src/HOL/Algebra/Chinese_Remainder.thy
author nipkow
Thu, 13 Sep 2018 06:36:00 +0200
changeset 68983 caedabd2771c
parent 68975 5ce4d117cea7
child 69122 1b5178abaf97
permissions -rw-r--r--
typo
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
68582
b9b9e2985878 more standard headers;
wenzelm
parents: 68569
diff changeset
     1
(*  Title:      HOL/Algebra/Chinese_Remainder.thy
b9b9e2985878 more standard headers;
wenzelm
parents: 68569
diff changeset
     2
    Author:     Paulo Emílio de Vilhena
b9b9e2985878 more standard headers;
wenzelm
parents: 68569
diff changeset
     3
*)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     4
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     5
theory Chinese_Remainder
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     6
  imports QuotRing Ideal_Product
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     7
begin
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     8
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     9
section \<open>Chinese Remainder Theorem\<close>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    10
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    11
subsection \<open>Direct Product of Rings\<close>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    12
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    13
definition
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    14
  RDirProd :: "[ ('a, 'n) ring_scheme, ('b, 'm) ring_scheme ]  \<Rightarrow> ('a \<times> 'b) ring"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    15
  where "RDirProd R S =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    16
           \<lparr> carrier = carrier R \<times> carrier S,
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    17
                mult = (\<lambda>(r, s). \<lambda>(r', s'). (r \<otimes>\<^bsub>R\<^esub> r', s \<otimes>\<^bsub>S\<^esub> s')),
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    18
                 one = (\<one>\<^bsub>R\<^esub>, \<one>\<^bsub>S\<^esub>),
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    19
                zero = (\<zero>\<^bsub>R\<^esub>, \<zero>\<^bsub>S\<^esub>),
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    20
                 add = (\<lambda>(r, s). \<lambda>(r', s'). (r \<oplus>\<^bsub>R\<^esub> r', s \<oplus>\<^bsub>S\<^esub> s')) \<rparr>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    21
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    22
lemma RDirProd_monoid:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    23
  assumes "ring R" and "ring S"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    24
  shows "monoid (RDirProd R S)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    25
  by (rule monoidI) (auto simp add: RDirProd_def assms ring.ring_simprules ring.is_monoid)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    26
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    27
lemma RDirProd_abelian_group:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    28
  assumes "ring R" and "ring S"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    29
  shows "abelian_group (RDirProd R S)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    30
  by (auto intro!: abelian_groupI
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    31
         simp add: RDirProd_def assms ring.ring_simprules)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    32
     (meson assms ring.ring_simprules(3,16))+
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    33
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    34
lemma RDirProd_group:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    35
  assumes "ring R" and "ring S"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    36
  shows "ring (RDirProd R S)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    37
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    38
  show ?thesis
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    39
    apply (rule ringI)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    40
    apply (simp_all add: assms RDirProd_abelian_group RDirProd_monoid)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    41
    by (auto simp add: RDirProd_def assms ring.ring_simprules)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    42
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    43
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    44
lemma RDirProd_isomorphism1:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    45
  "(\<lambda>(x, y). (y, x)) \<in> ring_iso (RDirProd R S) (RDirProd S R)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    46
  unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def RDirProd_def by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    47
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    48
lemma RDirProd_isomorphism2:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    49
  "(\<lambda>(x, (y, z)). ((x, y), z)) \<in> ring_iso (RDirProd R (RDirProd S T)) (RDirProd (RDirProd R S) T)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    50
  unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def RDirProd_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    51
  by (auto simp add: image_iff)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    52
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    53
lemma RDirProd_isomorphism3:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    54
  "(\<lambda>((x, y), z). (x, (y, z))) \<in> ring_iso (RDirProd (RDirProd R S) T) (RDirProd R (RDirProd S T))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    55
  unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def RDirProd_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    56
  by (auto simp add: image_iff)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    57
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    58
lemma RDirProd_isomorphism4:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    59
  assumes "f \<in> ring_iso R S"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    60
  shows "(\<lambda>(r, t). (f r, t)) \<in> ring_iso (RDirProd R T) (RDirProd S T)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    61
  using assms unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def RDirProd_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    62
  by (auto simp add: image_iff)+
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    63
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    64
lemma RDirProd_isomorphism5:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    65
  assumes "f \<in> ring_iso S T"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    66
  shows "(\<lambda>(r, s). (r, f s)) \<in> ring_iso (RDirProd R S) (RDirProd R T)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    67
  using ring_iso_set_trans[OF ring_iso_set_trans[OF RDirProd_isomorphism1[of R S]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    68
                                                    RDirProd_isomorphism4[OF assms, of R]]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    69
                              RDirProd_isomorphism1[of T R]]
68608
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
    70
  by (simp add: case_prod_unfold comp_def)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    71
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    72
lemma RDirProd_isomorphism6:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    73
  assumes "f \<in> ring_iso R R'" and "g \<in> ring_iso S S'"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    74
  shows "(\<lambda>(r, s). (f r, g s)) \<in> ring_iso (RDirProd R S) (RDirProd R' S')"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    75
  using ring_iso_set_trans[OF RDirProd_isomorphism4[OF assms(1)] RDirProd_isomorphism5[OF assms(2)]]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    76
  by (simp add: case_prod_beta' comp_def)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    77
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    78
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    79
subsection \<open>Simple Version of The Theorem\<close>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    80
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    81
text \<open>We start by proving a simpler version of the theorem. The rest of the theory is
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    82
      dedicated to its generalization\<close>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    83
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    84
lemma (in ideal) set_add_zero:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    85
  assumes "i \<in> I"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    86
  shows "I +> i = I"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    87
  by (simp add: a_rcos_const assms)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    88
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    89
lemma (in ideal) set_add_zero_imp_mem:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    90
  assumes "i \<in> carrier R" "I +> i = I"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    91
  shows "i \<in> I"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    92
  using a_rcos_self assms(1-2) by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    93
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    94
lemma (in ring) canonical_proj_is_surj:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    95
  assumes "ideal I R" "ideal J R" "I <+> J = carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    96
  shows "\<And>x y. \<lbrakk> x \<in> carrier R; y \<in> carrier R \<rbrakk> \<Longrightarrow>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    97
                 \<exists>a \<in> carrier R. I +> a = I +> x \<and> J +> a = J +> y"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    98
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    99
  { fix I J i j assume A: "ideal I R" "ideal J R" "i \<in> I" "j \<in> J" "\<one> = i \<oplus> j"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   100
    have "I +> \<one> = I +> j"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   101
    proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   102
      have "I +> \<one> = I +> (i \<oplus> j)" using A(5) by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   103
      also have " ... = (I +> i) <+> (I +> j)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   104
        by (metis abelian_subgroup.a_rcos_sum abelian_subgroupI3 A(1-4)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   105
            ideal.Icarr ideal.axioms(1) is_abelian_group)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   106
      also have " ... = (I +> \<zero>) <+> (I +> j)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   107
        using ideal.set_add_zero[OF A(1) A(3)]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   108
        by (simp add: A(1) additive_subgroup.a_subset ideal.axioms(1)) 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   109
      also have " ... = I +> (\<zero> \<oplus> j)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   110
        by (meson A abelian_subgroup.a_rcos_sum abelian_subgroupI3
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   111
            additive_subgroup.a_Hcarr ideal.axioms(1) is_abelian_group zero_closed)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   112
      finally show "I +> \<one> = I +> j"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   113
        using A(2) A(4) ideal.Icarr by fastforce
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   114
    qed } note aux_lemma = this
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   115
  
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   116
  fix x y assume x: "x \<in> carrier R" and y: "y \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   117
  
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   118
  have "\<one> \<in> I <+> J" using assms by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   119
  then obtain i j where i: "i \<in> I" and j: "j \<in> J" and ij: "\<one> = i \<oplus> j"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   120
    using set_add_def'[of R I J] by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   121
  have mod_I: "I +> j = I +> \<one>" and mod_J: "J +> i = J +> \<one>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   122
    using aux_lemma[OF assms(1-2) i j ij] apply simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   123
    using aux_lemma[OF assms(2) assms(1) j i] ij
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   124
    by (metis add.m_comm assms(1) assms(2) i ideal.Icarr j)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   125
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   126
  have "I +> ((j \<otimes> x) \<oplus> (i \<otimes> y)) = (I +> (j \<otimes> x)) <+> (I +> (i \<otimes> y))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   127
    by (metis abelian_subgroup.a_rcos_sum abelian_subgroupI3 assms i ideal.Icarr
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   128
        ideal.axioms(1) is_abelian_group j m_closed x y)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   129
  also have " ... = (I +> (j \<otimes> x)) <+> (I +> \<zero>)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   130
    using ideal.set_add_zero[OF assms(1), of "i \<otimes> y"] i assms(1)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   131
    by (simp add: additive_subgroup.a_subset ideal.I_r_closed ideal.axioms(1) y)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   132
  also have " ... = I +> (j \<otimes> x)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   133
    by (metis abelian_subgroup.a_rcos_sum abelian_subgroupI3 additive_subgroup.a_Hcarr assms(1-2)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   134
        ideal.axioms(1) is_abelian_group j m_closed r_zero x zero_closed)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   135
  finally have Ix: "I +> ((j \<otimes> x) \<oplus> (i \<otimes> y)) = I +> x" using mod_I
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   136
    by (metis (full_types) assms ideal.Icarr ideal.rcoset_mult_add is_monoid j monoid.l_one one_closed x)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   137
  have "J +> ((j \<otimes> x) \<oplus> (i \<otimes> y)) = (J +> (j \<otimes> x)) <+> (J +> (i \<otimes> y))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   138
    by (metis abelian_subgroup.a_rcos_sum abelian_subgroupI3 assms i ideal.Icarr
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   139
        ideal.axioms(1) is_abelian_group j m_closed x y)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   140
  also have " ... = (J +> \<zero>) <+> (J +> (i \<otimes> y))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   141
    using ideal.set_add_zero[OF assms(2), of "j \<otimes> x"] j assms(2)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   142
    by (simp add: additive_subgroup.a_subset ideal.I_r_closed ideal.axioms(1) x)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   143
  also have " ... = J +> (i \<otimes> y)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   144
    by (metis a_coset_add_zero a_rcosetsI abelian_subgroup.rcosets_add_eq abelian_subgroupI3
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   145
        additive_subgroup.a_Hcarr additive_subgroup.a_subset assms i ideal.axioms(1)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   146
        is_abelian_group m_closed y)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   147
  finally have Jy: "J +> ((j \<otimes> x) \<oplus> (i \<otimes> y)) = J +> y" using mod_J
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   148
