| author | krauss | 
| Mon, 30 May 2011 17:07:48 +0200 | |
| changeset 43071 | c9859f634cef | 
| parent 42993 | da014b00d7a4 | 
| child 43532 | d32d72ea3215 | 
| permissions | -rw-r--r-- | 
| 11355 | 1 | (* Title: HOL/Library/Nat_Infinity.thy | 
| 27110 | 2 | Author: David von Oheimb, TU Muenchen; Florian Haftmann, TU Muenchen | 
| 41853 | 3 | Contributions: David Trachtenherz, TU Muenchen | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 4 | *) | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 5 | |
| 14706 | 6 | header {* Natural numbers with infinity *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 7 | |
| 15131 | 8 | theory Nat_Infinity | 
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
29668diff
changeset | 9 | imports Main | 
| 15131 | 10 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 11 | |
| 27110 | 12 | subsection {* Type definition *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 13 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 14 | text {*
 | 
| 11355 | 15 | We extend the standard natural numbers by a special value indicating | 
| 27110 | 16 | infinity. | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 17 | *} | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 18 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 19 | datatype inat = Fin nat | Infty | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 20 | |
| 21210 | 21 | notation (xsymbols) | 
| 19736 | 22 |   Infty  ("\<infinity>")
 | 
| 23 | ||
| 21210 | 24 | notation (HTML output) | 
| 19736 | 25 |   Infty  ("\<infinity>")
 | 
| 26 | ||
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 27 | |
| 31084 | 28 | lemma not_Infty_eq[iff]: "(x ~= Infty) = (EX i. x = Fin i)" | 
| 29 | by (cases x) auto | |
| 30 | ||
| 31 | lemma not_Fin_eq [iff]: "(ALL y. x ~= Fin y) = (x = Infty)" | |
| 31077 | 32 | by (cases x) auto | 
| 33 | ||
| 34 | ||
| 41855 | 35 | primrec the_Fin :: "inat \<Rightarrow> nat" | 
| 36 | where "the_Fin (Fin n) = n" | |
| 37 | ||
| 38 | ||
| 27110 | 39 | subsection {* Constructors and numbers *}
 | 
| 40 | ||
| 41 | instantiation inat :: "{zero, one, number}"
 | |
| 25594 | 42 | begin | 
| 43 | ||
| 44 | definition | |
| 27110 | 45 | "0 = Fin 0" | 
| 25594 | 46 | |
| 47 | definition | |
| 32069 
6d28bbd33e2c
prefer code_inline over code_unfold; use code_unfold_post where appropriate
 haftmann parents: 
31998diff
changeset | 48 | [code_unfold]: "1 = Fin 1" | 
| 25594 | 49 | |
| 50 | definition | |
| 32069 
6d28bbd33e2c
prefer code_inline over code_unfold; use code_unfold_post where appropriate
 haftmann parents: 
31998diff
changeset | 51 | [code_unfold, code del]: "number_of k = Fin (number_of k)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 52 | |
| 25594 | 53 | instance .. | 
| 54 | ||
| 55 | end | |
| 56 | ||
| 27110 | 57 | definition iSuc :: "inat \<Rightarrow> inat" where | 
| 58 | "iSuc i = (case i of Fin n \<Rightarrow> Fin (Suc n) | \<infinity> \<Rightarrow> \<infinity>)" | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 59 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 60 | lemma Fin_0: "Fin 0 = 0" | 
| 27110 | 61 | by (simp add: zero_inat_def) | 
| 62 | ||
| 63 | lemma Fin_1: "Fin 1 = 1" | |
| 64 | by (simp add: one_inat_def) | |
| 65 | ||
| 66 | lemma Fin_number: "Fin (number_of k) = number_of k" | |
