (simp only: algebra_simps divide_inverse, simp) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 824 | also have "... = r*x" using ypos | 
| 35216 | 825 | by simp | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 826 | finally show "r + ?d < r*x" . | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 827 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 828 | with r notin rdpos | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 829 | show "\<exists>r\<in>A. r * x \<notin> A" by (blast dest: preal_downwards_closed [OF A]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 830 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 831 | qed | 
| 14335 | 832 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 833 | subsection{*Existence of Inverse: Part 2*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 834 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 835 | lemma mem_Rep_preal_inverse_iff: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 836 | "(z \<in> Rep_preal(inverse R)) = | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 837 | (0 < z \<and> (\<exists>y. z < y \<and> inverse y \<notin> Rep_preal R))" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 838 | apply (simp add: preal_inverse_def mem_inverse_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 839 | apply (simp add: inverse_set_def) | 
| 14335 | 840 | done | 
| 841 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 842 | lemma Rep_preal_of_rat: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 843 |      "0 < q ==> Rep_preal (preal_of_rat q) = {x. 0 < x \<and> x < q}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 844 | by (simp add: preal_of_rat_def rat_mem_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 845 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 846 | lemma subset_inverse_mult_lemma: | 
| 19765 | 847 | assumes xpos: "0 < x" and xless: "x < 1" | 
| 848 | shows "\<exists>r u y. 0 < r & r < y & inverse y \<notin> Rep_preal R & | |
| 849 | u \<in> Rep_preal R & x = r * u" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 850 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 851 | from xpos and xless have "1 < inverse x" by (simp add: one_less_inverse_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 852 | from lemma_gleason9_36 [OF Rep_preal this] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 853 | obtain r where r: "r \<in> Rep_preal R" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 854 | and notin: "r * (inverse x) \<notin> Rep_preal R" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 855 | have rpos: "0<r" by (rule preal_imp_pos [OF Rep_preal r]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 856 | from preal_exists_greater [OF Rep_preal r] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 857 | obtain u where u: "u \<in> Rep_preal R" and rless: "r < u" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 858 | have upos: "0<u" by (rule preal_imp_pos [OF Rep_preal u]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 859 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 860 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 861 | show "0 < x/u" using xpos upos | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 862 | by (simp add: zero_less_divide_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 863 | show "x/u < x/r" using xpos upos rpos | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 864 | by (simp add: divide_inverse mult_less_cancel_left rless) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 865 | show "inverse (x / r) \<notin> Rep_preal R" using notin | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 866 | by (simp add: divide_inverse mult_commute) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 867 | show "u \<in> Rep_preal R" by (rule u) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 868 | show "x = x / u * u" using upos | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 869 | by (simp add: divide_inverse mult_commute) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 870 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 871 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 872 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 873 | lemma subset_inverse_mult: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 874 | "Rep_preal(preal_of_rat 1) \<subseteq> Rep_preal(inverse R * R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 875 | apply (auto simp add: Bex_def Rep_preal_of_rat mem_Rep_preal_inverse_iff | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 876 | mem_Rep_preal_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 877 | apply (blast dest: subset_inverse_mult_lemma) | 
| 14335 | 878 | done | 
| 879 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 880 | lemma inverse_mult_subset_lemma: | 
| 19765 | 881 | assumes rpos: "0 < r" | 
| 882 | and rless: "r < y" | |
| 883 | and notin: "inverse y \<notin> Rep_preal R" | |
| 884 | and q: "q \<in> Rep_preal R" | |