    by (metis (full_types) assms i ideal.Icarr ideal.rcoset_mult_add local.semiring_axioms one_closed semiring.semiring_simprules(9) y)  
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   149
  have "(j \<otimes> x) \<oplus> (i \<otimes> y) \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   150
    by (meson x y i j assms add.m_closed additive_subgroup.a_Hcarr ideal.axioms(1) m_closed)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   151
  thus "\<exists>a \<in> carrier R. I +> a = I +> x \<and> J +> a = J +> y" using Ix Jy by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   152
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   153
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   154
lemma (in ring) canonical_proj_is_hom:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   155
  assumes "ideal I R" "ideal J R" "I <+> J = carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   156
  shows "(\<lambda>a. (I +> a, J +> a)) \<in> ring_hom R (RDirProd (R Quot I) (R Quot J))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   157
proof (rule ring_hom_memI)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   158
  fix x y assume x: "x \<in> carrier R" and y: "y \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   159
  show "(I +> x, J +> x) \<in> carrier (RDirProd (R Quot I) (R Quot J))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   160
    using A_RCOSETS_def'[of R I] A_RCOSETS_def'[of R J] x
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   161
    unfolding RDirProd_def FactRing_def by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   162
  show "(I +> x \<otimes> y, J +> x \<otimes> y) =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   163
        (I +> x, J +> x) \<otimes>\<^bsub>RDirProd (R Quot I) (R Quot J)\<^esub> (I +> y, J +> y)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   164
    unfolding RDirProd_def FactRing_def by (simp add: assms ideal.rcoset_mult_add x y)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   165
  show "(I +> x \<oplus> y, J +> x \<oplus> y) =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   166
        (I +> x, J +> x) \<oplus>\<^bsub>RDirProd (R Quot I) (R Quot J)\<^esub> (I +> y, J +> y)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   167
    unfolding RDirProd_def FactRing_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   168
    by (simp add: abelian_subgroup.a_rcos_sum abelian_subgroupI3 assms ideal.axioms(1) is_abelian_group x y)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   169
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   170
  show "(I +> \<one>, J +> \<one>) = \<one>\<^bsub>RDirProd (R Quot I) (R Quot J)\<^esub>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   171
    unfolding RDirProd_def FactRing_def by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   172
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   173
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   174
theorem (in ring) chinese_remainder_simple:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   175
  assumes "ideal I R" "ideal J R" "I <+> J = carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   176
  shows "(R Quot (I \<inter> J)) \<simeq> (RDirProd (R Quot I) (R Quot J))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   177
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   178
  let ?\<phi> = "\<lambda>a. (I +> a, J +> a)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   179
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   180
  have phi_hom: "?\<phi> \<in> ring_hom R (RDirProd (R Quot I) (R Quot J))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   181
    using canonical_proj_is_hom[OF assms] .
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   182
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   183
  moreover have "?\<phi> ` (carrier R) = carrier (RDirProd (R Quot I) (R Quot J))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   184
  proof
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   185
    show "carrier (RDirProd (R Quot I) (R Quot J)) \<subseteq> ?\<phi> ` (carrier R)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   186
    proof
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   187
      fix t assume "t \<in> carrier (RDirProd (R Quot I) (R Quot J))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   188
      then obtain x y where x: "x \<in> carrier R" and y: "y \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   189
                        and t: "t = (I +> x, J +> y)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   190
        using A_RCOSETS_def'[of R I] A_RCOSETS_def'[of R J]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   191
        unfolding RDirProd_def FactRing_def by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   192
      then obtain a where "a \<in> carrier R" "I +> a = I +> x" "J +> a = J +> y"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   193
        using canonical_proj_is_surj[OF assms x y] by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   194
      hence "?\<phi> a = t" using t by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   195
      thus "t \<in> (?\<phi> ` carrier R)" using \<open>a \<in> carrier R\<close> by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   196
    qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   197
  next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   198
    show "?\<phi> ` carrier R \<subseteq> carrier (RDirProd (R Quot I) (R Quot J))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   199
      using phi_hom unfolding ring_hom_def by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   200
  qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   201
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   202
  moreover have "a_kernel R (RDirProd (R Quot I) (R Quot J)) ?\<phi> = I \<inter> J"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   203
  proof
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   204
    show "I \<inter> J \<subseteq> a_kernel R (RDirProd (R Quot I) (R Quot J)) ?\<phi>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   205
    proof
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   206
      fix s assume s: "s \<in> I \<inter> J" hence "I +> s = I \<and> J +> s = J"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   207
        by (simp add: additive_subgroup.zero_closed assms ideal.axioms(1) ideal.set_add_zero)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   208
      thus "s \<in> a_kernel R (RDirProd (R Quot I) (R Quot J)) ?\<phi>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   209
        unfolding FactRing_def RDirProd_def a_kernel_def kernel_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   210
        using s additive_subgroup.a_Hcarr assms(1) ideal.axioms(1) by fastforce
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   211
    qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   212
  next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   213
    show "a_kernel R (RDirProd (R Quot I) (R Quot J)) ?\<phi> \<subseteq> I \<inter> J"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   214
    unfolding FactRing_def RDirProd_def a_kernel_def kernel_def apply simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   215
    using ideal.set_add_zero_imp_mem assms(1-2) by fastforce
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   216
  qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   217
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   218
  moreover have "ring (RDirProd (R Quot I) (R Quot J))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   219
    by (simp add: RDirProd_group assms(1) assms(2) ideal.quotient_is_ring) 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   220
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   221
  ultimately show ?thesis
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   222
    using ring_hom_ring.FactRing_iso[of R "RDirProd (R Quot I) (R Quot J)" ?\<phi>] is_ring
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   223
    by (simp add: ring_hom_ringI2)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   224
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   225
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   226
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   227
subsection \<open>First Generalization - The Extended Canonical Projection is Surjective\<close>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   228
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   229
lemma (in cring) canonical_proj_ext_is_surj:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   230
  fixes n::nat
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   231
  assumes "\<And>i. i \<le> n \<Longrightarrow> x i \<in> carrier R"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   232
      and "\<And>i. i \<le> n \<Longrightarrow> ideal (I i) R"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   233
      and "\<And>i j. \<lbrakk> i \<le> n; j \<le> n; i \<noteq> j \<rbrakk> \<Longrightarrow> I i <+> I j = carrier R"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   234
    shows "\<exists> a \<in> carrier R. \<forall> i \<le> n. (I i) +> a = (I i) +> (x i)" using assms
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   235
proof (induct n)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   236
  case 0 thus ?case by blast 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   237
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   238
  case (Suc n)
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   239
  then obtain a where a: "a \<in> carrier R" "\<And>i. i \<le> n \<Longrightarrow> (I i) +> a = (I i) +> (x i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   240
    by force
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   241
  
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   242
  have inter_is_ideal: "ideal (\<Inter> i \<le> n. I i) R"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   243
    by (metis (mono_tags, lifting) Suc.prems(2) atMost_iff i_Intersect imageE image_is_empty le_SucI not_empty_eq_Iic_eq_empty)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   244
  have "(\<Inter> i \<le> n. I i) <+> I (Suc n) = carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   245
    using inter_plus_ideal_eq_carrier Suc by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   246
  then obtain b where b: "b \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   247
                  and "(\<Inter> i \<le> n. I i) +> b = (\<Inter> i \<le> n. I i) +> \<zero>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   248
                  and S: "I (Suc n) +> b = I (Suc n) +> (x (Suc n) \<ominus> a)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   249
    using canonical_proj_is_surj[OF inter_is_ideal, of "I (Suc n)" \<zero> "x (Suc n) \<ominus> a"] Suc a by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   250
  hence b_inter: "b \<in> (\<Inter> i \<le> n. I i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   251
    using ideal.set_add_zero_imp_mem[OF inter_is_ideal b]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   252
    by (metis additive_subgroup.zero_closed ideal.axioms(1) ideal.set_add_zero inter_is_ideal)
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   253
  hence eq_zero: "\<And>i. i \<le> n \<Longrightarrow> (I i) +> b = (I i) +> \<zero>"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   254
  proof -
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   255
    fix i assume i: "i \<le> n"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   256
    hence "b \<in> I i" using  b_inter by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   257
    moreover have "ideal (I i) R" using Suc i by simp 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   258
    ultimately show "(I i) +> b = (I i) +> \<zero>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   259
      by (metis b ideal.I_r_closed ideal.set_add_zero r_null zero_closed)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   260
  qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   261
  
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   262
  have "(I i) +> (a \<oplus> b) = (I i) +> (x i)" if "i \<le> Suc n" for i
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   263
  proof -
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   264
    show "(I i) +> (a \<oplus> b) = (I i) +> (x i)"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   265
      using that
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   266
    proof (cases)
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   267
      assume 1: "i \<le> n"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   268
      hence "(I i) +> (a \<oplus> b) = ((I i) +> (x i)) <+> ((I i) +> b)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   269
        by (metis Suc.prems(2) a abelian_subgroup.a_rcos_sum abelian_subgroupI3 b ideal_def le_SucI ring_def)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   270
      also have " ... = ((I i) +> (x i)) <+> ((I i) +> \<zero>)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   271
        using eq_zero[OF 1] by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   272
      also have " ... = I i +> ((x i) \<oplus> \<zero>)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   273
        by (meson Suc.prems abelian_subgroup.a_rcos_sum abelian_subgroupI3 atMost_iff that ideal_def ring_def zero_closed)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   274
      finally show "(I i) +> (a \<oplus> b) = (I i) +> (x i)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   275
        using Suc.prems(1) that by auto
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   276
    next
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   277
      assume "\<not> i \<le> n" hence 2: "i = Suc n" using that by simp
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   278
      hence "I i +> (a \<oplus> b) = I (Suc n) +> (a \<oplus> b)" by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   279
      also have " ... = (I (Suc n) +> a) <+> (I (Suc n) +> (x (Suc n) \<ominus> a))"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   280
        by (metis le_Suc_eq S a b Suc.prems(2)[of "Suc n"] 2 abelian_subgroup.a_rcos_sum
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   281
              abelian_subgroupI3 ideal.axioms(1) is_abelian_group)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   282
      also have " ... = I (Suc n) +> (a \<oplus> (x (Suc n) \<ominus> a))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   283
        by (simp add: Suc.prems(1-2) a(1) abelian_subgroup.a_rcos_sum
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   284
                      abelian_subgroupI3 ideal.axioms(1) is_abelian_group)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   285
      also have " ... = I (Suc n) +> (x (Suc n))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   286
        using a(1) Suc.prems(1)[of "Suc n"] abelian_group.minus_eq
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   287
              abelian_group.r_neg add.m_lcomm is_abelian_group by fastforce
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   288
      finally show "I i +> (a \<oplus> b) = (I i) +> (x i)" using 2 by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   289
    qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   290
  qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   291
  thus ?case using a b by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   292
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   293
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   294
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   295
subsection \<open>Direct Product of a List of Monoid Structures\<close>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   296