| 67 | by (simp add: number_of_inat_def) | |
| 68 | ||
| 69 | lemma one_iSuc: "1 = iSuc 0" | |
| 70 | by (simp add: zero_inat_def one_inat_def iSuc_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 71 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 72 | lemma Infty_ne_i0 [simp]: "\<infinity> \<noteq> 0" | 
| 27110 | 73 | by (simp add: zero_inat_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 74 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 75 | lemma i0_ne_Infty [simp]: "0 \<noteq> \<infinity>" | 
| 27110 | 76 | by (simp add: zero_inat_def) | 
| 77 | ||
| 78 | lemma zero_inat_eq [simp]: | |
| 79 | "number_of k = (0\<Colon>inat) \<longleftrightarrow> number_of k = (0\<Colon>nat)" | |
| 80 | "(0\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (0\<Colon>nat)" | |
| 81 | unfolding zero_inat_def number_of_inat_def by simp_all | |
| 82 | ||
| 83 | lemma one_inat_eq [simp]: | |
| 84 | "number_of k = (1\<Colon>inat) \<longleftrightarrow> number_of k = (1\<Colon>nat)" | |
| 85 | "(1\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (1\<Colon>nat)" | |
| 86 | unfolding one_inat_def number_of_inat_def by simp_all | |
| 87 | ||
| 88 | lemma zero_one_inat_neq [simp]: | |
| 89 | "\<not> 0 = (1\<Colon>inat)" | |
| 90 | "\<not> 1 = (0\<Colon>inat)" | |
| 91 | unfolding zero_inat_def one_inat_def by simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 92 | |
| 27110 | 93 | lemma Infty_ne_i1 [simp]: "\<infinity> \<noteq> 1" | 
| 94 | by (simp add: one_inat_def) | |
| 95 | ||
| 96 | lemma i1_ne_Infty [simp]: "1 \<noteq> \<infinity>" | |
| 97 | by (simp add: one_inat_def) | |
| 98 | ||
| 99 | lemma Infty_ne_number [simp]: "\<infinity> \<noteq> number_of k" | |
| 100 | by (simp add: number_of_inat_def) | |
| 101 | ||
| 102 | lemma number_ne_Infty [simp]: "number_of k \<noteq> \<infinity>" | |
| 103 | by (simp add: number_of_inat_def) | |
| 104 | ||
| 105 | lemma iSuc_Fin: "iSuc (Fin n) = Fin (Suc n)" | |
| 106 | by (simp add: iSuc_def) | |
| 107 | ||
| 108 | lemma iSuc_number_of: "iSuc (number_of k) = Fin (Suc (number_of k))" | |
| 109 | by (simp add: iSuc_Fin number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 110 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 111 | lemma iSuc_Infty [simp]: "iSuc \<infinity> = \<infinity>" | 
| 27110 | 112 | by (simp add: iSuc_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 113 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 114 | lemma iSuc_ne_0 [simp]: "iSuc n \<noteq> 0" | 
| 27110 | 115 | by (simp add: iSuc_def zero_inat_def split: inat.splits) | 
| 116 | ||
| 117 | lemma zero_ne_iSuc [simp]: "0 \<noteq> iSuc n" | |
| 118 | by (rule iSuc_ne_0 [symmetric]) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 119 | |
| 27110 | 120 | lemma iSuc_inject [simp]: "iSuc m = iSuc n \<longleftrightarrow> m = n" | 
| 121 | by (simp add: iSuc_def split: inat.splits) | |
| 122 | ||
| 123 | lemma number_of_inat_inject [simp]: | |
| 124 | "(number_of k \<Colon> inat) = number_of l \<longleftrightarrow> (number_of k \<Colon> nat) = number_of l" | |
| 125 | by (simp add: number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 126 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 127 | |
| 27110 | 128 | subsection {* Addition *}
 | 
| 129 | ||