| 885 | shows "r*q < 1" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 886 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 887 | have "q < inverse y" using rpos rless | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 888 | by (simp add: not_in_preal_ub [OF Rep_preal notin] q) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 889 | hence "r * q < r/y" using rpos | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 890 | by (simp add: divide_inverse mult_less_cancel_left) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 891 | also have "... \<le> 1" using rpos rless | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 892 | by (simp add: pos_divide_le_eq) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 893 | finally show ?thesis . | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 894 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 895 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 896 | lemma inverse_mult_subset: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 897 | "Rep_preal(inverse R * R) \<subseteq> Rep_preal(preal_of_rat 1)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 898 | apply (auto simp add: Bex_def Rep_preal_of_rat mem_Rep_preal_inverse_iff | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 899 | mem_Rep_preal_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 900 | apply (simp add: zero_less_mult_iff preal_imp_pos [OF Rep_preal]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 901 | apply (blast intro: inverse_mult_subset_lemma) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 902 | done | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 903 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 904 | lemma preal_mult_inverse: "inverse R * R = (1::preal)" | 
| 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 905 | unfolding preal_one_def | 
| 15413 | 906 | apply (rule Rep_preal_inject [THEN iffD1]) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 907 | apply (rule equalityI [OF inverse_mult_subset subset_inverse_mult]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 908 | done | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 909 | |
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 910 | lemma preal_mult_inverse_right: "R * inverse R = (1::preal)" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 911 | apply (rule preal_mult_commute [THEN subst]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 912 | apply (rule preal_mult_inverse) | 
| 14335 | 913 | done | 
| 914 | ||
| 915 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 916 | text{*Theorems needing @{text Gleason9_34}*}
 | 
| 14335 | 917 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 918 | lemma Rep_preal_self_subset: "Rep_preal (R) \<subseteq> Rep_preal(R + S)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 919 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 920 | fix r | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 921 | assume r: "r \<in> Rep_preal R" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 922 | have rpos: "0<r" by (rule preal_imp_pos [OF Rep_preal r]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 923 | from mem_Rep_preal_Ex | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 924 | obtain y where y: "y \<in> Rep_preal S" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 925 | have ypos: "0<y" by (rule preal_imp_pos [OF Rep_preal y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 926 | have ry: "r+y \<in> Rep_preal(R + S)" using r y | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 927 | by (auto simp add: mem_Rep_preal_add_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 928 | show "r \<in> Rep_preal(R + S)" using r ypos rpos | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 929 | by (simp add: preal_downwards_closed [OF Rep_preal ry]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 930 | qed | 
| 14335 | 931 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 932 | lemma Rep_preal_sum_not_subset: "~ Rep_preal (R + S) \<subseteq> Rep_preal(R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 933 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 934 | from mem_Rep_preal_Ex | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 935 | obtain y where y: "y \<in> Rep_preal S" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 936 | have ypos: "0<y" by (rule preal_imp_pos [OF Rep_preal y]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 937 | from Gleason9_34 [OF Rep_preal ypos] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 938 | obtain r where r: "r \<in> Rep_preal R" and notin: "r + y \<notin> Rep_preal R" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 939 | have "r + y \<in> Rep_preal (R + S)" using r y | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 940 | by (auto simp add: mem_Rep_preal_add_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 941 | thus ?thesis using notin by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 942 | qed | 
| 14335 | 943 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 944 | lemma Rep_preal_sum_not_eq: "Rep_preal (R + S) \<noteq> Rep_preal(R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 945 | by (insert Rep_preal_sum_not_subset, blast) | 
| 14335 | 946 | |
| 947 | text{*at last, Gleason prop. 9-3.5(iii) page 123*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 948 | lemma preal_self_less_add_left: "(R::preal) < R + S" | 
| 26806 | 949 | apply (unfold preal_less_def less_le) | 
| 14335 | 950 | apply (simp add: Rep_preal_self_subset Rep_preal_sum_not_eq [THEN not_sym]) | 