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   297
fun DirProd_list :: "(('a, 'b) monoid_scheme) list \<Rightarrow> (('a list), 'b) monoid_scheme"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   298
  where
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   299
    "DirProd_list [] = \<lparr> carrier = {[]}, mult = (\<lambda>a b. []), one = [], \<dots> = (undefined :: 'b) \<rparr>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   300
  | "DirProd_list (Cons R Rs) =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   301
      \<lparr> carrier = { r # rs | r rs. r \<in> carrier R \<and> rs \<in> carrier (DirProd_list Rs) },
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   302
           mult = (\<lambda>r1 r2. ((hd r1) \<otimes>\<^bsub>R\<^esub> (hd r2)) # ((tl r1) \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> (tl r2))),
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   303
            one = (\<one>\<^bsub>R\<^esub>) # (\<one>\<^bsub>(DirProd_list Rs)\<^esub>), \<dots> = (undefined :: 'b) \<rparr>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   304
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   305
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   306
lemma DirProd_list_carrier_elts:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   307
  assumes "rs \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   308
    shows "length rs = length Rs" using assms
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   309
proof (induct Rs arbitrary: rs rule: DirProd_list.induct)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   310
  case 1 thus ?case by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   311
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   312
  case (2 R Rs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   313
  then obtain r' rs' where "r' \<in> carrier R" "rs' \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   314
                       and "rs = r' # rs'" by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   315
  thus ?case by (simp add: "2.hyps"(1))
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   316
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   317
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   318
lemma DirProd_list_in_carrierI:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   319
  assumes "\<And>i. i < length rs \<Longrightarrow> rs ! i \<in> carrier (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   320
    and "length rs = length Rs"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   321
  shows "rs \<in> carrier (DirProd_list Rs)" using assms
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   322
proof (induct Rs arbitrary: rs rule: DirProd_list.induct)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   323
  case 1 thus ?case by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   324
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   325
  case (2 R Rs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   326
  then obtain r' rs' where rs: "r' \<in> carrier R" "rs = r' # rs'"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   327
    by (metis Suc_length_conv lessThan_iff nth_Cons_0 zero_less_Suc)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   328
  hence "rs' \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   329
    using "2.hyps"(1) "2.prems"(1) "2.prems"(2) by force
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   330
  thus ?case by (simp add: rs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   331
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   332
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   333
lemma DirProd_list_in_carrierE:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   334
  assumes "rs \<in> carrier (DirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   335
  shows "\<And>i. i < length rs \<Longrightarrow> rs ! i \<in> carrier (Rs ! i)" using assms
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   336
proof (induct Rs arbitrary: rs rule: DirProd_list.induct)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   337
  case 1 thus ?case by simp 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   338
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   339
  case (2 R Rs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   340
  then obtain r' rs' where  r': " r' \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   341
                       and rs': "rs' \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   342
                       and  rs: "rs = r' # rs'" by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   343
  hence "\<And>i. i \<in> {..<(length rs')} \<Longrightarrow> rs' ! i \<in> carrier (Rs ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   344
    using "2.hyps"(1) by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   345
  hence "\<And>i. i \<in> {(Suc 0 :: nat)..<(length rs)} \<Longrightarrow> rs ! i \<in> carrier ((R # Rs) ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   346
    by (simp add: less_eq_Suc_le rs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   347
  moreover have "i = 0 \<Longrightarrow> rs ! i \<in> carrier ((R # Rs) ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   348
    using r' rs r' by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   349
  ultimately show ?case
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   350
    using "2.prems"(1) by fastforce   
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   351
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   352
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   353
lemma DirProd_list_m_closed:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   354
  assumes "r1 \<in> carrier (DirProd_list Rs)" "r2 \<in> carrier (DirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   355
    and "\<And>i. i < length Rs \<Longrightarrow> monoid (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   356
  shows "r1 \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> r2 \<in> carrier (DirProd_list Rs)" using assms
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   357
proof (induct Rs arbitrary: r1 r2 rule: DirProd_list.induct)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   358
  case 1 thus ?case by simp 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   359
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   360
  case (2 R Rs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   361
  then obtain r1' rs1' r2' rs2'
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   362
    where r12': "r1' \<in> carrier R" "r2' \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   363
      and "rs1' \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   364
      and "rs2' \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   365
      and r1: "r1 = r1' # rs1'"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   366
      and r2: "r2 = r2' # rs2'" by auto
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   367
  moreover have "\<And>i. i < length Rs \<Longrightarrow> monoid (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   368
    using "2.prems"(3) by force
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   369
  ultimately have "rs1' \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> rs2' \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   370
    using "2.hyps"(1) by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   371
  moreover have "monoid R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   372
    using "2.prems"(3) by force
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   373
  hence "r1' \<otimes>\<^bsub>R\<^esub> r2' \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   374
    by (simp add: r12' monoid.m_closed)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   375
  ultimately show ?case by (simp add: r1 r2)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   376
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   377
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   378
lemma DirProd_list_m_output:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   379
  assumes "r1 \<in> carrier (DirProd_list Rs)" "r2 \<in> carrier (DirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   380
  shows "\<And>i. i < length Rs \<Longrightarrow>
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   381
             (r1 \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> r2) ! i = (r1 ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> (r2 ! i)" using assms
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   382
proof (induct Rs arbitrary: r1 r2 rule: DirProd_list.induct)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   383
  case 1 thus ?case by simp 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   384
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   385
  case (2 R Rs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   386
  hence "\<And>i. i \<in> {(Suc 0)..<(length (R # Rs))} \<Longrightarrow>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   387
             (r1 \<otimes>\<^bsub>(DirProd_list (R # Rs))\<^esub> r2) ! i = (r1 ! i) \<otimes>\<^bsub>((R # Rs) ! i)\<^esub> (r2 ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   388
    using "2"(5) "2"(6) by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   389
  moreover have "(r1 \<otimes>\<^bsub>(DirProd_list (R # Rs))\<^esub> r2) ! 0 = (r1 ! 0) \<otimes>\<^bsub>R\<^esub> (r2 ! 0)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   390
    using "2.prems"(2) "2.prems"(3) by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   391
  ultimately show ?case
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   392
    by (metis "2.prems"(1) atLeastLessThan_iff le_0_eq not_less_eq_eq nth_Cons')  
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   393
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   394
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   395
lemma DirProd_list_m_comm:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   396
  assumes "r1 \<in> carrier (DirProd_list Rs)" "r2 \<in> carrier (DirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   397
    and "\<And>i. i < length Rs \<Longrightarrow> comm_monoid (Rs ! i)"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   398
  shows "r1 \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> r2 = r2 \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> r1" 
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   399
proof (rule nth_equalityI)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   400
  show "length (r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r2) = length (r2 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r1)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   401
    by (metis DirProd_list_carrier_elts DirProd_list_m_closed Group.comm_monoid.axioms(1) assms)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   402
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   403
  fix i assume "i < length (r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r2)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   404
  hence i: "i < length Rs"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   405
    by (metis DirProd_list_carrier_elts DirProd_list_m_closed Group.comm_monoid.axioms(1) assms)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   406
  have "(r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r2) ! i = (r1 ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> (r2 ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   407
    using i DirProd_list_m_output[OF assms(1-2)] by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   408
  also have " ... = (r2 ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> (r1 ! i)"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   409
    by (metis DirProd_list_carrier_elts DirProd_list_in_carrierE assms comm_monoid.m_comm i)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   410
  also have " ... = (r2 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r1) ! i"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   411
    using i DirProd_list_m_output[OF assms(2) assms(1)] by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   412
  finally show "(r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r2) ! i = (r2 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r1) ! i" .
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   413
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   414
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   415
lemma DirProd_list_m_assoc:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   416
  assumes "r1 \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   417
      and "r2 \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   418
      and "r3 \<in> carrier (DirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   419
      and "\<And>i. i < length Rs \<Longrightarrow> monoid (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   420
  shows "(r1 \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> r2) \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> r3 =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   421
          r1 \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> (r2 \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> r3)"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   422
proof (rule nth_equalityI)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   423
  show "length ((r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r2) \<otimes>\<^bsub>DirProd_list Rs\<^esub> r3) =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   424
         length (r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> (r2 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r3))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   425
    by (metis DirProd_list_carrier_elts DirProd_list_m_closed assms)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   426
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   427
  fix i assume "i < length (r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r2 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r3)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   428
  hence i: "i < length Rs"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   429
    by (metis DirProd_list_carrier_elts DirProd_list_m_closed assms)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   430
  have "((r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r2) \<otimes>\<^bsub>DirProd_list Rs\<^esub> r3) ! i =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   431
        ((r1 ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> (r2 ! i)) \<otimes>\<^bsub>(Rs ! i)\<^esub> (r3 ! i)"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   432
    by (metis DirProd_list_m_closed DirProd_list_m_output i assms)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   433
  also have " ... = (r1 ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> ((r2 ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> (r3 ! i))"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   434
    by (metis DirProd_list_carrier_elts DirProd_list_in_carrierE assms i monoid.m_assoc)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   435
  also have " ... = (r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> (r2 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r3)) ! i"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   436
    by (metis DirProd_list_m_closed DirProd_list_m_output i assms)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   437
  finally show "((r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r2) \<otimes>\<^bsub>DirProd_list Rs\<^esub> r3) ! i =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   438
                 (r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> (r2 \<otimes>\<^bsub>DirProd_list Rs\<^esub> r3))! i" .
