| 0 |      1 | (*  Title: 	ZF/ex/ramsey.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Ramsey's Theorem (finite exponent 2 version)
 | 
|  |      7 | 
 | 
|  |      8 | Based upon the article
 | 
|  |      9 |     D Basin and M Kaufmann,
 | 
|  |     10 |     The Boyer-Moore Prover and Nuprl: An Experimental Comparison.
 | 
|  |     11 |     In G Huet and G Plotkin, editors, Logical Frameworks.
 | 
|  |     12 |     (CUP, 1991), pages 89--119
 | 
|  |     13 | 
 | 
|  |     14 | See also
 | 
|  |     15 |     M Kaufmann,
 | 
|  |     16 |     An example in NQTHM: Ramsey's Theorem
 | 
|  |     17 |     Internal Note, Computational Logic, Inc., Austin, Texas 78703
 | 
|  |     18 |     Available from the author: kaufmann@cli.com
 | 
|  |     19 | *)
 | 
|  |     20 | 
 | 
|  |     21 | Ramsey = Arith +
 | 
|  |     22 | consts
 | 
|  |     23 |   Symmetric   		:: "i=>o"
 | 
|  |     24 |   Atleast     		:: "[i,i]=>o"
 | 
|  |     25 |   Clique,Indept,Ramsey	:: "[i,i,i]=>o"
 | 
|  |     26 | 
 | 
|  |     27 | rules
 | 
|  |     28 | 
 | 
|  |     29 |   Symmetric_def
 | 
|  |     30 |     "Symmetric(E) == (ALL x y. <x,y>:E --> <y,x>:E)"
 | 
|  |     31 | 
 | 
|  |     32 |   Clique_def
 | 
| 38 |     33 |     "Clique(C,V,E) == (C<=V) & (ALL x:C. ALL y:C. x~=y --> <x,y> : E)"
 | 
| 0 |     34 | 
 | 
|  |     35 |   Indept_def
 | 
| 38 |     36 |     "Indept(I,V,E) == (I<=V) & (ALL x:I. ALL y:I. x~=y --> <x,y> ~: E)"
 | 
| 0 |     37 | 
 | 
|  |     38 |   Atleast_def
 | 
|  |     39 |     "Atleast(n,S) == (EX f. f: inj(n,S))"
 | 
|  |     40 | 
 | 
|  |     41 |   Ramsey_def
 | 
|  |     42 |     "Ramsey(n,i,j) == ALL V E. Symmetric(E) & Atleast(n,V) -->  \
 | 
|  |     43 | \         (EX C. Clique(C,V,E) & Atleast(i,C)) |       \
 | 
|  |     44 | \         (EX I. Indept(I,V,E) & Atleast(j,I))"
 | 
|  |     45 | 
 | 
|  |     46 | end
 |