| 951 | done | |
| 952 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 953 | lemma preal_self_less_add_right: "(R::preal) < S + R" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 954 | by (simp add: preal_add_commute preal_self_less_add_left) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 955 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 956 | lemma preal_not_eq_self: "x \<noteq> x + (y::preal)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 957 | by (insert preal_self_less_add_left [of x y], auto) | 
| 14335 | 958 | |
| 959 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 960 | subsection{*Subtraction for Positive Reals*}
 | 
| 14335 | 961 | |
| 22710 | 962 | text{*Gleason prop. 9-3.5(iv), page 123: proving @{prop "A < B ==> \<exists>D. A + D =
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 963 | B"}. We define the claimed @{term D} and show that it is a positive real*}
 | 
| 14335 | 964 | |
| 965 | text{*Part 1 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 966 | lemma diff_set_not_empty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 967 |      "R < S ==> {} \<subset> diff_set (Rep_preal S) (Rep_preal R)"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 968 | apply (auto simp add: preal_less_def diff_set_def elim!: equalityE) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 969 | apply (frule_tac x1 = S in Rep_preal [THEN preal_exists_greater]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 970 | apply (drule preal_imp_pos [OF Rep_preal], clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 971 | apply (cut_tac a=x and b=u in add_eq_exists, force) | 
| 14335 | 972 | done | 
| 973 | ||
| 974 | text{*Part 2 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 975 | lemma diff_set_nonempty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 976 | "\<exists>q. 0 < q & q \<notin> diff_set (Rep_preal S) (Rep_preal R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 977 | apply (cut_tac X = S in Rep_preal_exists_bound) | 
| 14335 | 978 | apply (erule exE) | 
| 979 | apply (rule_tac x = x in exI, auto) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 980 | apply (simp add: diff_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 981 | apply (auto dest: Rep_preal [THEN preal_downwards_closed]) | 
| 14335 | 982 | done | 
| 983 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 984 | lemma diff_set_not_rat_set: | 
| 19765 | 985 |   "diff_set (Rep_preal S) (Rep_preal R) < {r. 0 < r}" (is "?lhs < ?rhs")
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 986 | proof | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 987 | show "?lhs \<subseteq> ?rhs" by (auto simp add: diff_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 988 | show "?lhs \<noteq> ?rhs" using diff_set_nonempty by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 989 | qed | 
| 14335 | 990 | |
| 991 | text{*Part 3 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 992 | lemma diff_set_lemma3: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 993 | "[|R < S; u \<in> diff_set (Rep_preal S) (Rep_preal R); 0 < z; z < u|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 994 | ==> z \<in> diff_set (Rep_preal S) (Rep_preal R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 995 | apply (auto simp add: diff_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 996 | apply (rule_tac x=x in exI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 997 | apply (drule Rep_preal [THEN preal_downwards_closed], auto) | 
| 14335 | 998 | done | 
| 999 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1000 | text{*Part 4 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1001 | lemma diff_set_lemma4: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1002 | "[|R < S; y \<in> diff_set (Rep_preal S) (Rep_preal R)|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1003 | ==> \<exists>u \<in> diff_set (Rep_preal S) (Rep_preal R). y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1004 | apply (auto simp add: diff_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1005 | apply (drule Rep_preal [THEN preal_exists_greater], clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1006 | apply (cut_tac a="x+y" and b=u in add_eq_exists, clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1007 | apply (rule_tac x="y+xa" in exI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1008 | apply (auto simp add: add_ac) | 
| 14335 | 1009 | done | 
| 1010 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1011 | lemma mem_diff_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1012 | "R < S ==> diff_set (Rep_preal S) (Rep_preal R) \<in> preal" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1013 | apply (unfold preal_def cut_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1014 | apply (blast intro!: diff_set_not_empty diff_set_not_rat_set | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1015 | diff_set_lemma3 diff_set_lemma4) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1016 | done | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1017 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1018 | lemma mem_Rep_preal_diff_iff: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1019 | "R < S ==> | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1020 | (z \<in> Rep_preal(S-R)) = | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1021 | (\<exists>x. 0 < x & 0 < z & x \<notin> Rep_preal R & x + z \<in> Rep_preal S)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1022 | apply (simp add: preal_diff_def mem_diff_set Rep_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1023 | apply (force simp add: diff_set_def) | 
