| 
67612
 | 
     1  | 
(* Author: Tobias Nipkow *)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
theory Radix_Sort
  | 
| 
 | 
     4  | 
imports
  | 
| 
68312
 | 
     5  | 
  "HOL-Library.List_Lexorder" 
  | 
| 
67612
 | 
     6  | 
  "HOL-Library.Sublist" 
  | 
| 
67688
 | 
     7  | 
  "HOL-Library.Multiset" 
  | 
| 
 | 
     8  | 
begin
  | 
| 
 | 
     9  | 
  | 
| 
68176
 | 
    10  | 
text \<open>The \<open>Radix_Sort\<close> locale provides a sorting function \<open>radix_sort\<close> that sorts
  | 
| 
 | 
    11  | 
lists of lists. It is parameterized by a sorting function \<open>sort1 f\<close> that also sorts
  | 
| 
 | 
    12  | 
lists of lists, but only w.r.t. the column selected by \<open>f\<close>.
  | 
| 
69597
 | 
    13  | 
Working with lists, \<open>f\<close> is instantiated with \<^term>\<open>\<lambda>xs. xs ! n\<close> to select the \<open>n\<close>-th element.
  | 
| 
68176
 | 
    14  | 
A more efficient implementation would sort lists of arrays because arrays support
  | 
| 
 | 
    15  | 
constant time access to every element.\<close>
  | 
| 
 | 
    16  | 
  | 
| 
67688
 | 
    17  | 
locale Radix_Sort =
  | 
| 
 | 
    18  | 
fixes sort1 :: "('a list \<Rightarrow> 'a::linorder) \<Rightarrow> 'a list list \<Rightarrow> 'a list list"
 | 
| 
68176
 | 
    19  | 
assumes sorted: "sorted (map f (sort1 f xss))"
  | 
| 
 | 
    20  | 
assumes mset: "mset (sort1 f xss) = mset xss"
  | 
| 
67688
 | 
    21  | 
assumes stable: "stable_sort_key sort1"
  | 
| 
67612
 | 
    22  | 
begin
  | 
| 
 | 
    23  | 
  | 
| 
68176
 | 
    24  | 
lemma set_sort1[simp]: "set(sort1 f xss) = set xss"
  | 
| 
67688
 | 
    25  | 
by (metis mset set_mset_mset)
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
abbreviation "sort_col i xss \<equiv> sort1 (\<lambda>xs. xs ! i) xss"
  | 
| 
 | 
    28  | 
abbreviation "sorted_col i xss \<equiv> sorted (map (\<lambda>xs. xs ! i) xss)"
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
fun radix_sort :: "nat \<Rightarrow> 'a list list \<Rightarrow> 'a list list" where
  | 
| 
67612
 | 
    31  | 
"radix_sort 0 xss = xss" |
  | 
| 
67688
 | 
    32  | 
"radix_sort (Suc i) xss = radix_sort i (sort_col i xss)"
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma mset_radix_sort: "mset (radix_sort i xss) = mset xss"
  | 
| 
 | 
    35  | 
by(induction i arbitrary: xss) (auto simp: mset)
  | 
| 
67612
 | 
    36  | 
  | 
| 
 | 
    37  | 
abbreviation "sorted_from i xss \<equiv> sorted (map (drop i) xss)"
  | 
| 
 | 
    38  | 
  | 
| 
67688
 | 
    39  | 
definition "cols xss n = (\<forall>xs \<in> set xss. length xs = n)"
  | 
| 
67612
 | 
    40  | 
  | 
| 
67688
 | 
    41  | 
lemma cols_sort1: "cols xss n \<Longrightarrow> cols (sort1 f xss) n"
  | 
| 
67612
 | 
    42  | 
by(simp add: cols_def)
  | 
| 
 | 
    43  | 
  | 
| 
67688
 | 
    44  | 
lemma sorted_from_Suc2:
  | 
| 
 | 
    45  | 
  "\<lbrakk> cols xss n; i < n;
  | 
| 
 | 
    46  | 
    sorted_col i xss;
  | 
| 
68386
 | 
    47  | 
    \<And>x. sorted_from (i+1) [ys \<leftarrow> xss. ys!i = x] \<rbrakk>
  | 
| 
67612
 | 
    48  | 
  \<Longrightarrow> sorted_from i xss"
  | 
| 
 | 
    49  | 
proof(induction xss rule: induct_list012)
  | 
| 
 | 
    50  | 
  case 1 show ?case by simp
  | 
| 
 | 
    51  | 
next
  | 
| 
 | 
    52  | 
  case 2 show ?case by simp
  | 
| 
 | 
    53  | 
next
  | 
| 
 | 
    54  | 
  case (3 xs1 xs2 xss)
  | 
| 
 | 
    55  | 
  have lxs1: "length xs1 = n" and lxs2: "length xs2 = n"
  | 
| 
 | 
    56  | 
    using "3.prems"(1) by(auto simp: cols_def)
  | 
| 
 | 
    57  | 
  have *: "drop i xs1 \<le> drop i xs2"
  | 
| 
 | 
    58  | 
  proof -
  | 
| 
 | 
    59  | 
    have "drop i xs1 = xs1!i # drop (i+1) xs1"
  | 
| 
 | 
    60  | 
      using \<open>i < n\<close> by (simp add: Cons_nth_drop_Suc lxs1)
  | 
| 
67688
 | 
    61  | 
    also have "\<dots> \<le> xs2!i # drop (i+1) xs2"
  | 
| 
 | 
    62  | 
      using "3.prems"(3) "3.prems"(4)[of "xs2!i"] by(auto)
  | 
| 
67612
 | 
    63  | 
    also have "\<dots> = drop i xs2"
  | 
| 
 | 
    64  | 
      using \<open>i < n\<close> by (simp add: Cons_nth_drop_Suc lxs2)
  | 
| 
 | 
    65  | 
    finally show ?thesis .