| 130 | instantiation inat :: comm_monoid_add | |
| 131 | begin | |
| 132 | ||
| 38167 | 133 | definition [nitpick_simp]: | 
| 37765 | 134 | "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | Fin m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | Fin n \<Rightarrow> Fin (m + n)))" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 135 | |
| 27110 | 136 | lemma plus_inat_simps [simp, code]: | 
| 137 | "Fin m + Fin n = Fin (m + n)" | |
| 138 | "\<infinity> + q = \<infinity>" | |
| 139 | "q + \<infinity> = \<infinity>" | |
| 140 | by (simp_all add: plus_inat_def split: inat.splits) | |
| 141 | ||
| 142 | instance proof | |
| 143 | fix n m q :: inat | |
| 144 | show "n + m + q = n + (m + q)" | |
| 145 | by (cases n, auto, cases m, auto, cases q, auto) | |
| 146 | show "n + m = m + n" | |
| 147 | by (cases n, auto, cases m, auto) | |
| 148 | show "0 + n = n" | |
| 149 | by (cases n) (simp_all add: zero_inat_def) | |
| 26089 | 150 | qed | 
| 151 | ||
| 27110 | 152 | end | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 153 | |
| 27110 | 154 | lemma plus_inat_0 [simp]: | 
| 155 | "0 + (q\<Colon>inat) = q" | |
| 156 | "(q\<Colon>inat) + 0 = q" | |
| 157 | by (simp_all add: plus_inat_def zero_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 158 | |
| 27110 | 159 | lemma plus_inat_number [simp]: | 
| 29012 | 160 | "(number_of k \<Colon> inat) + number_of l = (if k < Int.Pls then number_of l | 
| 161 | else if l < Int.Pls then number_of k else number_of (k + l))" | |
| 27110 | 162 | unfolding number_of_inat_def plus_inat_simps nat_arith(1) if_distrib [symmetric, of _ Fin] .. | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 163 | |
| 27110 | 164 | lemma iSuc_number [simp]: | 
| 165 | "iSuc (number_of k) = (if neg (number_of k \<Colon> int) then 1 else number_of (Int.succ k))" | |
| 166 | unfolding iSuc_number_of | |
| 167 | unfolding one_inat_def number_of_inat_def Suc_nat_number_of if_distrib [symmetric] .. | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 168 | |
| 27110 | 169 | lemma iSuc_plus_1: | 
| 170 | "iSuc n = n + 1" | |
| 171 | by (cases n) (simp_all add: iSuc_Fin one_inat_def) | |
| 172 | ||
| 173 | lemma plus_1_iSuc: | |
| 174 | "1 + q = iSuc q" | |
| 175 | "q + 1 = iSuc q" | |
| 41853 | 176 | by (simp_all add: iSuc_plus_1 add_ac) | 
| 177 | ||
| 178 | lemma iadd_Suc: "iSuc m + n = iSuc (m + n)" | |
| 179 | by (simp_all add: iSuc_plus_1 add_ac) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 180 | |
| 41853 | 181 | lemma iadd_Suc_right: "m + iSuc n = iSuc (m + n)" | 
| 182 | by (simp only: add_commute[of m] iadd_Suc) | |
| 183 | ||
| 184 | lemma iadd_is_0: "(m + n = (0::inat)) = (m = 0 \<and> n = 0)" | |
| 185 | by (cases m, cases n, simp_all add: zero_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 186 | |
| 29014 | 187 | subsection {* Multiplication *}
 | 
| 188 | ||
| 189 | instantiation inat :: comm_semiring_1 | |
| 190 | begin | |
| 191 | ||
| 38167 | 192 | definition times_inat_def [nitpick_simp]: | 
| 29014 | 193 | "m * n = (case m of \<infinity> \<Rightarrow> if n = 0 then 0 else \<infinity> | Fin m \<Rightarrow> | 
| 194 | (case n of \<infinity> \<Rightarrow> if m = 0 then 0 else \<infinity> | Fin n \<Rightarrow> Fin (m * n)))" | |
| 195 | ||
| 196 | lemma times_inat_simps [simp, code]: | |