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   439
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   440
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   441
lemma DirProd_list_one:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   442
  "\<And>i. i < length Rs \<Longrightarrow> (\<one>\<^bsub>(DirProd_list Rs)\<^esub>) ! i =  \<one>\<^bsub>(Rs ! i)\<^esub>"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   443
  by (induct Rs rule: DirProd_list.induct) (simp_all add: nth_Cons')
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   444
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   445
lemma DirProd_list_one_closed:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   446
  assumes "\<And>i. i < length Rs \<Longrightarrow> monoid (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   447
  shows "\<one>\<^bsub>(DirProd_list Rs)\<^esub> \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   448
proof (rule DirProd_list_in_carrierI)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   449
  show eq_len: "length \<one>\<^bsub>DirProd_list Rs\<^esub> = length Rs"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   450
    by (induct Rs rule: DirProd_list.induct) (simp_all)
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   451
  show "\<And>i. i < length \<one>\<^bsub>DirProd_list Rs\<^esub> \<Longrightarrow> \<one>\<^bsub>DirProd_list Rs\<^esub> ! i \<in> carrier (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   452
    using eq_len DirProd_list_one[where ?Rs = Rs] monoid.one_closed by (simp add: assms)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   453
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   454
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   455
lemma DirProd_list_l_one:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   456
  assumes "r1 \<in> carrier (DirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   457
    and "\<And>i. i < length Rs \<Longrightarrow> monoid (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   458
  shows "\<one>\<^bsub>(DirProd_list Rs)\<^esub> \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> r1 = r1"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   459
proof (rule nth_equalityI)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   460
  show eq_len: "length (\<one>\<^bsub>DirProd_list Rs\<^esub> \<otimes>\<^bsub>DirProd_list Rs\<^esub> r1) = length r1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   461
    using DirProd_list_carrier_elts[of "\<one>\<^bsub>DirProd_list Rs\<^esub> \<otimes>\<^bsub>DirProd_list Rs\<^esub> r1" Rs]
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   462
      DirProd_list_carrier_elts[OF assms(1)]
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   463
      DirProd_list_m_closed[OF DirProd_list_one_closed[OF assms(2)] assms(1)]
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   464
    by (simp add: assms)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   465
  fix i assume "i < length (\<one>\<^bsub>DirProd_list Rs\<^esub> \<otimes>\<^bsub>DirProd_list Rs\<^esub> r1)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   466
  hence i: "i < length Rs" using DirProd_list_carrier_elts[OF assms(1)] eq_len by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   467
  hence "(\<one>\<^bsub>DirProd_list Rs\<^esub> \<otimes>\<^bsub>DirProd_list Rs\<^esub> r1) ! i =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   468
         (\<one>\<^bsub>DirProd_list Rs\<^esub> ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> (r1 ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   469
    using DirProd_list_m_output DirProd_list_one_closed assms by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   470
  also have " ... = \<one>\<^bsub>(Rs ! i)\<^esub> \<otimes>\<^bsub>(Rs ! i)\<^esub> (r1 ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   471
    by (simp add: DirProd_list_one i)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   472
  also have " ... = (r1 ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   473
    using DirProd_list_carrier_elts DirProd_list_in_carrierE i assms by fastforce
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   474
  finally show "(\<one>\<^bsub>DirProd_list Rs\<^esub> \<otimes>\<^bsub>DirProd_list Rs\<^esub> r1) ! i = (r1 ! i)" .
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   475
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   476
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   477
lemma DirProd_list_r_one:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   478
  assumes "r1 \<in> carrier (DirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   479
    and "\<And>i. i < length Rs \<Longrightarrow> monoid (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   480
  shows "r1 \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> \<one>\<^bsub>(DirProd_list Rs)\<^esub> = r1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   481
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   482
  have "r1 \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> \<one>\<^bsub>(DirProd_list Rs)\<^esub> =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   483
           \<one>\<^bsub>(DirProd_list Rs)\<^esub> \<otimes>\<^bsub>(DirProd_list Rs)\<^esub> r1"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   484
  proof (rule nth_equalityI)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   485
    show " length (r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> \<one>\<^bsub>DirProd_list Rs\<^esub>) =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   486
           length (\<one>\<^bsub>DirProd_list Rs\<^esub> \<otimes>\<^bsub>DirProd_list Rs\<^esub> r1)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   487
      by (metis DirProd_list_carrier_elts DirProd_list_m_closed DirProd_list_one_closed assms)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   488
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   489
    fix i assume "i < length (r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> \<one>\<^bsub>DirProd_list Rs\<^esub>)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   490
    hence i: "i < length Rs"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   491
      by (metis DirProd_list_carrier_elts DirProd_list_m_closed DirProd_list_one_closed assms)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   492
    hence "(r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> \<one>\<^bsub>DirProd_list Rs\<^esub>) ! i = (r1 ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> \<one>\<^bsub>(Rs ! i)\<^esub>"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   493
      by (metis DirProd_list_m_output DirProd_list_one DirProd_list_one_closed assms)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   494
    also have " ... =  \<one>\<^bsub>(Rs ! i)\<^esub> \<otimes>\<^bsub>(Rs ! i)\<^esub> (r1 ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   495
      using DirProd_list_carrier_elts DirProd_list_in_carrierE assms i by fastforce
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   496
    also have " ... = (\<one>\<^bsub>DirProd_list Rs\<^esub> \<otimes>\<^bsub>DirProd_list Rs\<^esub> r1) ! i"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   497
      by (metis DirProd_list_m_output DirProd_list_one DirProd_list_one_closed assms i)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   498
    finally show "(r1 \<otimes>\<^bsub>DirProd_list Rs\<^esub> \<one>\<^bsub>DirProd_list Rs\<^esub>) ! i =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   499
                  (\<one>\<^bsub>DirProd_list Rs\<^esub> \<otimes>\<^bsub>DirProd_list Rs\<^esub> r1) ! i" .
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   500
  qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   501
  thus ?thesis using DirProd_list_l_one assms by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   502
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   503
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   504
lemma DirProd_list_monoid:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   505
  assumes "\<And>i. i < length Rs \<Longrightarrow> monoid (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   506
  shows "monoid (DirProd_list Rs)"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   507
  unfolding monoid_def 
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
   508
proof (intro conjI allI impI)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   509
  show "\<one>\<^bsub>DirProd_list Rs\<^esub> \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   510
    using DirProd_list_one_closed[of Rs] assms by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   511
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   512
  fix x y z
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   513
  assume x: "x \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   514
     and y: "y \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   515
     and z: "z \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   516
  show "x \<otimes>\<^bsub>DirProd_list Rs\<^esub> y \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   517
    using DirProd_list_m_closed[OF x y] assms by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   518
  show "x \<otimes>\<^bsub>DirProd_list Rs\<^esub>  y \<otimes>\<^bsub>DirProd_list Rs\<^esub> z =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   519
        x \<otimes>\<^bsub>DirProd_list Rs\<^esub> (y \<otimes>\<^bsub>DirProd_list Rs\<^esub> z)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   520
    using DirProd_list_m_assoc[OF x y z] assms by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   521
  show "\<one>\<^bsub>DirProd_list Rs\<^esub> \<otimes>\<^bsub>DirProd_list Rs\<^esub> x = x"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   522
    using DirProd_list_l_one[OF x] assms by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   523
  show "x \<otimes>\<^bsub>DirProd_list Rs\<^esub> \<one>\<^bsub>DirProd_list Rs\<^esub> = x"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   524
    using DirProd_list_r_one[OF x] assms by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   525
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   526
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   527
lemma DirProd_list_comm_monoid:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   528
  assumes "\<And>i. i < length Rs \<Longrightarrow> comm_monoid (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   529
  shows "comm_monoid (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   530
  unfolding comm_monoid_def comm_monoid_axioms_def apply auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   531
  using DirProd_list_monoid Group.comm_monoid.axioms(1) assms apply blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   532
  using DirProd_list_m_comm assms by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   533
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   534
lemma DirProd_list_isomorphism1:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   535
  "(\<lambda>(hd, tl). hd # tl) \<in> iso (R \<times>\<times> (DirProd_list Rs)) (DirProd_list (R # Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   536
  unfolding iso_def hom_def bij_betw_def inj_on_def by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   537
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   538
lemma DirProd_list_isomorphism2:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   539
  "(\<lambda>r. (hd r, tl r)) \<in> iso (DirProd_list (R # Rs)) (R \<times>\<times> (DirProd_list Rs))" (is "?\<phi> \<in> ?A")
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   540
  unfolding iso_def hom_def bij_betw_def inj_on_def apply auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   541
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   542
  fix a b assume "a \<in> carrier R" "b \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   543
  hence "a # b \<in> {r # rs |r rs. r \<in> carrier R \<and> rs \<in> carrier (DirProd_list Rs)} \<and> ?\<phi> (a # b) = (a, b)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   544
    by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   545
  thus "(a, b) \<in> ?\<phi> ` {r # rs |r rs. r \<in> carrier R \<and> rs \<in> carrier (DirProd_list Rs)}"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   546
    by (metis (no_types, lifting) image_iff)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   547
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   548
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   549
lemma DirProd_list_group:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   550
  assumes "\<And>i. i < length Rs \<Longrightarrow> group (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   551
  shows "group (DirProd_list Rs)" using assms
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   552
proof (induction Rs rule: DirProd_list.induct)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   553
  case 1 thus ?case
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   554
  unfolding group_def group_axioms_def Units_def monoid_def by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   555
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   556
  case (2 R Rs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   557
  hence "group (DirProd_list Rs)" by force
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   558
  moreover have "group R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   559
    using "2.prems" by fastforce
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   560
  moreover have "monoid (DirProd_list (R # Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   561
    using DirProd_list_monoid 2 group.is_monoid by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   562
  moreover have "R \<times>\<times> DirProd_list Rs \<cong> DirProd_list (R # Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   563
    unfolding is_iso_def using DirProd_list_isomorphism1 by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   564
  ultimately show ?case
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   565
    using group.iso_imp_group[of "R \<times>\<times> (DirProd_list Rs)" "DirProd_list (R # Rs)"]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   566
          DirProd_group[of R "DirProd_list Rs"] by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   567
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   568
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   569
lemma DirProd_list_comm_group:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   570
  assumes "\<And>i. i < length Rs \<Longrightarrow> comm_group (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   571
  shows "comm_group (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   572
  using assms unfolding comm_group_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   573
  using DirProd_list_group DirProd_list_comm_monoid by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   574