  | 
| 
 | 
    66  | 
  qed
  | 
| 
 | 
    67  | 
  have "sorted_from i (xs2 # xss)"
  | 
| 
 | 
    68  | 
  proof(rule "3.IH"[OF _ "3.prems"(2)])
  | 
| 
 | 
    69  | 
    show "cols (xs2 # xss) n" using "3.prems"(1) by(simp add: cols_def)
  | 
| 
67688
 | 
    70  | 
    show "sorted_col i (xs2 # xss)" using "3.prems"(3) by simp
  | 
| 
68386
 | 
    71  | 
    show "\<And>x. sorted_from (i+1) [ys\<leftarrow>xs2 # xss . ys ! i = x]"
  | 
| 
67612
 | 
    72  | 
      using "3.prems"(4)
  | 
| 
73411
 | 
    73  | 
        sorted_antimono_suffix[OF map_mono_suffix[OF filter_mono_suffix[OF suffix_ConsI[OF suffix_order.refl]]]]
  | 
| 
67612
 | 
    74  | 
      by fastforce
  | 
| 
 | 
    75  | 
  qed
  | 
| 
 | 
    76  | 
  with * show ?case by (auto)
  | 
| 
 | 
    77  | 
qed
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
lemma sorted_from_radix_sort_step:
  | 
| 
67688
 | 
    80  | 
assumes "cols xss n" and "i < n" and "sorted_from (i+1) xss"
  | 
| 
 | 
    81  | 
shows "sorted_from i (sort_col i xss)"
  | 
| 
 | 
    82  | 
proof (rule sorted_from_Suc2[OF cols_sort1[OF assms(1)] assms(2)])
  | 
| 
 | 
    83  | 
  show "sorted_col i (sort_col i xss)" by(simp add: sorted)
  | 
| 
68386
 | 
    84  | 
  fix x show "sorted_from (i+1) [ys \<leftarrow> sort_col i xss . ys ! i = x]"
  | 
| 
67688
 | 
    85  | 
  proof -
  | 
| 
 | 
    86  | 
    from assms(3)
  | 
| 
 | 
    87  | 
    have "sorted_from (i+1) (filter (\<lambda>ys. ys!i = x) xss)"
  | 
| 
 | 
    88  | 
      by(rule sorted_filter)
  | 
| 
 | 
    89  | 
    thus "sorted (map (drop (i+1)) (filter (\<lambda>ys. ys!i = x) (sort_col i xss)))"
  | 
| 
 | 
    90  | 
      by (metis stable stable_sort_key_def)
  | 
| 
 | 
    91  | 
  qed
  | 
| 
 | 
    92  | 
qed
  | 
| 
67612
 | 
    93  | 
  | 
| 
 | 
    94  | 
lemma sorted_from_radix_sort:
  | 
| 
67688
 | 
    95  | 
  "\<lbrakk> cols xss n;  i \<le> n;  sorted_from i xss \<rbrakk> \<Longrightarrow> sorted_from 0 (radix_sort i xss)"
  | 
| 
 | 
    96  | 
proof(induction i arbitrary: xss)
  | 
| 
 | 
    97  | 
  case 0 thus ?case by simp
  | 
| 
 | 
    98  | 
next
  | 
| 
 | 
    99  | 
  case (Suc i)
  | 
| 
 | 
   100  | 
  thus ?case by(simp add: sorted_from_radix_sort_step cols_sort1)
  | 
| 
 | 
   101  | 
qed
  | 
| 
67612
 | 
   102  | 
  | 
| 
67688
 | 
   103  | 
corollary sorted_radix_sort: "cols xss n \<Longrightarrow> sorted (radix_sort n xss)"
  | 
| 
67612
 | 
   104  | 
apply(frule sorted_from_radix_sort[OF _ le_refl])
  | 
| 
68176
 | 
   105  | 
 apply(auto simp add: cols_def sorted_iff_nth_mono)
  | 
| 
67612
 | 
   106  | 
done
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
end
  | 
| 
67688
 | 
   109  | 
  | 
| 
 | 
   110  | 
end
  |