| 197 | "Fin m * Fin n = Fin (m * n)" | |
| 198 | "\<infinity> * \<infinity> = \<infinity>" | |
| 199 | "\<infinity> * Fin n = (if n = 0 then 0 else \<infinity>)" | |
| 200 | "Fin m * \<infinity> = (if m = 0 then 0 else \<infinity>)" | |
| 201 | unfolding times_inat_def zero_inat_def | |
| 202 | by (simp_all split: inat.split) | |
| 203 | ||
| 204 | instance proof | |
| 205 | fix a b c :: inat | |
| 206 | show "(a * b) * c = a * (b * c)" | |
| 207 | unfolding times_inat_def zero_inat_def | |
| 208 | by (simp split: inat.split) | |
| 209 | show "a * b = b * a" | |
| 210 | unfolding times_inat_def zero_inat_def | |
| 211 | by (simp split: inat.split) | |
| 212 | show "1 * a = a" | |
| 213 | unfolding times_inat_def zero_inat_def one_inat_def | |
| 214 | by (simp split: inat.split) | |
| 215 | show "(a + b) * c = a * c + b * c" | |
| 216 | unfolding times_inat_def zero_inat_def | |
| 217 | by (simp split: inat.split add: left_distrib) | |
| 218 | show "0 * a = 0" | |
| 219 | unfolding times_inat_def zero_inat_def | |
| 220 | by (simp split: inat.split) | |
| 221 | show "a * 0 = 0" | |
| 222 | unfolding times_inat_def zero_inat_def | |
| 223 | by (simp split: inat.split) | |
| 224 | show "(0::inat) \<noteq> 1" | |
| 225 | unfolding zero_inat_def one_inat_def | |
| 226 | by simp | |
| 227 | qed | |
| 228 | ||
| 229 | end | |
| 230 | ||
| 231 | lemma mult_iSuc: "iSuc m * n = n + m * n" | |
| 29667 | 232 | unfolding iSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 233 | |
| 234 | lemma mult_iSuc_right: "m * iSuc n = m + m * n" | |
| 29667 | 235 | unfolding iSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 236 | |
| 29023 | 237 | lemma of_nat_eq_Fin: "of_nat n = Fin n" | 
| 238 | apply (induct n) | |
| 239 | apply (simp add: Fin_0) | |
| 240 | apply (simp add: plus_1_iSuc iSuc_Fin) | |
| 241 | done | |
| 242 | ||
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
38167diff
changeset | 243 | instance inat :: semiring_char_0 proof | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
38167diff
changeset | 244 | have "inj Fin" by (rule injI) simp | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
38167diff
changeset | 245 | then show "inj (\<lambda>n. of_nat n :: inat)" by (simp add: of_nat_eq_Fin) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
38167diff
changeset | 246 | qed | 
| 29023 | 247 | |
| 41853 | 248 | lemma imult_is_0[simp]: "((m::inat) * n = 0) = (m = 0 \<or> n = 0)" | 
| 249 | by(auto simp add: times_inat_def zero_inat_def split: inat.split) | |
| 250 | ||
| 251 | lemma imult_is_Infty: "((a::inat) * b = \<infinity>) = (a = \<infinity> \<and> b \<noteq> 0 \<or> b = \<infinity> \<and> a \<noteq> 0)" | |
| 252 | by(auto simp add: times_inat_def zero_inat_def split: inat.split) | |
| 253 | ||
| 254 | ||
| 255 | subsection {* Subtraction *}
 | |
| 256 | ||
| 257 | instantiation inat :: minus | |
| 258 | begin | |
| 259 | ||
| 260 | definition diff_inat_def: | |
| 261 | "a - b = (case a of (Fin x) \<Rightarrow> (case b of (Fin y) \<Rightarrow> Fin (x - y) | \<infinity> \<Rightarrow> 0) | |
| 262 | | \<infinity> \<Rightarrow> \<infinity>)" | |
| 263 | ||
| 264 | instance .. | |
| 265 | ||
| 266 | end | |
| 267 | ||
| 268 | lemma idiff_Fin_Fin[simp,code]: "Fin a - Fin b = Fin (a - b)" | |
| 269 | by(simp add: diff_inat_def) | |