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   575
lemma DirProd_list_group_hom:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   576
  assumes "\<And>i. i \<in> {..<(length (R # Rs))} \<Longrightarrow> group ((R # Rs) ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   577
  shows "group_hom (R \<times>\<times> DirProd_list Rs) (DirProd_list (R # Rs)) (\<lambda>(hd, tl). hd # tl)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   578
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   579
  have "group R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   580
    using assms by force
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   581
  moreover have "group (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   582
    using DirProd_list_group assms by fastforce
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   583
  ultimately
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   584
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   585
  have "group (R \<times>\<times> DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   586
    using DirProd_group[of R "DirProd_list Rs"] by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   587
  moreover have "group (DirProd_list (R # Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   588
    using DirProd_list_group assms by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   589
  moreover have "(\<lambda>(x, y). x # y) \<in> hom (R \<times>\<times> DirProd_list Rs) (DirProd_list (R # Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   590
    using DirProd_list_isomorphism1[of R Rs] unfolding iso_def by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   591
  ultimately show ?thesis
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   592
    unfolding group_hom_def group_hom_axioms_def by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   593
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   594
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   595
lemma DirProd_list_m_inv:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   596
  assumes "r \<in> carrier (DirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   597
      and "\<And>i. i < length Rs \<Longrightarrow> group (Rs ! i)"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   598
    shows "\<And>i. i < length Rs \<Longrightarrow> (inv\<^bsub>(DirProd_list Rs)\<^esub> r) ! i = inv\<^bsub>(Rs ! i)\<^esub> (r ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   599
  using assms
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   600
proof (induct Rs arbitrary: r rule: DirProd_list.induct)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   601
  case 1
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   602
  have "group (DirProd_list [])"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   603
    unfolding group_def group_axioms_def Units_def monoid_def by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   604
  thus ?case  using "1.prems"(1) group.inv_equality by fastforce    
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   605
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   606
  case (2 R Rs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   607
  then obtain r' rs' where r': "r' \<in> carrier R" and rs': "rs' \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   608
                       and r: "r = r' # rs'" by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   609
  hence "(r', rs') \<in> carrier (R \<times>\<times> DirProd_list Rs)" by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   610
  moreover have "group_hom (R \<times>\<times> DirProd_list Rs) (DirProd_list (R # Rs)) (\<lambda>(hd, tl). hd # tl)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   611
    using DirProd_list_group_hom[of R Rs] 2 by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   612
  moreover have "inv\<^bsub>(R \<times>\<times> DirProd_list Rs)\<^esub> (r', rs') = (inv\<^bsub>R\<^esub> r', inv\<^bsub>(DirProd_list Rs)\<^esub> rs')"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   613
    using inv_DirProd[of R "DirProd_list Rs" r' rs'] "2.prems"(3) DirProd_list_group r' rs' by force
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   614
  ultimately have "inv\<^bsub>(DirProd_list (R # Rs))\<^esub> r = (inv\<^bsub>R\<^esub> r') # (inv\<^bsub>(DirProd_list Rs)\<^esub> rs')"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   615
    using group_hom.hom_inv[of "R \<times>\<times> DirProd_list Rs" "DirProd_list (R # Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   616
                               "\<lambda>(hd, tl). hd # tl" "(r', rs')"] r by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   617
  thus ?case
68608
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   618
    using 2 by simp (metis (no_types, lifting) less_Suc_eq_0_disj list.sel(3) nth_Cons_0 nth_Cons_Suc r)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   619
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   620
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   621
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   622
subsection \<open>Direct Product for of a List of Rings\<close>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   623
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   624
text \<open>In order to state a more general version of the Chinese Remainder Theorem, we need a new
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   625
      structure: the direct product of a variable number of rings. The construction of this
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   626
      structure as well as its algebraic properties are the subject of this subsection and follow
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   627
      the similar study that has already been done for monoids in the previous subsection.\<close>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   628
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   629
fun RDirProd_list :: "('a ring) list \<Rightarrow> ('a list) ring"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   630
  where "RDirProd_list Rs =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   631
           monoid.extend (monoid.truncate (DirProd_list Rs))
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   632
                         \<lparr> zero = one (DirProd_list (map add_monoid Rs)),
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   633
                           add = mult (DirProd_list (map add_monoid Rs)) \<rparr>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   634
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   635
lemma RDirProd_list_add_monoid:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   636
  "add_monoid (RDirProd_list Rs) = DirProd_list (map add_monoid Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   637
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   638
  have "carrier (RDirProd_list Rs) = carrier (DirProd_list (map add_monoid Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   639
    by (induct Rs rule: DirProd_list.induct) (simp_all add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   640
  thus ?thesis by (simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   641
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   642
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   643
lemma RDirProd_list_mult_monoid:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   644
  "monoid.truncate (RDirProd_list Rs) = monoid.truncate (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   645
  by (simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   646
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   647
lemma RDirProd_list_monoid:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   648
  assumes "\<And>i. i < length Rs \<Longrightarrow> monoid (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   649
  shows "monoid (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   650
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   651
  have "monoid (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   652
    using DirProd_list_monoid assms by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   653
  hence "monoid (monoid.truncate (DirProd_list Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   654
    unfolding monoid_def by (auto intro: monoid.intro simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   655
  hence "monoid (monoid.truncate (RDirProd_list Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   656
    by (simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   657
  thus ?thesis
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   658
    unfolding monoid_def by (auto intro: monoid.intro simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   659
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   660
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   661
lemma RDirProd_list_comm_monoid:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   662
  assumes "\<And>i. i < length Rs \<Longrightarrow> comm_monoid (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   663
  shows "comm_monoid (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   664
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   665
  have "comm_monoid (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   666
    using DirProd_list_comm_monoid assms by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   667
  hence "comm_monoid (monoid.truncate (DirProd_list Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   668
    unfolding comm_monoid_def monoid_def comm_monoid_axioms_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   669
    by (auto simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   670
  hence "comm_monoid (monoid.truncate (RDirProd_list Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   671
    by (simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   672
  thus ?thesis
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   673
    unfolding comm_monoid_def monoid_def comm_monoid_axioms_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   674
    by (auto simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   675
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   676
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   677
lemma RDirProd_list_abelian_monoid:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   678
  assumes "\<And>i. i < length Rs \<Longrightarrow> abelian_monoid (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   679
  shows "abelian_monoid (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   680
proof -
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   681
  have "\<And>i. i < length Rs \<Longrightarrow> comm_monoid ((map add_monoid Rs) ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   682
    using assms unfolding abelian_monoid_def by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   683
  hence "comm_monoid (DirProd_list (map add_monoid Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   684
    by (metis (no_types, lifting) DirProd_list_comm_monoid length_map)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   685
  thus ?thesis
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   686
    unfolding abelian_monoid_def by (metis RDirProd_list_add_monoid) 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   687
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   688
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   689
lemma RDirProd_list_abelian_group:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   690
  assumes "\<And>i. i < length Rs \<Longrightarrow> abelian_group (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   691
  shows "abelian_group (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   692
proof -
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   693
  have "\<And>i. i < length Rs \<Longrightarrow> comm_group ((map add_monoid Rs) ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   694
    using assms unfolding abelian_group_def abelian_group_axioms_def by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   695
  hence "comm_group (DirProd_list (map add_monoid Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   696
    by (metis (no_types, lifting) DirProd_list_comm_group length_map)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   697
  thus ?thesis
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   698
    unfolding abelian_group_def abelian_group_axioms_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   699
    by (metis RDirProd_list_abelian_monoid RDirProd_list_add_monoid abelian_group_def assms)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   700
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   701
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   702
lemma RDirProd_list_carrier_elts:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   703
  assumes "rs \<in> carrier (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   704
  shows "length rs = length Rs"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   705
  using assms by (simp add: DirProd_list_carrier_elts monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   706
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   707
lemma RDirProd_list_in_carrierE:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   708
  assumes "rs \<in> carrier (RDirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   709
  shows "\<And>i. i < length rs \<Longrightarrow> rs ! i \<in> carrier (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   710
  using assms by (simp add: DirProd_list_in_carrierE monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   711
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   712
lemma RDirProd_list_in_carrierI:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   713
  assumes "\<And>i. i < length rs \<Longrightarrow> rs ! i \<in> carrier (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   714
      and "length rs = length Rs"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   715
    shows "rs \<in> carrier (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   716
  using DirProd_list_in_carrierI assms by (simp add: monoid.defs, blast)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   717
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   718
lemma RDirProd_list_one:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   719
  "\<And>i. i < length Rs \<Longrightarrow> (\<one>\<^bsub>(RDirProd_list Rs)\<^esub>) ! i =  \<one>\<^bsub>(Rs ! i)\<^esub>"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   720
  by (simp add: DirProd_list_one monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   721
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   722
lemma RDirProd_list_zero:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   723
  "\<And>i. i < length Rs \<Longrightarrow> (\<zero>\<^bsub>(RDirProd_list Rs)\<^esub>) ! i =  \<zero>\<^bsub>(Rs ! i)\<^esub>"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   724