| 14335 | 1024 | done | 
| 1025 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1026 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1027 | text{*proving that @{term "R + D \<le> S"}*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1028 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1029 | lemma less_add_left_lemma: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1030 | assumes Rless: "R < S" | 
| 19765 | 1031 | and a: "a \<in> Rep_preal R" | 
| 1032 | and cb: "c + b \<in> Rep_preal S" | |
| 1033 | and "c \<notin> Rep_preal R" | |
| 1034 | and "0 < b" | |
| 1035 | and "0 < c" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1036 | shows "a + b \<in> Rep_preal S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1037 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1038 | have "0<a" by (rule preal_imp_pos [OF Rep_preal a]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1039 | moreover | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1040 | have "a < c" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1041 | by (blast intro: not_in_Rep_preal_ub ) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1042 | ultimately show ?thesis using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1043 | by (simp add: preal_downwards_closed [OF Rep_preal cb]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1044 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1045 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1046 | lemma less_add_left_le1: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1047 | "R < (S::preal) ==> R + (S-R) \<le> S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1048 | apply (auto simp add: Bex_def preal_le_def mem_Rep_preal_add_iff | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1049 | mem_Rep_preal_diff_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1050 | apply (blast intro: less_add_left_lemma) | 
| 14335 | 1051 | done | 
| 1052 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1053 | subsection{*proving that @{term "S \<le> R + D"} --- trickier*}
 | 
| 14335 | 1054 | |
| 1055 | lemma lemma_sum_mem_Rep_preal_ex: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1056 | "x \<in> Rep_preal S ==> \<exists>e. 0 < e & x + e \<in> Rep_preal S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1057 | apply (drule Rep_preal [THEN preal_exists_greater], clarify) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1058 | apply (cut_tac a=x and b=u in add_eq_exists, auto) | 
| 14335 | 1059 | done | 
| 1060 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1061 | lemma less_add_left_lemma2: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1062 | assumes Rless: "R < S" | 
| 19765 | 1063 | and x: "x \<in> Rep_preal S" | 
| 1064 | and xnot: "x \<notin> Rep_preal R" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1065 | shows "\<exists>u v z. 0 < v & 0 < z & u \<in> Rep_preal R & z \<notin> Rep_preal R & | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1066 | z + v \<in> Rep_preal S & x = u + v" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1067 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1068 | have xpos: "0<x" by (rule preal_imp_pos [OF Rep_preal x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1069 | from lemma_sum_mem_Rep_preal_ex [OF x] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1070 | obtain e where epos: "0 < e" and xe: "x + e \<in> Rep_preal S" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1071 | from Gleason9_34 [OF Rep_preal epos] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1072 | obtain r where r: "r \<in> Rep_preal R" and notin: "r + e \<notin> Rep_preal R" .. | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1073 | with x xnot xpos have rless: "r < x" by (blast intro: not_in_Rep_preal_ub) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1074 | from add_eq_exists [of r x] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1075 | obtain y where eq: "x = r+y" by auto | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1076 | show ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1077 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1078 | show "r \<in> Rep_preal R" by (rule r) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1079 | show "r + e \<notin> Rep_preal R" by (rule notin) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1080 | show "r + e + y \<in> Rep_preal S" using xe eq by (simp add: add_ac) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1081 | show "x = r + y" by (simp add: eq) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1082 | show "0 < r + e" using epos preal_imp_pos [OF Rep_preal r] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1083 | by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1084 | show "0 < y" using rless eq by arith | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1085 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1086 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1087 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1088 | lemma less_add_left_le2: "R < (S::preal) ==> S \<le> R + (S-R)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1089 | apply (auto simp add: preal_le_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1090 | apply (case_tac "x \<in> Rep_preal R") | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1091 | apply (cut_tac Rep_preal_self_subset [of R], force) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1092 | apply (auto simp add: Bex_def mem_Rep_preal_add_iff mem_Rep_preal_diff_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1093 | apply (blast dest: less_add_left_lemma2) | 