| 270 | ||
| 271 | lemma idiff_Infty[simp,code]: "\<infinity> - n = \<infinity>" | |
| 272 | by(simp add: diff_inat_def) | |
| 273 | ||
| 274 | lemma idiff_Infty_right[simp,code]: "Fin a - \<infinity> = 0" | |
| 275 | by(simp add: diff_inat_def) | |
| 276 | ||
| 277 | lemma idiff_0[simp]: "(0::inat) - n = 0" | |
| 278 | by (cases n, simp_all add: zero_inat_def) | |
| 279 | ||
| 280 | lemmas idiff_Fin_0[simp] = idiff_0[unfolded zero_inat_def] | |
| 281 | ||
| 282 | lemma idiff_0_right[simp]: "(n::inat) - 0 = n" | |
| 283 | by (cases n) (simp_all add: zero_inat_def) | |
| 284 | ||
| 285 | lemmas idiff_Fin_0_right[simp] = idiff_0_right[unfolded zero_inat_def] | |
| 286 | ||
| 287 | lemma idiff_self[simp]: "n \<noteq> \<infinity> \<Longrightarrow> (n::inat) - n = 0" | |
| 288 | by(auto simp: zero_inat_def) | |
| 289 | ||
| 41855 | 290 | lemma iSuc_minus_iSuc [simp]: "iSuc n - iSuc m = n - m" | 
| 291 | by(simp add: iSuc_def split: inat.split) | |
| 292 | ||
| 293 | lemma iSuc_minus_1 [simp]: "iSuc n - 1 = n" | |
| 294 | by(simp add: one_inat_def iSuc_Fin[symmetric] zero_inat_def[symmetric]) | |
| 295 | ||
| 41853 | 296 | (*lemmas idiff_self_eq_0_Fin = idiff_self_eq_0[unfolded zero_inat_def]*) | 
| 297 | ||
| 29014 | 298 | |
| 27110 | 299 | subsection {* Ordering *}
 | 
| 300 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32069diff
changeset | 301 | instantiation inat :: linordered_ab_semigroup_add | 
| 27110 | 302 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 303 | |
| 38167 | 304 | definition [nitpick_simp]: | 
| 37765 | 305 | "m \<le> n = (case n of Fin n1 \<Rightarrow> (case m of Fin m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False) | 
| 27110 | 306 | | \<infinity> \<Rightarrow> True)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 307 | |
| 38167 | 308 | definition [nitpick_simp]: | 
| 37765 | 309 | "m < n = (case m of Fin m1 \<Rightarrow> (case n of Fin n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True) | 
| 27110 | 310 | | \<infinity> \<Rightarrow> False)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 311 | |
| 27110 | 312 | lemma inat_ord_simps [simp]: | 
| 313 | "Fin m \<le> Fin n \<longleftrightarrow> m \<le> n" | |
| 314 | "Fin m < Fin n \<longleftrightarrow> m < n" | |
| 315 | "q \<le> \<infinity>" | |
| 316 | "q < \<infinity> \<longleftrightarrow> q \<noteq> \<infinity>" | |
| 317 | "\<infinity> \<le> q \<longleftrightarrow> q = \<infinity>" | |
| 318 | "\<infinity> < q \<longleftrightarrow> False" | |
| 319 | by (simp_all add: less_eq_inat_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 320 | |
| 27110 | 321 | lemma inat_ord_code [code]: | 
| 322 | "Fin m \<le> Fin n \<longleftrightarrow> m \<le> n" | |
| 323 | "Fin m < Fin n \<longleftrightarrow> m < n" | |
| 324 | "q \<le> \<infinity> \<longleftrightarrow> True" | |
| 325 | "Fin m < \<infinity> \<longleftrightarrow> True" | |
| 326 | "\<infinity> \<le> Fin n \<longleftrightarrow> False" | |
| 327 | "\<infinity> < q \<longleftrightarrow> False" | |
| 328 | by simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 329 | |
| 27110 | 330 | instance by default | 
| 331 | (auto simp add: less_eq_inat_def less_inat_def plus_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 332 | |
| 27110 | 333 | end | 