  by (induct Rs rule: DirProd_list.induct) (simp_all add: monoid.defs nth_Cons')
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   725
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   726
lemma RDirProd_list_m_output:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   727
  assumes "r1 \<in> carrier (RDirProd_list Rs)" "r2 \<in> carrier (RDirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   728
  shows "\<And>i. i < length Rs \<Longrightarrow>
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   729
             (r1 \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> r2) ! i = (r1 ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> (r2 ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   730
  using assms by (simp add: DirProd_list_m_output monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   731
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   732
lemma RDirProd_list_a_output:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   733
  fixes i
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   734
  assumes "r1 \<in> carrier (RDirProd_list Rs)" "r2 \<in> carrier (RDirProd_list Rs)" "i < length Rs"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   735
  shows "(r1 \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> r2) ! i = (r1 ! i) \<oplus>\<^bsub>(Rs ! i)\<^esub> (r2 ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   736
  using RDirProd_list_add_monoid[of Rs] monoid.defs(3)
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   737
proof -
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   738
  have "(\<otimes>\<^bsub>DirProd_list (map add_monoid Rs)\<^esub>) = (\<oplus>\<^bsub>RDirProd_list Rs\<^esub>)"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   739
    by (metis \<open>add_monoid (RDirProd_list Rs) = DirProd_list (map add_monoid Rs)\<close> monoid.select_convs(1))
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   740
  moreover have "r1 \<in> carrier (DirProd_list (map add_monoid Rs))"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   741
    by (metis \<open>add_monoid (RDirProd_list Rs) = DirProd_list (map add_monoid Rs)\<close> assms(1) partial_object.select_convs(1))
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   742
  moreover have "r2 \<in> carrier (DirProd_list (map add_monoid Rs))"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   743
    by (metis \<open>add_monoid (RDirProd_list Rs) = DirProd_list (map add_monoid Rs)\<close> assms(2) partial_object.select_convs(1))
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   744
  ultimately show ?thesis
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   745
    by (simp add: DirProd_list_m_output assms(3))
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   746
qed
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   747
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   748
lemma RDirProd_list_a_inv:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   749
  fixes i
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   750
  assumes "r \<in> carrier (RDirProd_list Rs)"
68608
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   751
    and "\<And>i. i < length Rs \<Longrightarrow> abelian_group (Rs ! i)"
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   752
    and i: "i < length Rs"
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   753
  shows "(\<ominus>\<^bsub>(RDirProd_list Rs)\<^esub> r) ! i = \<ominus>\<^bsub>(Rs ! i)\<^esub> (r ! i)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   754
proof -
68608
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   755
  have "m_inv (DirProd_list (map add_monoid Rs)) = a_inv (RDirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   756
    by (metis RDirProd_list_add_monoid a_inv_def)
68608
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   757
  moreover have "r \<in> carrier (DirProd_list (map add_monoid Rs))"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   758
    by (metis RDirProd_list_add_monoid assms(1) partial_object.select_convs(1))
68608
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   759
  moreover have "a_inv (Rs ! i) = m_inv (map add_monoid Rs ! i)"
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   760
    by (simp add: a_inv_def i)
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   761
  ultimately show ?thesis
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   762
    by (metis (no_types, lifting) DirProd_list_carrier_elts DirProd_list_m_inv RDirProd_list_carrier_elts
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   763
        abelian_group.a_group assms list_update_same_conv map_update)  
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   764
qed
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   765
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   766
lemma RDirProd_list_l_distr:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   767
  assumes "x \<in> carrier (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   768
      and "y \<in> carrier (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   769
      and "z \<in> carrier (RDirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   770
      and "\<And>i. i < length Rs \<Longrightarrow> ring (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   771
    shows "(x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y) \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   772
           (x \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z) \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> (y \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   773
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   774
  have "length ((x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y) \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z) =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   775
        length ((x \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z) \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> (y \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   776
    by (metis RDirProd_list_abelian_group RDirProd_list_carrier_elts RDirProd_list_monoid
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   777
        abelian_groupE(1) assms monoid.m_closed ring.is_abelian_group ring.is_monoid)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   778
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   779
  moreover
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   780
  have "\<And>i. i < length Rs \<Longrightarrow>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   781
            ((x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y) \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z) ! i =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   782
            ((x \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z) \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> (y \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z)) ! i"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   783
  proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   784
    fix i assume i: "i < length Rs"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   785
    hence "((x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y) \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z) ! i =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   786
           ((x ! i) \<oplus>\<^bsub>(Rs ! i)\<^esub> (y ! i)) \<otimes>\<^bsub>(Rs ! i)\<^esub> (z ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   787
      using RDirProd_list_m_output RDirProd_list_a_output assms
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   788
      by (metis RDirProd_list_abelian_group abelian_groupE(1) lessThan_iff ring.is_abelian_group)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   789
    also have " ... = ((x ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> (z ! i)) \<oplus>\<^bsub>(Rs ! i)\<^esub> ((y ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> (z ! i))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   790
      by (metis RDirProd_list_carrier_elts RDirProd_list_in_carrierE
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   791
          i assms lessThan_iff ring.ring_simprules(13))
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   792
    also
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   793
    have " ... = ((x \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z) \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> (y \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z)) ! i"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   794
      using RDirProd_list_m_output RDirProd_list_a_output assms
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   795
      by (metis RDirProd_list_monoid i lessThan_iff monoid.m_closed ring.is_monoid)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   796
    finally
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   797
    show "((x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y) \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z) ! i =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   798
          ((x \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z) \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> (y \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z)) ! i" .
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   799
  qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   800
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   801
  moreover have "length ((x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y) \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> z) = length Rs"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   802
    by (meson RDirProd_list_abelian_group RDirProd_list_carrier_elts RDirProd_list_monoid
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   803
        abelian_groupE(1) assms monoid.m_closed ring.is_abelian_group ring.is_monoid)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   804
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   805
  ultimately show ?thesis by (simp add: nth_equalityI) 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   806
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   807
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   808
lemma RDirProd_list_r_distr:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   809
  assumes "x \<in> carrier (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   810
      and "y \<in> carrier (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   811
      and "z \<in> carrier (RDirProd_list Rs)"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   812
      and "\<And>i. i < length Rs \<Longrightarrow> ring (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   813
    shows "z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> (x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y) =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   814
          (z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> x) \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> (z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> y)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   815
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   816
  have "length (z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> (x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y)) =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   817
        length ((z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> x) \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> (z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> y))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   818
    by (metis RDirProd_list_abelian_group RDirProd_list_carrier_elts RDirProd_list_monoid
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   819
        abelian_groupE(1) assms monoid.m_closed ring.is_abelian_group ring.is_monoid)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   820
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   821
  moreover
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   822
  have "\<And>i. i < length Rs \<Longrightarrow>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   823
            (z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> (x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y)) ! i =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   824
           ((z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> x) \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> (z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> y)) ! i"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   825
  proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   826
    fix i assume i: "i < length Rs"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   827
    hence "(z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> (x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y)) ! i =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   828
           (z ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> ((x ! i) \<oplus>\<^bsub>(Rs ! i)\<^esub> (y ! i))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   829
      using RDirProd_list_m_output RDirProd_list_a_output assms
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   830
      by (metis RDirProd_list_abelian_group abelian_groupE(1) lessThan_iff ring.is_abelian_group)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   831
    also have " ... = ((z ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> (x ! i)) \<oplus>\<^bsub>(Rs ! i)\<^esub> ((z ! i) \<otimes>\<^bsub>(Rs ! i)\<^esub> (y ! i))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   832
      by (metis RDirProd_list_carrier_elts RDirProd_list_in_carrierE
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   833
          assms i lessThan_iff ring.ring_simprules(23))
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   834
    also
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   835
    have " ... = ((z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> x) \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> (z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> y)) ! i"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   836
      using RDirProd_list_m_output RDirProd_list_a_output assms
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   837
      by (metis RDirProd_list_monoid i lessThan_iff monoid.m_closed ring.is_monoid)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   838
    finally
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   839
    show "(z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> (x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y)) ! i =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   840
         ((z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> x) \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> (z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> y)) ! i" .