| 14335 | 1094 | done | 
| 1095 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1096 | lemma less_add_left: "R < (S::preal) ==> R + (S-R) = S" | 
| 27682 | 1097 | by (blast intro: antisym [OF less_add_left_le1 less_add_left_le2]) | 
| 14335 | 1098 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1099 | lemma less_add_left_Ex: "R < (S::preal) ==> \<exists>D. R + D = S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1100 | by (fast dest: less_add_left) | 
| 14335 | 1101 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1102 | lemma preal_add_less2_mono1: "R < (S::preal) ==> R + T < S + T" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1103 | apply (auto dest!: less_add_left_Ex simp add: preal_add_assoc) | 
| 14335 | 1104 | apply (rule_tac y1 = D in preal_add_commute [THEN subst]) | 
| 1105 | apply (auto intro: preal_self_less_add_left simp add: preal_add_assoc [symmetric]) | |
| 1106 | done | |
| 1107 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1108 | lemma preal_add_less2_mono2: "R < (S::preal) ==> T + R < T + S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1109 | by (auto intro: preal_add_less2_mono1 simp add: preal_add_commute [of T]) | 
| 14335 | 1110 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1111 | lemma preal_add_right_less_cancel: "R + T < S + T ==> R < (S::preal)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1112 | apply (insert linorder_less_linear [of R S], auto) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1113 | apply (drule_tac R = S and T = T in preal_add_less2_mono1) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1114 | apply (blast dest: order_less_trans) | 
| 14335 | 1115 | done | 
| 1116 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1117 | lemma preal_add_left_less_cancel: "T + R < T + S ==> R < (S::preal)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1118 | by (auto elim: preal_add_right_less_cancel simp add: preal_add_commute [of T]) | 
| 14335 | 1119 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1120 | lemma preal_add_less_cancel_right: "((R::preal) + T < S + T) = (R < S)" | 
| 14335 | 1121 | by (blast intro: preal_add_less2_mono1 preal_add_right_less_cancel) | 
| 1122 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1123 | lemma preal_add_less_cancel_left: "(T + (R::preal) < T + S) = (R < S)" | 
| 14335 | 1124 | by (blast intro: preal_add_less2_mono2 preal_add_left_less_cancel) | 
| 1125 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1126 | lemma preal_add_le_cancel_right: "((R::preal) + T \<le> S + T) = (R \<le> S)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1127 | by (simp add: linorder_not_less [symmetric] preal_add_less_cancel_right) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1128 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1129 | lemma preal_add_le_cancel_left: "(T + (R::preal) \<le> T + S) = (R \<le> S)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1130 | by (simp add: linorder_not_less [symmetric] preal_add_less_cancel_left) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1131 | |
| 14335 | 1132 | lemma preal_add_less_mono: | 
| 1133 | "[| x1 < y1; x2 < y2 |] ==> x1 + x2 < y1 + (y2::preal)" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1134 | apply (auto dest!: less_add_left_Ex simp add: preal_add_ac) | 
| 14335 | 1135 | apply (rule preal_add_assoc [THEN subst]) | 
| 1136 | apply (rule preal_self_less_add_right) | |
| 1137 | done | |
| 1138 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1139 | lemma preal_add_right_cancel: "(R::preal) + T = S + T ==> R = S" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1140 | apply (insert linorder_less_linear [of R S], safe) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1141 | apply (drule_tac [!] T = T in preal_add_less2_mono1, auto) | 
| 14335 | 1142 | done | 
| 1143 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1144 | lemma preal_add_left_cancel: "C + A = C + B ==> A = (B::preal)" | 
| 14335 | 1145 | by (auto intro: preal_add_right_cancel simp add: preal_add_commute) | 
| 1146 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1147 | lemma preal_add_left_cancel_iff: "(C + A = C + B) = ((A::preal) = B)" | 
| 14335 | 1148 | by (fast intro: preal_add_left_cancel) | 
| 1149 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1150 | lemma preal_add_right_cancel_iff: "(A + C = B + C) = ((A::preal) = B)" | 
| 14335 | 1151 | by (fast intro: preal_add_right_cancel) | 