| 334 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32069diff
changeset | 335 | instance inat :: ordered_comm_semiring | 
| 29014 | 336 | proof | 
| 337 | fix a b c :: inat | |
| 338 | assume "a \<le> b" and "0 \<le> c" | |
| 339 | thus "c * a \<le> c * b" | |
| 340 | unfolding times_inat_def less_eq_inat_def zero_inat_def | |
| 341 | by (simp split: inat.splits) | |
| 342 | qed | |
| 343 | ||
| 27110 | 344 | lemma inat_ord_number [simp]: | 
| 345 | "(number_of m \<Colon> inat) \<le> number_of n \<longleftrightarrow> (number_of m \<Colon> nat) \<le> number_of n" | |
| 346 | "(number_of m \<Colon> inat) < number_of n \<longleftrightarrow> (number_of m \<Colon> nat) < number_of n" | |
| 347 | by (simp_all add: number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 348 | |
| 27110 | 349 | lemma i0_lb [simp]: "(0\<Colon>inat) \<le> n" | 
| 350 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 351 | |
| 41853 | 352 | lemma ile0_eq [simp]: "n \<le> (0\<Colon>inat) \<longleftrightarrow> n = 0" | 
| 353 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 27110 | 354 | |
| 355 | lemma Infty_ileE [elim!]: "\<infinity> \<le> Fin m \<Longrightarrow> R" | |
| 356 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 357 | |
| 27110 | 358 | lemma Infty_ilessE [elim!]: "\<infinity> < Fin m \<Longrightarrow> R" | 
| 359 | by simp | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 360 | |
| 41853 | 361 | lemma not_iless0 [simp]: "\<not> n < (0\<Colon>inat)" | 
| 27110 | 362 | by (simp add: zero_inat_def less_inat_def split: inat.splits) | 
| 363 | ||
| 41853 | 364 | lemma i0_less [simp]: "(0\<Colon>inat) < n \<longleftrightarrow> n \<noteq> 0" | 
| 365 | by (simp add: zero_inat_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 366 | |
| 27110 | 367 | lemma iSuc_ile_mono [simp]: "iSuc n \<le> iSuc m \<longleftrightarrow> n \<le> m" | 
| 368 | by (simp add: iSuc_def less_eq_inat_def split: inat.splits) | |
| 369 | ||
| 370 | lemma iSuc_mono [simp]: "iSuc n < iSuc m \<longleftrightarrow> n < m" | |
| 371 | by (simp add: iSuc_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 372 | |
| 27110 | 373 | lemma ile_iSuc [simp]: "n \<le> iSuc n" | 
| 374 | by (simp add: iSuc_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 375 | |
| 11355 | 376 | lemma not_iSuc_ilei0 [simp]: "\<not> iSuc n \<le> 0" | 
| 27110 | 377 | by (simp add: zero_inat_def iSuc_def less_eq_inat_def split: inat.splits) | 
| 378 | ||
| 379 | lemma i0_iless_iSuc [simp]: "0 < iSuc n" | |
| 380 | by (simp add: zero_inat_def iSuc_def less_inat_def split: inat.splits) | |
| 381 | ||
| 41853 | 382 | lemma iless_iSuc0[simp]: "(n < iSuc 0) = (n = 0)" | 
| 383 | by (simp add: zero_inat_def iSuc_def less_inat_def split: inat.split) | |
| 384 | ||
| 27110 | 385 | lemma ileI1: "m < n \<Longrightarrow> iSuc m \<le> n" | 
| 386 | by (simp add: iSuc_def less_eq_inat_def less_inat_def split: inat.splits) | |
| 387 | ||
| 388 | lemma Suc_ile_eq: "Fin (Suc m) \<le> n \<longleftrightarrow> Fin m < n" | |
| 389 | by (cases n) auto | |
| 390 | ||
| 391 | lemma iless_Suc_eq [simp]: "Fin m < iSuc n \<longleftrightarrow> Fin m \<le> n" | |
| 392 | by (auto simp add: iSuc_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 393 | |
| 41853 | 394 | lemma imult_Infty: "(0::inat) < n \<Longrightarrow> \<infinity> * n = \<infinity>" | 