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   841
  qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   842
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   843
  moreover have "length (z \<otimes>\<^bsub>(RDirProd_list Rs)\<^esub> (x \<oplus>\<^bsub>(RDirProd_list Rs)\<^esub> y)) = length Rs"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   844
    by (meson RDirProd_list_abelian_group RDirProd_list_carrier_elts RDirProd_list_monoid
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   845
        abelian_groupE(1) assms monoid.m_closed ring.is_abelian_group ring.is_monoid)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   846
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   847
  ultimately show ?thesis by (simp add: nth_equalityI)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   848
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   849
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   850
theorem RDirProd_list_ring:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   851
  assumes "\<And>i. i < length Rs \<Longrightarrow> ring (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   852
  shows "ring (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   853
  using assms unfolding ring_def ring_axioms_def using assms 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   854
  by (meson RDirProd_list_abelian_group RDirProd_list_l_distr
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   855
            RDirProd_list_monoid RDirProd_list_r_distr)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   856
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   857
theorem RDirProd_list_cring:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   858
  assumes "\<And>i. i < length Rs \<Longrightarrow> cring (Rs ! i)"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   859
  shows "cring (RDirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   860
  by (meson RDirProd_list_comm_monoid RDirProd_list_ring assms cring_def)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   861
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   862
corollary (in cring) RDirProd_list_of_quot_is_cring:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   863
  assumes "\<And>i. i < n \<Longrightarrow> ideal (I i) R"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   864
    shows "cring (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< n]))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   865
      (is "cring (RDirProd_list ?Rs)")
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   866
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   867
  have "\<And>i. i \<in> {..<(length ?Rs)} \<Longrightarrow> cring (?Rs ! i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   868
    by (simp add: assms ideal.quotient_is_cring is_cring)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   869
  thus ?thesis
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   870
    using RDirProd_list_cring by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   871
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   872
68608
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   873
lemma length_RDirProd_list_0: 
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   874
  assumes "\<And>i. i < n \<Longrightarrow> cring (F i)" 
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   875
  shows "length (\<zero>\<^bsub>(RDirProd_list (map F [0..< n]))\<^esub>) = n"
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   876
  by (metis (no_types, lifting) add_cancel_right_left RDirProd_list_carrier_elts RDirProd_list_cring cring.cring_simprules(2) diff_zero length_map length_upt nth_map_upt assms)
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
   877
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   878
lemma RDirProd_list_isomorphism1:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   879
  "(\<lambda>(hd, tl). hd # tl) \<in> ring_iso (RDirProd R (RDirProd_list Rs)) (RDirProd_list (R # Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   880
  unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def RDirProd_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   881
  by (auto simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   882
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   883
lemma RDirProd_list_isomorphism1':
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   884
  "(RDirProd R (RDirProd_list Rs)) \<simeq> (RDirProd_list (R # Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   885
  unfolding is_ring_iso_def using RDirProd_list_isomorphism1 by blast 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   886
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   887
lemma RDirProd_list_isomorphism2:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   888
  "(\<lambda>r. (hd r, tl r)) \<in> ring_iso (RDirProd_list (R # Rs)) (RDirProd R (RDirProd_list Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   889
  unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def RDirProd_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   890
proof (auto simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   891
  let ?\<phi> = "\<lambda>r. (hd r, tl r)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   892
  fix a b assume "a \<in> carrier R" "b \<in> carrier (DirProd_list Rs)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   893
  hence "a # b \<in> {r # rs |r rs. r \<in> carrier R \<and> rs \<in> carrier (DirProd_list Rs)} \<and> ?\<phi> (a # b) = (a, b)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   894
    by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   895
  thus "(a, b) \<in> ?\<phi> ` {r # rs |r rs. r \<in> carrier R \<and> rs \<in> carrier (DirProd_list Rs)}"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   896
    by (metis (no_types, lifting) image_iff)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   897
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   898
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   899
lemma RDirProd_list_isomorphism3:
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   900
  "(\<lambda>(r, l). r @ [l]) \<in> ring_iso (RDirProd (RDirProd_list Rs) S) (RDirProd_list (Rs @ [S]))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   901
proof (induction Rs rule: DirProd_list.induct)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   902
  case 1 thus ?case
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   903
    unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def RDirProd_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   904
    by (auto simp add: monoid.defs image_iff)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   905
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   906
  case (2 R Rs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   907
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   908
  { fix r1 r2 assume A0: "r1 \<in> carrier (RDirProd_list (R # Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   909
                 and A1: "r2 \<in> carrier (RDirProd_list (R # Rs))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   910
    have "length r1 \<ge> 1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   911
     and "length r2 \<ge> 1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   912
     and "length (r1 \<otimes>\<^bsub>(RDirProd_list (R # Rs))\<^esub> r2) \<ge> 1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   913
     and "length (r1 \<oplus>\<^bsub>(RDirProd_list (R # Rs))\<^esub> r2) \<ge> 1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   914
     and "length (\<one>\<^bsub>(RDirProd_list (R # Rs))\<^esub>) \<ge> 1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   915
    proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   916
      show len_r1: "length r1 \<ge> 1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   917
       and len_r2: "length r2 \<ge> 1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   918
        by (metis RDirProd_list_carrier_elts A0 A1 length_Cons less_one nat.simps(3) not_less)+
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   919
      show "length (r1 \<otimes>\<^bsub>(RDirProd_list (R # Rs))\<^esub> r2) \<ge> 1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   920
       and "length (r1 \<oplus>\<^bsub>(RDirProd_list (R # Rs))\<^esub> r2) \<ge> 1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   921
       and "length (\<one>\<^bsub>(RDirProd_list (R # Rs))\<^esub>) \<ge> 1"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   922
        using len_r1 len_r2 by (simp_all add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   923
    qed } note aux_lemma = this
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   924
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   925
  moreover
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   926
  have "(\<lambda>(r, s). (hd r, (tl r, s))) \<in>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   927
          ring_iso (RDirProd (RDirProd_list (R # Rs)) S)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   928
                   (RDirProd R (RDirProd (RDirProd_list Rs) S))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   929
    using ring_iso_set_trans[OF RDirProd_isomorphism4[OF RDirProd_list_isomorphism2[of R Rs],of S]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   930
                                RDirProd_isomorphism3[of R "RDirProd_list Rs" S]]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   931
    by (simp add: case_prod_beta' comp_def)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   932
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   933
  moreover
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   934
  have "(\<lambda>(hd, (tl, s)). hd # (tl @ [s])) \<in>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   935
          ring_iso (RDirProd R (RDirProd (RDirProd_list Rs) S))
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   936
                   (RDirProd_list (R # (Rs @ [S])))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   937
    using ring_iso_set_trans[OF RDirProd_isomorphism5[OF 2(1), of R]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   938
                                RDirProd_list_isomorphism1[of R "Rs @ [S]"]]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   939
    by (simp add: case_prod_beta' comp_def)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   940
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   941
  moreover
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   942
  have "(\<lambda>(r, s). (hd r) # ((tl r) @ [s])) \<in>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   943
          ring_iso (RDirProd (RDirProd_list (R # Rs)) S) (RDirProd_list (R # (Rs @ [S])))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   944
    using ring_iso_set_trans[OF calculation(6-7)] by (simp add: case_prod_beta' comp_def)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   945
  hence iso: "(\<lambda>(r, s). (hd r # tl r) @ [s]) \<in>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   946
           ring_iso (RDirProd (RDirProd_list (R # Rs)) S) (RDirProd_list ((R # Rs) @ [S]))" by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   947
  
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   948
  show ?case
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   949
  proof (rule ring_iso_morphic_prop[OF iso, of "\<lambda>r. length (fst r) \<ge> 1" "\<lambda>(r, s). r @ [s]"])
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   950
    show "\<And>r. 1 \<le> length (fst r) \<Longrightarrow>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   951
              (case r of (r, s) \<Rightarrow> (hd r # tl r) @ [s]) = (case r of (r, s) \<Rightarrow> r @ [s])"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   952
      by (simp add: Suc_le_eq case_prod_beta')
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   953
    show "morphic_prop (RDirProd (RDirProd_list (R # Rs)) S) (\<lambda>r. 1 \<le> length (fst r))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   954
      unfolding RDirProd_def by (rule morphic_propI) (auto simp add: monoid.defs aux_lemma)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   955
  qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   956
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   957
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   958
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   959
subsection \<open>Second Generalization - The Extended Canonical Projection is a Homomorphism and
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   960
                                    Description of its Kernel\<close>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   961
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   962
theorem (in cring) canonical_proj_ext_is_hom:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   963
  fixes n::nat
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   964
  assumes "\<And>i. i < n \<Longrightarrow> ideal (I i) R"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   965
      and "\<And>i j. \<lbrakk> i < n; j < n; i \<noteq> j \<rbrakk> \<Longrightarrow> I i <+> I j = carrier R"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   966
    shows "(\<lambda>a. (map (\<lambda>i. (I i) +> a) [0..< n])) \<in>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   967
            ring_hom R (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< n]))" (is "?\<phi> \<in> ?ring_hom")
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   968
proof (rule ring_hom_memI)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   969
  { fix x assume x: "x \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   970
    have "?\<phi> x \<in> carrier (RDirProd_list (map (\<lambda>i. R Quot I i) [0..<n]))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   971
    apply (rule RDirProd_list_in_carrierI)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   972
    by (simp_all add: FactRing_def a_rcosetsI additive_subgroup.a_subset assms(1) ideal.axioms(1) x) }
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   973
  note aux_lemma = this
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   974
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   975
  fix x y assume x: "x \<in> carrier R" and y: "y \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   976
  show x': "?\<phi> x \<in> carrier (RDirProd_list (map (\<lambda>i. R Quot I i) [0..<n]))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   977
    using aux_lemma[OF x] .
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   978
  hence x'': "?\<phi> x \<in> carrier (DirProd_list (map (\<lambda>i. R Quot I i) [0..<n]))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   979
    by (simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   980
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   981
  have y': "?\<phi> y \<in> carrier (RDirProd_list (map (\<lambda>i. R Quot I i) [0..<n]))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   982
    using aux_lemma[OF y] .
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   983
  hence y'': "map (\<lambda>i. I i +> y) [0..<n] \<in> carrier (DirProd_list (map (\<lambda>i. R Quot I i) [0..<n]))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   984
    by (simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   985
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   986
  show "?\<phi> (x \<otimes> y) = ?\<phi> x \<otimes>\<^bsub>RDirProd_list (map (\<lambda>i. R Quot I i) [0..<n])\<^esub> ?\<phi> y"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   987
    apply (rule nth_equalityI) 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   988
    apply (metis RDirProd_list_carrier_elts RDirProd_list_of_quot_is_cring assms(1)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   989
                 cring.cring_simprules(5) length_map x' y')
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   990
    apply (simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   991
    using DirProd_list_m_output [of "?\<phi> x" "(map (\<lambda>i. R Quot I i) [0..<n])" "?\<phi> y"] x'' y''
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
   992
    by (simp add: x'' y'' FactRing_def  assms(1) ideal.rcoset_mult_add x y)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   993
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   994
  show "?\<phi> (x \<oplus> y) = ?\<phi> x \<oplus>\<^bsub>RDirProd_list (map (\<lambda>i. R Quot I i) [0..<n])\<^esub> ?\<phi> y"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   995
  proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   996
    have "length (?\<phi> (x \<oplus> y)) =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   997
          length ((?\<phi> x) \<oplus>\<^bsub>RDirProd_list (map (\<lambda>i. R Quot I i) [0..<n])\<^esub> (?\<phi> y))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   998
      by (metis RDirProd_list_carrier_elts RDirProd_list_of_quot_is_cring assms(1)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   999
          cring.cring_simprules(1) length_map x' y')
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1000
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1001
    moreover
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1002
    have "\<And>j. j < n \<Longrightarrow>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1003
              (?\<phi> (x \<oplus> y)) ! j = ((?\<phi> x) \<oplus>\<^bsub>RDirProd_list (map (\<lambda>i. R Quot I i) [0..<n])\<^esub> (?\<phi> y)) ! j"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1004
    proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1005
      fix j assume j: "j < n"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1006
      have "(?\<phi> (x \<oplus> y)) ! j = I j +> x \<oplus> y" using j by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1007
      also have " ... = (I j +> x) \<oplus>\<^bsub>(R Quot I j)\<^esub> (I j +> y)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1008
        by (simp add: FactRing_def abelian_subgroup.a_rcos_sum abelian_subgroupI3
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1009
            assms(1) ideal.axioms(1) is_abelian_group j x y)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1010
      also have " ... = ((?\<phi> x) \<oplus>\<^bsub>RDirProd_list (map (\<lambda>i. R Quot I i) [0..<n])\<^esub> (?\<phi> y)) ! j"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1011
      proof -
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1012
        have "R Quot I j = map (\<lambda>n. R Quot I n) [0..<n] ! j"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1013
             "I j +> x = I ([0..<n] ! j) +> x" 
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1014
             "I j +> y = I ([0..<n] ! j) +> y"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1015
          by (simp_all add: j)
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1016
        moreover have "\<And>n ns f. n < length ns \<Longrightarrow> map f ns ! n = (f (ns ! n::nat)::'a set)"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1017
          by simp
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1018
        moreover have "\<And>B ps C n. \<lbrakk>B \<in> carrier (RDirProd_list ps); C \<in> carrier (RDirProd_list ps); n < length ps\<rbrakk> 
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1019
                     \<Longrightarrow> (B \<oplus>\<^bsub>RDirProd_list ps\<^esub> C) ! n = (B ! n::'a set) \<oplus>\<^bsub>ps ! n\<^esub> C ! n"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1020
          by (meson RDirProd_list_a_output)
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1021
        ultimately show ?thesis
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1022
          by (metis (mono_tags, lifting) diff_zero j length_map length_upt x' y') 
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1023
      qed
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1024
      finally show "(?\<phi> (x \<oplus> y)) ! j =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1025
                    ((?\<phi> x) \<oplus>\<^bsub>RDirProd_list (map (\<lambda>i. R Quot I i) [0..<n])\<^esub> (?\<phi> y)) ! j" .