| 1152 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1153 | lemmas preal_cancels = | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1154 | preal_add_less_cancel_right preal_add_less_cancel_left | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1155 | preal_add_le_cancel_right preal_add_le_cancel_left | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1156 | preal_add_left_cancel_iff preal_add_right_cancel_iff | 
| 14335 | 1157 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32960diff
changeset | 1158 | instance preal :: linordered_cancel_ab_semigroup_add | 
| 23285 
c95a4f6b3881
instance preal :: ordered_cancel_ab_semigroup_add
 huffman parents: 
22710diff
changeset | 1159 | proof | 
| 
c95a4f6b3881
instance preal :: ordered_cancel_ab_semigroup_add
 huffman parents: 
22710diff
changeset | 1160 | fix a b c :: preal | 
| 
c95a4f6b3881
instance preal :: ordered_cancel_ab_semigroup_add
 huffman parents: 
22710diff
changeset | 1161 | show "a + b = a + c \<Longrightarrow> b = c" by (rule preal_add_left_cancel) | 
| 23287 
063039db59dd
define (1::preal); clean up instance declarations
 huffman parents: 
23285diff
changeset | 1162 | show "a \<le> b \<Longrightarrow> c + a \<le> c + b" by (simp only: preal_add_le_cancel_left) | 
| 23285 
c95a4f6b3881
instance preal :: ordered_cancel_ab_semigroup_add
 huffman parents: 
22710diff
changeset | 1163 | qed | 
| 
c95a4f6b3881
instance preal :: ordered_cancel_ab_semigroup_add
 huffman parents: 
22710diff
changeset | 1164 | |
| 14335 | 1165 | |
| 1166 | subsection{*Completeness of type @{typ preal}*}
 | |
| 1167 | ||
| 1168 | text{*Prove that supremum is a cut*}
 | |
| 1169 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1170 | text{*Part 1 of Dedekind sections definition*}
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1171 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1172 | lemma preal_sup_set_not_empty: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1173 |      "P \<noteq> {} ==> {} \<subset> (\<Union>X \<in> P. Rep_preal(X))"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1174 | apply auto | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1175 | apply (cut_tac X = x in mem_Rep_preal_Ex, auto) | 
| 14335 | 1176 | done | 
| 1177 | ||
| 1178 | ||
| 1179 | text{*Part 2 of Dedekind sections definition*}
 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1180 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1181 | lemma preal_sup_not_exists: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1182 | "\<forall>X \<in> P. X \<le> Y ==> \<exists>q. 0 < q & q \<notin> (\<Union>X \<in> P. Rep_preal(X))" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1183 | apply (cut_tac X = Y in Rep_preal_exists_bound) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1184 | apply (auto simp add: preal_le_def) | 
| 14335 | 1185 | done | 
| 1186 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1187 | lemma preal_sup_set_not_rat_set: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1188 |      "\<forall>X \<in> P. X \<le> Y ==> (\<Union>X \<in> P. Rep_preal(X)) < {r. 0 < r}"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1189 | apply (drule preal_sup_not_exists) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1190 | apply (blast intro: preal_imp_pos [OF Rep_preal]) | 
| 14335 | 1191 | done | 
| 1192 | ||
| 1193 | text{*Part 3 of Dedekind sections definition*}
 | |
| 1194 | lemma preal_sup_set_lemma3: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1195 |      "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; u \<in> (\<Union>X \<in> P. Rep_preal(X)); 0 < z; z < u|]
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1196 | ==> z \<in> (\<Union>X \<in> P. Rep_preal(X))" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1197 | by (auto elim: Rep_preal [THEN preal_downwards_closed]) | 
| 14335 | 1198 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1199 | text{*Part 4 of Dedekind sections definition*}
 | 
| 14335 | 1200 | lemma preal_sup_set_lemma4: | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1201 |      "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y; y \<in> (\<Union>X \<in> P. Rep_preal(X)) |]
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1202 | ==> \<exists>u \<in> (\<Union>X \<in> P. Rep_preal(X)). y < u" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1203 | by (blast dest: Rep_preal [THEN preal_exists_greater]) | 
| 14335 | 1204 | |
| 1205 | lemma preal_sup: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1206 |      "[|P \<noteq> {}; \<forall>X \<in> P. X \<le> Y|] ==> (\<Union>X \<in> P. Rep_preal(X)) \<in> preal"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1207 | apply (unfold preal_def cut_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1208 | apply (blast intro!: preal_sup_set_not_empty preal_sup_set_not_rat_set | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1209 | preal_sup_set_lemma3 preal_sup_set_lemma4) | 
| 14335 | 1210 | done | 
| 1211 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1212 | lemma preal_psup_le: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1213 | "[| \<forall>X \<in> P. X \<le> Y; x \<in> P |] ==> x \<le> psup P" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1214 | apply (simp (no_asm_simp) add: preal_le_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1215 | apply (subgoal_tac "P \<noteq> {}") 