| 395 | by (simp add: zero_inat_def less_inat_def split: inat.splits) | |
| 396 | ||
| 397 | lemma imult_Infty_right: "(0::inat) < n \<Longrightarrow> n * \<infinity> = \<infinity>" | |
| 398 | by (simp add: zero_inat_def less_inat_def split: inat.splits) | |
| 399 | ||
| 400 | lemma inat_0_less_mult_iff: "(0 < (m::inat) * n) = (0 < m \<and> 0 < n)" | |
| 401 | by (simp only: i0_less imult_is_0, simp) | |
| 402 | ||
| 403 | lemma mono_iSuc: "mono iSuc" | |
| 404 | by(simp add: mono_def) | |
| 405 | ||
| 406 | ||
| 27110 | 407 | lemma min_inat_simps [simp]: | 
| 408 | "min (Fin m) (Fin n) = Fin (min m n)" | |
| 409 | "min q 0 = 0" | |
| 410 | "min 0 q = 0" | |
| 411 | "min q \<infinity> = q" | |
| 412 | "min \<infinity> q = q" | |
| 413 | by (auto simp add: min_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 414 | |
| 27110 | 415 | lemma max_inat_simps [simp]: | 
| 416 | "max (Fin m) (Fin n) = Fin (max m n)" | |
| 417 | "max q 0 = q" | |
| 418 | "max 0 q = q" | |
| 419 | "max q \<infinity> = \<infinity>" | |
| 420 | "max \<infinity> q = \<infinity>" | |
| 421 | by (simp_all add: max_def) | |
| 422 | ||
| 423 | lemma Fin_ile: "n \<le> Fin m \<Longrightarrow> \<exists>k. n = Fin k" | |
| 424 | by (cases n) simp_all | |
| 425 | ||
| 426 | lemma Fin_iless: "n < Fin m \<Longrightarrow> \<exists>k. n = Fin k" | |
| 427 | by (cases n) simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 428 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 429 | lemma chain_incr: "\<forall>i. \<exists>j. Y i < Y j ==> \<exists>j. Fin k < Y j" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 430 | apply (induct_tac k) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 431 | apply (simp (no_asm) only: Fin_0) | 
| 27110 | 432 | apply (fast intro: le_less_trans [OF i0_lb]) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 433 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 434 | apply (drule spec) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 435 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 436 | apply (drule ileI1) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 437 | apply (rule iSuc_Fin [THEN subst]) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 438 | apply (rule exI) | 
| 27110 | 439 | apply (erule (1) le_less_trans) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 440 | done | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 441 | |
| 29337 | 442 | instantiation inat :: "{bot, top}"
 | 
| 443 | begin | |
| 444 | ||
| 445 | definition bot_inat :: inat where | |
| 446 | "bot_inat = 0" | |
| 447 | ||
| 448 | definition top_inat :: inat where | |
| 449 | "top_inat = \<infinity>" | |
| 450 | ||
| 451 | instance proof | |
| 452 | qed (simp_all add: bot_inat_def top_inat_def) | |
| 453 | ||
| 454 | end | |
| 455 | ||
| 42993 | 456 | lemma finite_Fin_bounded: | 
| 457 | assumes le_fin: "\<And>y. y \<in> A \<Longrightarrow> y \<le> Fin n" | |
| 458 | shows "finite A" | |
| 459 | proof (rule finite_subset) | |
| 460 |   show "finite (Fin ` {..n})" by blast
 | |
| 461 | ||
| 462 |   have "A \<subseteq> {..Fin n}" using le_fin by fastsimp
 | |
| 463 |   also have "\<dots> \<subseteq> Fin ` {..n}"
 | |
| 464 | by (rule subsetI) (case_tac x, auto) | |
| 465 |   finally show "A \<subseteq> Fin ` {..n}" .