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1026
    qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1027
    ultimately show "?\<phi> (x \<oplus> y) = ?\<phi> x \<oplus>\<^bsub>RDirProd_list (map (\<lambda>i. R Quot I i) [0..<n])\<^esub> ?\<phi> y"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
  1028
      by (simp add: list_eq_iff_nth_eq)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1029
  qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1030
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1031
  show "(?\<phi> \<one>) = \<one>\<^bsub>RDirProd_list (map (\<lambda>i. R Quot I i) [0..<n])\<^esub>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1032
    apply (rule nth_equalityI)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1033
    apply (metis RDirProd_list_carrier_elts cring.cring_simprules(6)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1034
                 RDirProd_list_of_quot_is_cring assms(1) length_map)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1035
    using DirProd_list_one[where ?Rs = "map (\<lambda>i. R Quot I i) [0..<n]"]
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1036
    by (simp add: FactRing_def monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1037
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1038
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1039
theorem (in cring) canonical_proj_ext_kernel:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1040
  fixes n::nat
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1041
  assumes "\<And>i. i \<le> n \<Longrightarrow> ideal (I i) R"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1042
      and "\<And>i j. \<lbrakk> i \<le> n; j \<le> n; i \<noteq> j \<rbrakk> \<Longrightarrow> I i <+> I j = carrier R"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1043
    shows "(\<Inter>i \<le> n. I i) = a_kernel R (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n]))
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1044
                           (\<lambda>a. (map (\<lambda>i. (I i) +> a) [0..< Suc n]))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1045
proof -
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1046
  let ?\<phi> = "\<lambda>a. (map (\<lambda>i. (I i) +> a) [0..< Suc n])"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1047
  show ?thesis
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1048
  proof
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1049
    show "(\<Inter>i \<le> n. I i) \<subseteq> a_kernel R (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])) ?\<phi>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1050
    proof
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1051
      fix s assume s: "s \<in> (\<Inter>i \<le> n. I i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1052
      hence "\<And>i. i \<le> n \<Longrightarrow> (I i) +> s = I i"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1053
        by (simp add: additive_subgroup.zero_closed assms ideal.axioms(1) ideal.set_add_zero)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1054
      hence "\<And>i. i \<le> n \<Longrightarrow> (?\<phi> s) ! i = I i"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1055
        by (metis add.left_neutral diff_zero le_imp_less_Suc nth_map_upt)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1056
      moreover have
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1057
        "\<And>i. i \<le> n \<Longrightarrow> (\<zero>\<^bsub>(RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n]))\<^esub>) ! i =
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1058
                         \<zero>\<^bsub>(R Quot (I i))\<^esub>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1059
        using RDirProd_list_zero[where ?Rs = "map (\<lambda>i. R Quot I i) [0..<Suc n]"]
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1060
        by (metis (no_types, lifting) add.left_neutral le_imp_less_Suc
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1061
            length_map length_upt nth_map_upt diff_zero)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1062
      hence 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1063
        "\<And>i. i \<le> n \<Longrightarrow> (\<zero>\<^bsub>(RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n]))\<^esub>) ! i = I i"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1064
        unfolding FactRing_def by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1065
      moreover
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1066
      have "length (\<zero>\<^bsub>(RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n]))\<^esub>) = Suc n"
68608
4a4c2bc4b869 final removal of smt from Algebra
paulson <lp15@cam.ac.uk>
parents: 68606
diff changeset
  1067
        by (subst length_RDirProd_list_0) (simp_all add: length_RDirProd_list_0 assms(1) ideal.quotient_is_cring is_cring)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1068
      moreover have "length (?\<phi> s) = Suc n" by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1069
      ultimately have "?\<phi> s = \<zero>\<^bsub>(RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n]))\<^esub>"
68975
5ce4d117cea7 A few new results, elimination of duplicates and more use of "pairwise"
paulson <lp15@cam.ac.uk>
parents: 68608
diff changeset
  1070
        by (simp add: list_eq_iff_nth_eq)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1071
      moreover have "s \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1072
        using additive_subgroup.a_Hcarr assms(1) ideal.axioms(1) s by fastforce
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1073
      ultimately show "s \<in> a_kernel R (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])) ?\<phi>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1074
        using a_kernel_def'[of R "RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])"] by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1075
    qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1076
  next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1077
    show "a_kernel R (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])) ?\<phi> \<subseteq> (\<Inter>i \<le> n. I i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1078
    proof
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1079
      fix s assume s: "s \<in> a_kernel R (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])) ?\<phi>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1080
      hence "?\<phi> s = \<zero>\<^bsub>(RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n]))\<^esub>"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1081
        unfolding a_kernel_def kernel_def by (simp add: monoid.defs)
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1082
      hence "(I i) +> s = \<zero>\<^bsub>(R Quot (I i))\<^esub>" if "i \<le> n" for i
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1083
        using RDirProd_list_zero[where ?Rs = "map (\<lambda>i. R Quot I i) [0..<Suc n]"]
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1084
          by (metis (no_types) that add.left_neutral diff_zero le_imp_less_Suc length_map length_upt nth_map_upt)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1085
      hence "\<And>i. i \<le> n \<Longrightarrow> (I i) +> s = I i"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1086
        unfolding FactRing_def by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1087
      moreover have "s \<in> carrier R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1088
        using s unfolding a_kernel_def kernel_def by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1089
      ultimately show "s \<in> (\<Inter>i \<le> n. I i)"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1090
        using ideal.set_add_zero_imp_mem[where ?i = s and ?R = R] by (simp add: assms(1))
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1091
    qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1092
  qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1093
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1094
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1095
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1096
subsection \<open>Final Generalization\<close>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1097
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1098
theorem (in cring) chinese_remainder:
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1099
  fixes n::nat
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1100
  assumes "\<And>i. i \<le> n \<Longrightarrow> ideal (I i) R"
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1101
      and "\<And>i j. \<lbrakk> i \<le> n; j \<le> n; i \<noteq> j \<rbrakk> \<Longrightarrow> I i <+> I j = carrier R"
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1102
    shows "R Quot (\<Inter>i \<le> n. I i) \<simeq>  RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1103
  using assms
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1104
proof (induct n)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1105
  case 0
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1106
  have "(\<lambda>r. (r, [])) \<in> ring_iso (R Quot (I 0)) (RDirProd (R Quot (I 0)) (RDirProd_list []))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1107
    unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def RDirProd_def
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1108
    by (auto simp add: monoid.defs)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1109
  hence "(R Quot (I 0)) \<simeq> (RDirProd (R Quot (I 0)) (RDirProd_list []))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1110
    unfolding is_ring_iso_def by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1111
  moreover
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1112
  have "RDirProd ((R Quot (I 0)) :: 'a set ring)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1113
                 (RDirProd_list ([] :: (('a set) ring) list)) \<simeq> (RDirProd_list  [ (R Quot (I 0)) ])"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1114
    using RDirProd_list_isomorphism1'[of "(R Quot (I 0)) :: 'a set ring" "[] :: (('a set) ring) list"] . 
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1115
  ultimately show ?case
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1116
    using ring_iso_trans by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1117
next
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1118
  case (Suc n)
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1119
  have inter_ideal: "ideal (\<Inter> i \<le> n. I i) R"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1120
    using Suc.prems(1) i_Intersect[of "I ` {..n}"] atMost_Suc atLeast1_atMost_eq_remove0 by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1121
  hence "R Quot (\<Inter> i \<le> Suc n. I i) \<simeq> RDirProd (R Quot (\<Inter> i \<le> n. I i)) (R Quot (I (Suc n)))"
68606
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1122
    using chinese_remainder_simple[of "\<Inter> i \<le> n. I i" "I (Suc n)"] inter_plus_ideal_eq_carrier[of n I]
96a49db47c97 removal of smt and certain refinements
paulson <lp15@cam.ac.uk>
parents: 68582
diff changeset
  1123
    by (simp add: Int_commute Suc.prems(1-2) atMost_Suc)
68569
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1124
  moreover have "R Quot (\<Inter> i \<le> n. I i) \<simeq> RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1125
    using Suc.hyps Suc.prems(1-2) by auto
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1126
  hence "RDirProd (R Quot (\<Inter> i \<le> n. I i)) (R Quot (I (Suc n))) \<simeq>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1127
         RDirProd (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])) (R Quot (I (Suc n)))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1128
    unfolding is_ring_iso_def using RDirProd_isomorphism4 by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1129
  ultimately
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1130
  have "R Quot (\<Inter> i \<le> Suc n. I i) \<simeq>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1131
        RDirProd (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])) (R Quot (I (Suc n)))"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1132
    using ring_iso_trans by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1133
  moreover
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1134
  have "RDirProd (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])) (R Quot (I (Suc n))) \<simeq>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1135
        RDirProd_list ((map (\<lambda>i. R Quot (I i)) [0..< Suc n]) @ [ R Quot (I (Suc n)) ])"
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1136
    using RDirProd_list_isomorphism3 unfolding is_ring_iso_def by blast
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1137
  hence "RDirProd (RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc n])) (R Quot (I (Suc n))) \<simeq>
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1138
         RDirProd_list (map (\<lambda>i. R Quot (I i)) [0..< Suc (Suc n)])" by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1139
  ultimately show ?case using ring_iso_trans by simp
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1140
qed
c64319959bab Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1141
68582
b9b9e2985878 more standard headers;
wenzelm
parents: 68569
diff changeset
  1142
end