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1216 | apply (auto simp add: psup_def preal_sup) | 
| 14335 | 1217 | done | 
| 1218 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1219 | lemma psup_le_ub: "[| P \<noteq> {}; \<forall>X \<in> P. X \<le> Y |] ==> psup P \<le> Y"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1220 | apply (simp (no_asm_simp) add: preal_le_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1221 | apply (simp add: psup_def preal_sup) | 
| 14335 | 1222 | apply (auto simp add: preal_le_def) | 
| 1223 | done | |
| 1224 | ||
| 1225 | text{*Supremum property*}
 | |
| 1226 | lemma preal_complete: | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1227 |      "[| P \<noteq> {}; \<forall>X \<in> P. X \<le> Y |] ==> (\<exists>X \<in> P. Z < X) = (Z < psup P)"
 | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1228 | apply (simp add: preal_less_def psup_def preal_sup) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1229 | apply (auto simp add: preal_le_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1230 | apply (rename_tac U) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1231 | apply (cut_tac x = U and y = Z in linorder_less_linear) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1232 | apply (auto simp add: preal_less_def) | 
| 14335 | 1233 | done | 
| 1234 | ||
| 1235 | ||
| 20495 | 1236 | subsection{*The Embedding from @{typ rat} into @{typ preal}*}
 | 
| 14335 | 1237 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1238 | lemma preal_of_rat_add_lemma1: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1239 | "[|x < y + z; 0 < x; 0 < y|] ==> x * y * inverse (y + z) < (y::rat)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1240 | apply (frule_tac c = "y * inverse (y + z) " in mult_strict_right_mono) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1241 | apply (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1242 | apply (simp add: mult_ac) | 
| 14335 | 1243 | done | 
| 1244 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1245 | lemma preal_of_rat_add_lemma2: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1246 | assumes "u < x + y" | 
| 19765 | 1247 | and "0 < x" | 
| 1248 | and "0 < y" | |
| 1249 | and "0 < u" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1250 | shows "\<exists>v w::rat. w < y & 0 < v & v < x & 0 < w & u = v + w" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1251 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1252 | show "u * x * inverse(x+y) < x" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1253 | by (simp add: preal_of_rat_add_lemma1) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1254 | show "u * y * inverse(x+y) < y" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1255 | by (simp add: preal_of_rat_add_lemma1 add_commute [of x]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1256 | show "0 < u * x * inverse (x + y)" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1257 | by (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1258 | show "0 < u * y * inverse (x + y)" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1259 | by (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1260 | show "u = u * x * inverse (x + y) + u * y * inverse (x + y)" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1261 | by (simp add: left_distrib [symmetric] right_distrib [symmetric] mult_ac) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1262 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1263 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1264 | lemma preal_of_rat_add: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1265 | "[| 0 < x; 0 < y|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1266 | ==> preal_of_rat ((x::rat) + y) = preal_of_rat x + preal_of_rat y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1267 | apply (unfold preal_of_rat_def preal_add_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1268 | apply (simp add: rat_mem_preal) | 
| 14335 | 1269 | apply (rule_tac f = Abs_preal in arg_cong) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1270 | apply (auto simp add: add_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1271 | apply (blast dest: preal_of_rat_add_lemma2) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1272 | done | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1273 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1274 | lemma preal_of_rat_mult_lemma1: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1275 | "[|x < y; 0 < x; 0 < z|] ==> x * z * inverse y < (z::rat)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1276 | apply (frule_tac c = "z * inverse y" in mult_strict_right_mono) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1277 | apply (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1278 | apply (subgoal_tac "y * (z * inverse y) = z * (y * inverse y)") | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1279 | apply (simp_all add: mult_ac) | 
| 14335 | 1280 | done | 
| 1281 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1282 | lemma preal_of_rat_mult_lemma2: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1283 | assumes xless: "x < y * z" | 
| 19765 | 1284 | and xpos: "0 < x" | 