 | |
| 466 | qed | |
| 467 | ||
| 26089 | 468 | |
| 27110 | 469 | subsection {* Well-ordering *}
 | 
| 26089 | 470 | |
| 471 | lemma less_FinE: | |
| 472 | "[| n < Fin m; !!k. n = Fin k ==> k < m ==> P |] ==> P" | |
| 473 | by (induct n) auto | |
| 474 | ||
| 475 | lemma less_InftyE: | |
| 476 | "[| n < Infty; !!k. n = Fin k ==> P |] ==> P" | |
| 477 | by (induct n) auto | |
| 478 | ||
| 479 | lemma inat_less_induct: | |
| 480 | assumes prem: "!!n. \<forall>m::inat. m < n --> P m ==> P n" shows "P n" | |
| 481 | proof - | |
| 482 | have P_Fin: "!!k. P (Fin k)" | |
| 483 | apply (rule nat_less_induct) | |
| 484 | apply (rule prem, clarify) | |
| 485 | apply (erule less_FinE, simp) | |
| 486 | done | |
| 487 | show ?thesis | |
| 488 | proof (induct n) | |
| 489 | fix nat | |
| 490 | show "P (Fin nat)" by (rule P_Fin) | |
| 491 | next | |
| 492 | show "P Infty" | |
| 493 | apply (rule prem, clarify) | |
| 494 | apply (erule less_InftyE) | |
| 495 | apply (simp add: P_Fin) | |
| 496 | done | |
| 497 | qed | |
| 498 | qed | |
| 499 | ||
| 500 | instance inat :: wellorder | |
| 501 | proof | |
| 27823 | 502 | fix P and n | 
| 503 | assume hyp: "(\<And>n\<Colon>inat. (\<And>m\<Colon>inat. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)" | |
| 504 | show "P n" by (blast intro: inat_less_induct hyp) | |
| 26089 | 505 | qed | 
| 506 | ||
| 42993 | 507 | subsection {* Complete Lattice *}
 | 
| 508 | ||
| 509 | instantiation inat :: complete_lattice | |
| 510 | begin | |
| 511 | ||
| 512 | definition inf_inat :: "inat \<Rightarrow> inat \<Rightarrow> inat" where | |
| 513 | "inf_inat \<equiv> min" | |
| 514 | ||
| 515 | definition sup_inat :: "inat \<Rightarrow> inat \<Rightarrow> inat" where | |
| 516 | "sup_inat \<equiv> max" | |
| 517 | ||
| 518 | definition Inf_inat :: "inat set \<Rightarrow> inat" where | |
| 519 |   "Inf_inat A \<equiv> if A = {} then \<infinity> else (LEAST x. x \<in> A)"
 | |
| 520 | ||
| 521 | definition Sup_inat :: "inat set \<Rightarrow> inat" where | |
| 522 |   "Sup_inat A \<equiv> if A = {} then 0
 | |
| 523 | else if finite A then Max A | |
| 524 | else \<infinity>" | |
| 525 | instance proof | |
| 526 | fix x :: "inat" and A :: "inat set" | |
| 527 |   { assume "x \<in> A" then show "Inf A \<le> x"
 | |
| 528 | unfolding Inf_inat_def by (auto intro: Least_le) } | |
| 529 |   { assume "\<And>y. y \<in> A \<Longrightarrow> x \<le> y" then show "x \<le> Inf A"
 | |
| 530 | unfolding Inf_inat_def | |
| 531 |       by (cases "A = {}") (auto intro: LeastI2_ex) }
 | |
| 532 |   { assume "x \<in> A" then show "x \<le> Sup A"
 | |
| 533 | unfolding Sup_inat_def by (cases "finite A") auto } | |
| 534 |   { assume "\<And>y. y \<in> A \<Longrightarrow> y \<le> x" then show "Sup A \<le> x"
 | |
| 535 | unfolding Sup_inat_def using finite_Fin_bounded by auto } | |
| 536 | qed (simp_all add: inf_inat_def sup_inat_def) | |
| 537 | end | |
| 538 | ||
| 27110 | 539 | |
| 540 | subsection {* Traditional theorem names *}
 | |
| 541 | ||
| 542 | lemmas inat_defs = zero_inat_def one_inat_def number_of_inat_def iSuc_def | |
| 543 | plus_inat_def less_eq_inat_def less_inat_def | |
| 544 | ||
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 545 | end |