| 1285 | and ypos: "0 < y" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1286 | shows "x * z * inverse y * inverse z < (z::rat)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1287 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1288 | have "0 < y * z" using prems by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1289 | hence zpos: "0 < z" using prems by (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1290 | have "x * z * inverse y * inverse z = x * inverse y * (z * inverse z)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1291 | by (simp add: mult_ac) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1292 | also have "... = x/y" using zpos | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14387diff
changeset | 1293 | by (simp add: divide_inverse) | 
| 23389 | 1294 | also from xless have "... < z" | 
| 1295 | by (simp add: pos_divide_less_eq [OF ypos] mult_commute) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1296 | finally show ?thesis . | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1297 | qed | 
| 14335 | 1298 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1299 | lemma preal_of_rat_mult_lemma3: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1300 | assumes uless: "u < x * y" | 
| 19765 | 1301 | and "0 < x" | 
| 1302 | and "0 < y" | |
| 1303 | and "0 < u" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1304 | shows "\<exists>v w::rat. v < x & w < y & 0 < v & 0 < w & u = v * w" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1305 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1306 | from dense [OF uless] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1307 | obtain r where "u < r" "r < x * y" by blast | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1308 | thus ?thesis | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1309 | proof (intro exI conjI) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1310 | show "u * x * inverse r < x" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1311 | by (simp add: preal_of_rat_mult_lemma1) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1312 | show "r * y * inverse x * inverse y < y" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1313 | by (simp add: preal_of_rat_mult_lemma2) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1314 | show "0 < u * x * inverse r" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1315 | by (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1316 | show "0 < r * y * inverse x * inverse y" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1317 | by (simp add: zero_less_mult_iff) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1318 | have "u * x * inverse r * (r * y * inverse x * inverse y) = | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1319 | u * (r * inverse r) * (x * inverse x) * (y * inverse y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1320 | by (simp only: mult_ac) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1321 | thus "u = u * x * inverse r * (r * y * inverse x * inverse y)" using prems | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1322 | by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1323 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1324 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1325 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1326 | lemma preal_of_rat_mult: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1327 | "[| 0 < x; 0 < y|] | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1328 | ==> preal_of_rat ((x::rat) * y) = preal_of_rat x * preal_of_rat y" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1329 | apply (unfold preal_of_rat_def preal_mult_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1330 | apply (simp add: rat_mem_preal) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1331 | apply (rule_tac f = Abs_preal in arg_cong) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1332 | apply (auto simp add: zero_less_mult_iff mult_strict_mono mult_set_def) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1333 | apply (blast dest: preal_of_rat_mult_lemma3) | 
| 14335 | 1334 | done | 
| 1335 | ||
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1336 | lemma preal_of_rat_less_iff: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1337 | "[| 0 < x; 0 < y|] ==> (preal_of_rat x < preal_of_rat y) = (x < y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1338 | by (force simp add: preal_of_rat_def preal_less_def rat_mem_preal) | 
| 14335 | 1339 | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1340 | lemma preal_of_rat_le_iff: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1341 | "[| 0 < x; 0 < y|] ==> (preal_of_rat x \<le> preal_of_rat y) = (x \<le> y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1342 | by (simp add: preal_of_rat_less_iff linorder_not_less [symmetric]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1343 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1344 | lemma preal_of_rat_eq_iff: | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1345 | "[| 0 < x; 0 < y|] ==> (preal_of_rat x = preal_of_rat y) = (x = y)" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14335diff
changeset | 1346 | by (simp add: preal_of_rat_le_iff order_eq_iff) | 
| 14335 | 1347 | |
| 5078 | 1348 | end |